
Recognition and Reconfiguration of
Lattice-Based Cellular Structures by Simple Robots

Eike Niehs1,∗, Arne Schmidt1,∗ Christian Scheffer1, Daniel E. Biediger2, Michael Yannuzzi2, Benjamin Jenett3,4,
Amira Abdel-Rahman4, Kenneth C. Cheung3, Aaron T. Becker2, Sándor P. Fekete1

Abstract— We consider recognition and reconfiguration of
lattice-based cellular structures by very simple robots with only
basic functionality. The underlying motivation is the construc-
tion and modification of space facilities of enormous dimensions,
where the combination of new materials with extremely simple
robots promises structures of previously unthinkable size and
flexibility; this is also closely related to the newly emerging
field of programmable matter. Aiming for large-scale scalability,
both in terms of the number of the cellular components of
a structure, as well as the number of robots that are being
deployed for construction requires simple yet robust robots and
mechanisms, while also dealing with various basic constraints,
such as connectivity of a structure during reconfiguration. To
this end, we propose an approach that combines ultra-light,
cellular building materials with extremely simple robots. We
develop basic algorithmic methods that are able to detect and
reconfigure arbitrary cellular structures, based on robots that
have only constant-sized memory. As a proof of concept, we
demonstrate the feasibility of this approach for specific cellular
materials and robots that have been developed at NASA.

I. INTRODUCTION

Building and modifying large-scale structures is an impor-
tant and natural objective in a vast array of applications. In
many cases, the use of autonomous robots promises signifi-
cant advantages, but also a number of additional difficulties.
This is particularly true in space, where the difficulties
of expensive supply chains, scarcity of building materials,
dramatic costs and consequences of even small errors, and
the limitations of outside intervention in case of malfunctions
pose a vast array of extreme challenges. Nevertheless, the
unquestionable long-term benefits and perspectives of large-
scale facilities in space have lead to enormous investments
in terms of funds, time, and human capital [3]. As a
consequence, the use of advanced methods for autonomous
construction in space is indispensable for further progress.

In recent years, a number of significant advances have
been made to facilitate overall breakthroughs. One important
step has been the development of ultra-light and scalable
composite lattice materials [35] that allow the construction
of modular, reconfigurable, lattice-based structures [42]; see

∗ Both authors contributed equally to this document.
1Department of Computer Science, TU Braunschweig, Germany.
{s.fekete, e.niehs, c.scheffer, arne.schmidt}@tu-bs.de

2Department of Electrical and Computer Engineering, University of
Houston, USA. {atbecker,dbiediger}@uh.edu

3NASA Ames Research Center, Coded Structures Lab (CSL), Moffett
Field, CA, USA. kenny@nasa.gov

4Center for Bits and Atoms (CBA), Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA. bej@mit.edu, amira.abdel-rahman@cba.mit.edu

Fig. 1. (a) An assembled cuboctahedral lattice specimen, made from (b)
Ultem 2200 (20% glass fiber reinforced polyetherimide) octahedral unit
cells (highlighted), termed voxels. (c) A single monolithic RTP 2187 (40%
carbon fiber reinforced polyetherimide) injection molded voxel. (See [35].)

Fig. 2. Modular reconfigurable 3D lattice structure and mobile robots,
showing the small size of the robots relative to the structure that they work
on, and the parallel use of multiple robots. (See [9].)

Figure 1. A second step has been the design of simple
autonomous robots [38], [41] that are able to move on
the resulting lattice structures and move their elementary
cell components, thereby allowing the reconfiguration of the
overall edifice; see Figure 2 and Figure 3. Combining such
materials and robots in space promises to vastly increase the
dimensions of constructible facilities and spacecraft, as well
as offering to extend mission capabilities with reconfigura-
tion and re-use [34].

In this paper, we address the next step in this hierarchy:
Can we enable extremely simple robots to perform a more
complex spectrum of construction tasks for cellular structures
in space, such as patrolling and marking the perimeter,

Fig. 3. A BILL-E robot moving on an expanding row of voxels. (See [39].)

scaling up a given seed construction, and a number of other
design operations? In the harsh and remote environment of
space, relying on powerful CPUs is a serious limitation,
not only because of the vulnerability of complex computer
hardware, but also because its availability becomes a lim-
iting factor to mass-producing a large number of simple,
modular robots in space. As we demonstrate, sophisticated
computing hardware is not necessary. Even the extremely
limited capabilities of machines with a finite number of states
suffice for these tasks. To this end, we provide a suite of
algorithmic methods, and demonstrate the feasibility of the
resulting approach by implementing it on actual ultra-light
material with simple mobile manipulators.

A. Our Results

We present the following results.
1) We show how just two finite-state robots suffice to

construct a bounding box for a given connected planar
arrangement of grid cells (a polyomino P) in a limited
number of steps.

2) We provide an algorithmic methods that enables two
finite-state robots to construct for a polyomino P with
a surrounding bounding box a scaled-up copy of P in a
limited number of steps, while preserving connectivity
of intermediate arrangements.

3) We also sketch how other basic operations of
Computer-Aided Design (such as copying or rotating)
can be performed in similar ways.

4) We demonstrate how these methods can be imple-
mented on actual lattice-based structures with simple
robots.

5) We provide experimental outcomes for the resulting
processing times.

B. Related Work

The structures considered in this work are based on ultra-
light material, as described by Cheung and Gershenfeld [8]
and Gregg et al. [35]. Modular two-dimensional elements
mechanically link in 3D to form reversibly assembled com-
posite lattices. This process is not limited by scale, and
it enables disassembly and reconfiguration. As shown by
Cramer et al. [10] and Jenett et al. [40], large but light-
weight structures can be built from these components. Jenett
et al. have developed autonomous robots that move on the

surface [38], [39] or within the cellular structure [41]. With
the help of these robots, individual cells can be attached to
an existing assembly, or moved to a different location. An
approach for global optimization of a corresponding motion
plan has been described by Costa et al. [9], while the design
of hierarchical structures was addressed by Jenett et al. [43].

Assembly by simple robots has also been considered
at the micro scale, where global control control is used
for supplying the necessary force for moving agents, e.g.,
see Becker et al. [2] for the corresponding problem of
motion planning, Schmidt et al. [48] for using this model
for assembling structures, and Balanza-Martinez et al. [1] for
theoretical characterizations. Distributed self-assembly for
modular robots with limited computing resources was studied
by Tucci et al. [49]. Self-configuration of robots themselves
has been considered by Naz et al. [44]. A basic model
in which robots themselves are used as building material
was introduced by Derakhshandeh et al. [16], [17]. This
resembles Claytronics robots like Catoms, see Goldstein and
Mowry [33].

A large spectrum of methods for tile-based assembly in
biology has also been considered. Examples include DNA
self-assembly, introduced by Winfree [50], [51] and extended
to a variety of models [7], [13]. See Patitz [47] for a survey.

On the algorithmic side, there has been a considerable
amount of work dealing with robots or agents on graphs.
Blum and Kozen [5] showed that two finite automata can
jointly search any unknown maze. Other work has focused
on exploring general graphs (e.g., [24], [27], [46]), as a
distributed or collaborative problem using multiple agents
(e.g. [4], [6], [11], [25]) or with space limitations (e.g. [21],
[26]–[29]).

From an algorithmic view, we are interested in different
models representing programmable matter and further
recent results. Inspired by the single-celled amoeba, Der-
akhshandeh et al. introduced the Amoebot model [14] and
later a generalized variant, the general Amoebot model [19].
The Amoebot model provides a framework based on an equi-
lateral triangular graph and active particles that can occupy a
single vertex or a pair of adjacent vertices within that graph.
With just a few possible movements, these particles can be
formed into different shapes like lines, triangles or hexagons
[16], and a leader out of all particles can be elected [12], [19].
A universal shape formation algorithm within the Amoebot
model was described by Di Luna et al. in [20]. An algorithm
for solving the problem of coating an arbitrarily shaped
object with a layer of self-organizing programmable matter
was presented in [18] and analyzed in [15]. Other models
with active particles were introduced in [52] as the Nubot
model and in [37] with modular robots. In [30], Gmyr et al.
introduced a model with two types of particles: active robots
acting like a deterministic finite automaton and passive tile
particles. Furthermore, they presented algorithms for shape
formation [32] and shape recognition [31] using robots on
tiles. Using the same “Robot-on-Tiles” model as we do in our
work, Hugo presented algorithms for recognizing convexity
of a given polyomino and counting the number of tiles or

corners in her Bachelor thesis [36]. Finally, Fekete et al.
introduced more complex geometric algorithms for copying,
reflecting, rotating and scaling a given polyomino as well as
an algorithm for constructing a bounding box surrounding a
polyomino in [22].

II. PRELIMINARIES

In the following, we introduce models, general definitions
as well as a description of the underlying limitations.

A. Model

We consider an infinite square grid graph G, where Z2

defines the vertices, and for every two vertices with distance
one there is a corresponding edge in G. We use the compass
directions (N,E, S,W) for orientation when moving on on
the grid and may use up, right, down and left synonymously.

Every vertex of G is either occupied by a tile or unoccu-
pied. Tiles represent passive particles of programmable mat-
ter that cannot move or manipulate themselves. The maximal
connected set of occupied vertices is called polyomino.

The boundary of a polyomino P is denoted by ∂P
and includes all tiles of P that are adjacent to an empty
vertex. For simplicity we show the boundary as a red line
around P (see also Figure 4 (a)). Polyominoes can have
holes, i.e., finite maximal connected sets of empty vertices.
Polyominoes without holes are called simple; otherwise, they
are non-simple. The bounding box of a given polyomino P is
defined as the boundary of the smallest axis-aligned rectangle
enclosing but not touching P ; it will be denoted by bb(P)
(see Fig. 5). Because the bounding box and polyomino are
comprised of identical tiles, a gap is necessary to differentiate
the two.

We use robots as active particles in our model. These
robots work like finite deterministic automata that can move
around on the grid and manipulate the polyomino. A robot
has the abilities to move along the edges of the grid graph
and to change the state of the current vertex by placing or
removing a tile on it. The robots work in a series of Look-
Compute-Move (LCM) steps. Depending on the current state
of the robot and the vertex it is positioned on (Look), the next
step is computed according to a specific transition function

(a) (b) (c)

Fig. 4. (a) The red line indicates the boundary of P , denoted by ∂P . (b)
A non-simple polyomino with one hole. (c) The tiles on the grid induce
two separate connected components.

P

Fig. 5. A polyomino P and its gray colored bounding box surrounding P .

δ (Compute), which determines the future state of robot
and vertex and the actual movement (Move). In the case of
multiple robots (Figure 6 (b)), we assume, that they cannot be
placed on the same vertex at the same time. Communication
between robots is limited to adjacent vertices and can be
implemented by expanding the Look phase by the states of
all adjacent robots.

Connectivity in the sense of this work is ensured if the
union of all placed tiles and all used robots is completely
connected. Accordingly, a robot can hold two components
together, e.g., as shown in Figure 6 (c).

(a) (b) (c)

Fig. 6. (a) One robot and its possible moves. (b) Two robots on the grid.
(c) Robots can hold separate connected components together.

III. CONSTRUCTING A BOUNDING BOX

Fekete et al. [22] showed how to construct a bounding
box around a polyomino. However, that algorithm does not
guarantee connectivity. We describe an algorithm to construct
the bounding box keeping connectivity after each step. Due
to space constraints, we only sketch technical details; see
the full version of the paper [23] for a full description. To
accomplish the required connectivity we specify without any
loss of generality that the connection between bb(P) and
P must be on the south side of the boundary. For ease
of presentation, the polyomino is shown in blue and the
bounding box in gray; the robots cannot actually distinguish
between those tiles.

In the following, we assume that two robots are placed
adjacent to each other on an arbitrary tile of the polyomino
P , and that the first robot R1 (marked red) is the leader.

The construction can be split into three phases: (1) finding
a start position, (2) constructing the bounding box, and (3)
the clean-up. To find a suitable start position, we search for a
locally y-minimal vertex that is occupied by a tile. This can
be done by scanning the current row and moving downwards
whenever possible. The search is done by the leader robot
R1, followed by R2. Then R2 positions itself on the first
vertex beneath this locally y-minimal vertex. Afterwards, R1

starts the bounding box construction one vertex further down.
This brings us to phase (2).

The construction of the bounding box is performed clock-
wise around P , i.e., whenever possible, R1 makes a right
turn. At some point, R1 finds a tile either belonging to P or
to the bounding box. In the latter case we are done with phase
(2) and can proceed to phase (3). If it is a tile belonging to
P , we need to shift the current line outwards until there is no
more conflict, then continue the construction (see Fig. 7). If
the line to shift is the first line of the constructed bounding
box, we know that there exists a tile of P that has a lower
y-coordinate than the current starting position. Therefore,

(a) (b)

Fig. 7. (a) R1 hits a tile belonging to P . (b) The triggered shifting process
is finished.

(a) (b) (c) (d)

Fig. 8. Traversing a gap by building a bridge

we build a bridge to traverse this gap, as shown in Fig. 8.
Afterwards, we can restart from phase (1).

To decide whether a tile t belongs to P or the current
bounding box, we start moving around the boundary of the
shape t belongs to. At some point, R1 reaches R2. If R1 is
above R2 then t is a tile of P , otherwise t is a tile of the
bounding box.

For phase (3), consider the case when R1 reaches a tile
from the bounding box. If the hit tile is not a corner tile,
the current line needs to be shifted outwards until the next
corner is reached (see Figure 9(a)). Then we can search for
another suitable connection between P and bb(P), place a
tile there, and get to R2 to remove unnecessary parts of the
bounding box (see Figure 9(b)-(d)). Because bb(P) has only
one tile with three adjacent tiles left, we can always find the
connection between P and bb(P).

Theorem 1: Given a polyominino P of width w and
height h, building a bounding box surrounding P with the
need that boundary and P are always connected, can be done
with two robots in O(max(w, h)·(wh+k·|∂P |)) steps, where
k is the number of convex corners in P .

The proof of this theorem is analogous to that from [22];
see [23] for full details.

If we know in advance that the given polyomino contains
no holes, then we can build a non-simple bounding box.
This requires only one robot, because we can at any moment
distinguish the polyomino from the bounding box without
having a second robot holding both parts together. This yields
the following corollary.

Corollary 1: Given a simple polyominino P of width w
and height h, building a bounding box surrounding P with
the need that boundary and P are always connected, can be
done with one robot in O(max(w, h) · wh) steps.

IV. SCALING POLYOMINOES

Now we consider scaling a given shape by a factor c.
Note that reducing the size of a polyomino by a factor
(“scaling down”) can then be done in a similar fashion. In

(a) (b)

(c) (d)

Fig. 9. The second case of finishing the bounding box. (a) An already
constructed part of the bounding box is hit. (b) The last boundary side is
shifted. (c) R1 found a suitable new connectivity vertex above the southern
side, places a tile and retraces its path to the initial starting position. (d)
The unnecessary part of the bounding box is removed and both robots catch
up to the new connection.

the following we assume that the robot R1 already built the
bounding box and is positioned on one of its tiles.

A. Scaling

The scaling process can be divided into two phases: (1)
the preparation phase, and (2) the scaling phase. In phase (1)
we fill up the last, i.e., rightmost column within bb(P), add a
tile in the second last column above the south side of bb(P),
and remove the lowest tile (called column marker) and third
lowest tile (called row marker) on the east side of bb(P) (see
Fig. 10(a)). This gives us three columns within the bounding
box (including bb(P) itself). The first (from west to east)
is the current column of P to scale. The second column,
which is filled with tiles excepting the topmost row, is used
to ensure connectivity and helps to recognize the end of the
current column. The third column marks the current overall
progress, i.e., we can find the tile in the correct current
column and row that we want to scale next.

In phase (2), we simply search for the tile to scale, and
place the row marker one vertex upwards. For possible cases,
see Fig. 10. When we reach the top row of the bounding box,
we move the column marker one vertex to the left and place
a new row marker. Then we add a c× c square to the left of
bb(P). If we did not move the column marker, we move left
from the south side of bb(P) until we reach an end and start
moving up until we find the place to build the c× c-square.
Otherwise, we do not move upwards and build the square
after the leftward moves. If the vertex to scale is empty,
then we leave out one tile within the square.

After scaling a column that only contained empty vertices,
we know that we are done with scaling. Thus, we can start
removing all tiles, proceeding columnwise within bb(P) from

(a) (b) (c) (d)

Fig. 10. (a) Configuration after the preparation phase. (b)-(d) Cases that
appear during the scaling: (b) Scaling an occupied vertex; (c) scaling an
empty vertex; (d) reaching the end of a column.

right to left. If necessary, all scaled empty tiles can also be
removed by one scan through the scaled field.

Theorem 2: After building bb(P), scaling a polyomino P
of width w and height h by a constant scaling factor c without
loss of connectivity can be done with one robot in O(wh ·
(c2 + cw + ch)) steps.

Proof: Correctness: We scan through the whole bound-
ing box of P and scale every position. This implies that
we scale every tile of P . Because we scale columnwise, we
ensure that every scaled tile is built at the correct position.
Connectivity is guaranteed because we never remove a tile
that is necessary to have connectivity.

Time: Each of the w·h vertices within the bounding box of
P is scaled. To this end, the robot has to move O(c(w+h))
steps to reach the position, where the scaled vertex needs to
be constructed. A further O(c2) steps are needed to construct
the tile. Finding the next vertex to scale takes O(c(w + h))
steps, including going back, find the correct column and row,
and moving the row and column marker. In total we have a
runtime of O(wh(c2 + cw + ch)).

B. Adapting Algorithms

As shown in Fig. 11, there are algorithms that may
not guarantee connectivity. An immediate consequence of
being able to scale a given shape is that we can simulate
any algorithm A within the Robot-on-Tiles model while
guaranteeing connectivity: We first scale the polyomino by
three and then execute A by always performing three steps
into one direction if A does one step. If at some point the
robot needs to move through empty vertices, then we place
a 3 × 3-square with the middle vertex empty (if a clean up
is desired at the end of A, i.e., removing all scaled empty
vertices, we fill up the complete row/column with these
squares). This guarantees connectivity during the execution
and we obtain the following theorem.

Theorem 3: If there is an algorithm A for some problem
Π in the Robots-on-Tiles model with runtime T (A), such
that the robot moves within a w′ × h′ rectangle, then there
is an algorithm A′ for Π with runtime O(wh · (c2 + cw +
ch) + max((w′−w)h′, (h′−h)w′) + c · T (A)) guaranteeing
connectivity during execution.

V. SIMULATION

As a key step in realizing a full robotic implementation
of the bounding box construction, a tile-based simulator
was developed1. This python-based simulation allows for a

1https://github.com/AlienHunterD/2DTileRobot

Bounding Box

tc

t2

t1

Fig. 11. Figures from [22] showing how to copy (left) or rotate (right) a
given shape. We can clearly see that the tiles are not connected. Theorem 3
guarantees that this kind of construction can be modified to be performed
in a connected fashion.

0% 20% 40% 60% 80% 100%

Fig. 12. 2D simulation snapshots from building a bounding box for an
L-shaped polyomino. See video [45] for animation.

clearer understanding of the subtle details in the execution of
the approach. It models the states of the tiles as well as the
robots and elucidates the state transitions. The visualization
provides a snapshot of these states and how they unfold. It
aides in understanding the scalability of the approach as well
as the behavior of the approach on different shapes. It also
provided the motion plan for the full 3D simulation of the
algorithm with the virtual BILL-E robot.

The implemented state machine has 34 states, which
include some optimizations for shifting long stretches of
tiles. When the robots are in close proximity, they behave
synchronously. In each state the robots first sense one unit
in the directions left, up, right, and down. Each step in the
simulation consists of one or all of the following actions:
{look; communicate; turn; move one space; add, move or
delete a tile; turn}. A build sequence from the simulator is
shown in Fig. 12.

A plot showing the percentage of steps spent in four
classes of states is shown in Fig. 14, for constructing
bounding boxes around L-shaped polyominoes. The state
classes for these plots are Initial Search (which searches for
the local y-minimum of the seed polyomino), Add/Shift Tiles
(which either adds a tile or shifts an already placed tile by
90◦), Delete Tiles (which removes a tile), or Move/Search
(which either moves to the end of the bounding box under
construction or searches to see if the current tile is part of
the bounding box or the seed polyomino).

As the size of the polyomino grows, the number of
steps required grows quadratically. The time required to
Move/Search dominates the other classes. The number of
steps required to construct a bounding box around six simple
shapes of polyominoes are compared in Fig. 15. Filled
squares require the fewest steps to construct a bounding
box, while L-shaped sets require considerably more time.
Most of this extra time is spent searching to determine if an
encountered tile is part of the polyomino or bounding box.
Four classes of shapes that are identical up to a rotation are

https://github.com/AlienHunterD/2DTileRobot

0% 20% 40% 60% 80% 100%
Fig. 13. Snapshots from building a bounding box for z-shaped polyomino using 2D simulator, 3D simulator, and staged hardware robots, synchronized
so all are shown at steps {0, 24, 48, 72, 96, 120}. See video for animation: https://youtu.be/K80sV5Xf7v4 [45].

0 20 40 60 80 100

L-1

L-2

L-4

L-8

L-16

L-32

Percentage of time in state

S
ha
pe

-
bo
un
di
ng
bo
x

Initial Search

Add/Shift Tile

Delete Tile

Move/Search

L-1 L-2 L-4 L-8 L-16 L-32
0

2000

4000

6000

8000

10000

12000

Shape-bounding box

C
ou
nt
s
pe
r
st
at
e

19 43 147
763

3099

12187

Fig. 14. Percentage of time spent in states for an L-shaped seed polyomino.
The L-1 is a single tile, while the L-32 extends from the bottom-left tile a
single row of tiles 32 wide and a single column 32 tiles tall.

2 4 8 16 32 L2 L4 L8 L16 L32 u2 u4 u8 u16 u32 c2 c4 c8 c16 c32 ⊐2 ⊐4 ⊐8 ⊐16 ⊐32 n2 n4 n8 n16 n32

Move/Search

Delete Tile

Add/Shift Tile

Initial Search

0

5000

10000

15000

20000

41 44 130 231 482 43 147 763

3099

12187

41 109 812

3668

15140

41 99
894

4222

17790

41 131
926

4254

17822

41 133
1052

4916

20708

Fig. 15. Steps required for six canonical shapes. All shapes fill an n× n
bounding box, with n ∈ {2, 4, 8, 16, 32}. Shapes include filled squares, and
five shapes composed of single width polyomino lines: L-shapes, u-shapes,
c-shapes, A-shapes, and n-shapes. The time requirements increase from left
to right.

u, c, A, and n-shaped sets. The differences in time for these
classes reflect the arbitrary choice to turn clockwise when
determining if a tile belongs to the polyomino. These sim-
ulations show many opportunities for improved efficiency.
The time for L-shapes is dominated by running the routine
to determine if the tile encountered is the boundary or the
seed polyomino. Adding more states could approximate wall
following.

The tile-based simulator was used to construct a 3D
simulation using the BILL-E robots and magnetic voxels.
The tile-based simulator, the 3D simulator, and two hardware
robots constructing a bounding box are shown in Fig. 13.
Moving from the tile-based approach required modifications.

Among those are: (1) The robot must physically reach out to
look at a neighboring voxel (and thus must not collide with
another robot). (2) The robot can only move from one tile to
the neighbor by performing a “cartwheel” move. In practice,
performing an inch-worm maneuver that places a leg two
tiles away, then moves the trailing leg forward, moves the
robot more quickly. (3) At this point, the implementation
details of obtaining a voxel to add or deleting a voxel are
omitted. In the future, robots may carry a supply of voxels,
move them to or from appropriately placed depots when this
supply is exhausted, be supplied by a number of dedicated
gopher robots, or may even construct and consume voxels
(i.e. 3D printing/ filament recycling).

VI. CONCLUSION

We demonstrated how geometric algorithms for finite
automata can be used to enable very simple robots to perform
a number of fundamental but non-trivial construction tasks,
such as building a bounding box and scaling a given shape
by some constant, that guarantee connectivity between all
tiles and robots during their execution, and also provided a
practical realization.

There is a whole range of possible extensions. Is it
possible to scale general polyominoes without the preceding
bounding box construction? A possible approach could be to
cut the polyomino into a subset of monotone polyominoes,
which could be handled separately. Expanding the existing
repertoire of operations to three-dimensional configurations
and operations is another logical step. An equally relevant
challenge is to develop distributed algorithms with multiple
robots that are capable of solving a range of problems with
the requirement of connectivity, without having to rely on the
preceding scaling procedure that we used in our work. Other
questions arise from additional requirements of real-world
applications, such as the construction and reconfiguration of
space habitats.

https://youtu.be/K80sV5Xf7v4

REFERENCES

[1] J. Balanza-Martinez, A. Luchsinger, D. Caballero, R. Reyes, A. A.
Cantu, R. Schweller, L. A. Garcia, and T. Wylie, “Full tilt: universal
constructors for general shapes with uniform external forces,” in 30th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2019,
pp. 2689–2708.

[2] A. T. Becker, S. P. Fekete, P. Keldenich, D. Krupke, C. Rieck,
C. Scheffer, and A. Schmidt, “Tilt assembly: algorithms for micro-
factories that build objects with uniform external forces,” Algorith-
mica, pp. 1–23, 2017.

[3] W. K. Belvin, W. R. Doggett, J. J. Watson, J. T. Dorsey, J. E. Warren,
T. C. Jones, E. E. Komendera, T. Mann, and L. M. Bowman, “In-
space structural assembly: Applications and technology,” in 3rd AIAA
Spacecraft Structures Conference, 2016, p. 2163.

[4] M. A. Bender and D. K. Slonim, “The power of team exploration:
two robots can learn unlabeled directed graphs,” in 35th Annual
Symposium on Foundations of Computer Science (FOCS), 1994, pp.
75–85. [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=365703

[5] M. Blum and D. Kozen, “On the power of the compass (or,
why mazes are easier to search than graphs),” in 19th Annual
Symposium on Foundations of Computer Science (FOCS), 1978, pp.
132–142. [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=4567972

[6] P. Brass, F. Cabrera-Mora, A. Gasparri, and J. Xiao, “Multirobot tree
and graph exploration,” IEEE Transactions on Robotics, vol. 27, no. 4,
pp. 707–717, Aug 2011.

[7] C. Chalk, E. Martinez, R. Schweller, L. Vega, A. Winslow, and
T. Wylie, “Optimal staged self-assembly of general shapes,” Algo-
rithmica, vol. 80, no. 4, pp. 1383–1409, 2018.

[8] K. C. Cheung and N. Gershenfeld, “Reversibly assembled cellular
composite materials,” Science, vol. 341, no. 6151, pp. 1219–1221,
2013.

[9] A. Costa, A. Abdel-Rahman, B. Jenett, N. Gershenfeld, I. Kostitsyna,
and K. Cheung, “Algorithmic approaches to reconfigurable assembly
systems,” in IEEE Aerospace Conference, 2019, pp. 1–8.

[10] N. B. Cramer, D. W. Cellucci, O. B. Formoso, C. E. Gregg, B. E.
Jenett, J. H. Kim, M. Lendraitis, S. S. Swei, G. T. Trinh, K. V.
Trinh et al., “Elastic shape morphing of ultralight structures by
programmable assembly,” Smart Materials and Structures, vol. 28,
no. 5, p. 055006, 2019.

[11] S. Das, P. Flocchini, S. Kutten, A. Nayak, and N. Santoro, “Map
construction of unknown graphs by multiple agents,” Theoretical
Computer Science, vol. 385, no. 1, pp. 34 – 48, 2007.

[12] J. J. Daymude, R. Gmyr, A. W. Richa, C. Scheideler, and T. Stroth-
mann, “Improved leader election for self-organizing programmable
matter,” in Algorithms for Sensor Systems, Cham, 2017, pp. 127–140.

[13] E. D. Demaine, M. L. Demaine, S. P. Fekete, M. Ishaque, E. Rafalin,
R. T. Schweller, and D. L. Souvaine, “Staged self-assembly: nanoman-
ufacture of arbitrary shapes with o (1) glues,” Natural Computing,
vol. 7, no. 3, pp. 347–370, 2008.

[14] Z. Derakhshandeh, S. Dolev, R. Gmyr, A. W. Richa, C. Scheideler,
and T. Strothmann, “Brief announcement: Amoebot – a new model
for programmable matter,” in 26th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2014, pp. 220–222.

[15] Z. Derakhshandeh, R. Gmyr, A. Porter, A. W. Richa, C. Scheideler, and
T. Strothmann, “On the runtime of universal coating for programmable
matter,” in 22nd International Conference on DNA Computing and
Molecular Programming (DNA), 2016, pp. 148–164.

[16] Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and T. Stroth-
mann, “An algorithmic framework for shape formation problems in
self-organizing particle systems,” in 2nd International Conference on
Nanoscale Computing and Communication (NANOCOM), 2015, pp.
21:1–21:2.

[17] ——, “Universal shape formation for programmable matter,” in Pro-
ceedings of the 28th ACM Symposium on Parallelism in Algorithms
and Architectures, 2016, pp. 289–299.

[18] ——, “Universal coating for programmable matter,” Theoretical Com-
puter Science, vol. 671, pp. 56–68, 2017.

[19] Z. Derakhshandeh, R. Gmyr, T. Strothmann, R. Bazzi, A. W. Richa,
and C. Scheideler, “Leader election and shape formation with self-
organizing programmable matter,” in 21st International Conference
on DNA Computing and Molecular Programming (DNA), 2015, pp.
117–132.

[20] G. A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and Y. Yamauchi,
“Shape formation by programmable particles,” Distributed Computing,
vol. 33, no. 1, pp. 69–101, 2020.

[21] K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc, “Tree exploration
with little memory,” Journal of Algorithms, vol. 51, no. 1, pp. 38 –
63, 2004.

[22] S. P. Fekete, R. Gmyr, S. Hugo, P. Keldenich, C. Scheffer, and
A. Schmidt, “CADbots: Algorithmic aspects of manipulating pro-
grammable matter with finite automata,” CoRR, vol. abs/1810.06360,
2018. [Online]. Available: https://arxiv.org/pdf/1810.06360.pdf

[23] S. P. Fekete, E. Niehs, C. Scheffer, and A. Schmidt, “Connected
assembly and reconfiguration by finite automata,” CoRR, 2019.
[Online]. Available: https://arxiv.org/pdf/1909.03880.pdf

[24] R. Fleischer and G. Trippen, “Exploring an unknown graph efficiently,”
in 13th European Symposium on Algorithms (ESA), 2005, pp. 11–22.

[25] P. Fraigniaud, L. Gasieniec, D. R. Kowalski, and A. Pelc, “Collective
tree exploration,” Networks, vol. 48, no. 3, pp. 166–177, 2006.

[26] P. Fraigniaud and D. Ilcinkas, “Digraphs exploration with little mem-
ory,” in 21st Symposium on Theoretical Aspects of Computer Science
(STACS), 2004, pp. 246–257.

[27] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg, “Graph
Exploration by a Finite Automaton,” Theoretical Computer Science,
vol. 345, no. 2-3, pp. 331–344, Nov. 2005.

[28] L. Gasieniec, A. Pelc, T. Radzik, and X. Zhang, “Tree exploration
with logarithmic memory,” in 18th ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2007, pp. 585–594.

[29] L. Gasieniec and T. Radzik, “Memory efficient anonymous graph ex-
ploration,” in 34th Workshop Graph-Theoretic Concepts in Computer
Science (WG), 2008, pp. 14–29.

[30] R. Gmyr, I. Kostitsyna, F. Kuhn, C. Scheideler, and T. Strothmann,
“Forming tile shapes with a single robot,” in 33rd European Workshop
on Computational Geometry (EuroCG), 2017, pp. 9–12.

[31] R. Gmyr, K. Hinnenthal, I. Kostitsyna, F. Kuhn, D. Rudolph, and
C. Scheideler, “Shape Recognition by a Finite Automaton Robot,”
in 43rd International Symposium on Mathematical Foundations of
Computer Science (MFCS), vol. 117, 2018, pp. 52:1–52:15.

[32] R. Gmyr, K. Hinnenthal, I. Kostitsyna, F. Kuhn, D. Rudolph, C. Schei-
deler, and T. Strothmann, “Forming tile shapes with simple robots,”
in 24th International Conference on DNA Computing and Molecular
Programming (DNA), 2018, pp. 122–138.

[33] S. C. Goldstein and T. Mowry, “Claytronics: A scalable basis for future
robots,” Robosphere, Nov, 2004.

[34] C. E. Gregg, B. Jenett, and K. C. Cheung, “Assembled, modular
hardware architectures - what price reconfigurability?” in 2019 IEEE
Aerospace Conference, 2019, pp. 1–10.

[35] C. E. Gregg, J. H. Kim, and K. C. Cheung, “Ultra-light and scalable
composite lattice materials,” Advanced Engineering Materials, vol. 20,
no. 9, p. 1800213, 2018.

[36] S. Hugo, “Robots on tiles: Recognition of polyomino properties using
constant memory,” Bachelor’s Thesis, TU Braunschweig, 2018.

[37] F. Hurtado, E. Molina, S. Ramaswami, and V. Sacristán, “Distributed
reconfiguration of 2D lattice-based modular robotic systems,” Au-
tonomous Robots, vol. 38, no. 4, pp. 383–413, Apr 2015.

[38] B. Jenett and K. Cheung, “Bill-e: Robotic platform for locomotion
and manipulation of lightweight space structures,” in 25th AIAA/AHS
Adaptive Structures Conference, 2017, p. 1876.

[39] B. Jenett, A. Abdel-Rahman, K. C. Cheung, and N. Gershenfeld,
“Material-robot system for assembly of discrete cellular structures,”
IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4019–4026,
2019.

[40] B. Jenett, S. Calisch, D. Cellucci, N. Cramer, N. Gershenfeld, S. Swei,
and K. C. Cheung, “Digital morphing wing: active wing shaping con-
cept using composite lattice-based cellular structures,” Soft Robotics,
vol. 4, no. 1, pp. 33–48, 2017.

[41] B. Jenett and D. Cellucci, “A mobile robot for locomotion through a
3d periodic lattice environment,” in IEEE International Conference on
Robotics and Automation (ICRA), 2017, pp. 5474–5479.

[42] B. Jenett, D. Cellucci, C. Gregg, and K. Cheung, “Meso-scale digital
materials: modular, reconfigurable, lattice-based structures,” in ASME
2016 11th International Manufacturing Science and Engineering Con-
ference, 2016.

[43] B. Jenett, C. Gregg, D. Cellucci, and K. Cheung, “Design of multifunc-
tional hierarchical space structures,” in IEEE Aerospace Conference,
2017, pp. 1–10.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=365703
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=365703
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4567972
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4567972
https://arxiv.org/pdf/1810.06360.pdf
https://arxiv.org/pdf/1909.03880.pdf

[44] A. Naz, B. Piranda, J. Bourgeois, and S. C. Goldstein, “A distributed
self-reconfiguration algorithm for cylindrical lattice-based modular
robots,” in IEEE 15th International Symposium on Network Computing
and Applications (NCA), 2016, pp. 254–263.

[45] E. Niehs, A. Schmidt, C. Scheffer, D. E. Biediger, M. Yannuzzi,
B. Jenett, A. Abdel-Rahman, K. C. Cheung, A. T. Becker, and
S. P. Fekete, “Video: Recognition and reconfiguration of lattice-based
cellular structures by simple robots,” March 2020. [Online]. Available:
https://youtu.be/K80sV5Xf7v4

[46] P. Panaite and A. Pelc, “Exploring unknown undirected graphs,”
Journal of Algorithms, vol. 33, no. 2, pp. 281 – 295, 1999.

[47] M. J. Patitz, “An introduction to tile-based self-assembly and a survey
of recent results,” Natural Computing, vol. 13, no. 2, pp. 195–224,
2014.

[48] A. Schmidt, S. Manzoor, L. Huang, A. T. Becker, and S. P. Fekete,
“Efficient parallel self-assembly under uniform control inputs,” IEEE
Robotics and Automation Letters, vol. 3, no. 4, pp. 3521–3528, 2018.

[49] T. Tucci, B. Piranda, and J. Bourgeois, “A distributed self-assembly
planning algorithm for modular robots,” in 17th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS), 2018,
pp. 550–558.

[50] E. Winfree, “Algorithmic self-assembly of DNA,” Ph.D. dissertation,
California Institute of Technology, 1998.

[51] E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, “Design and
self-assembly of two-dimensional DNA crystals,” Nature, vol. 394, no.
6693, p. 539, 1998.

[52] D. Woods, H.-L. Chen, S. Goodfriend, N. Dabby, E. Winfree, and
P. Yin, “Active self-assembly of algorithmic shapes and patterns in
polylogarithmic time,” in 4th Conference on Innovations in Theoretical
Computer Science (IITCS), 2013, pp. 353–354.

https://youtu.be/K80sV5Xf7v4

	Introduction
	Our Results
	Related Work

	Preliminaries
	Model

	Constructing a Bounding Box
	Scaling Polyominoes
	Scaling
	Adapting Algorithms

	Simulation
	Conclusion
	References

