
Aggregation and localization of simple robots
in curved environments

Rachel A. Moan Victor M. Baez Aaron T. Becker Jason M. O’Kane

Abstract—This paper is about the closely-related problems
of localization and aggregation for extremely simple robots,
for which the only available action is to move in a given
direction as far as the geometry of the environment allows. Such
problems may arise, for example, in biomedical applications,
wherein a large group of tiny robots moves in response to
a shared external stimulus. Specifically, we extend the prior
work on these kinds of problems presenting two algorithms for
localization in environments with curved (rather than polygonal)
boundaries and under low-friction models of interaction with
the environment boundaries. We present both simulations and
physical demonstrations to validate the approach.

I. INTRODUCTION

The problem of localization —that is, the process of de-
termining the location of a robot with respect to its cur-
rent environment— is a fundamental problem in robotics.
Traditional approaches to this problem [7], [10], [11], [26],
[31] are suitable for robots of sufficiently large scale and
sufficiently high complexity that they can carry range sensors,
cameras, or other information-rich sensors for perceiving their
own motions through their environments and relatively precise
actuators for effecting those motions. The localization problem
becomes more challenging when the robots are extremely
small, when they lack strong sensing and actuation abilities,
or both.

Future (and some current) biomedical robots have both
challenges. Micro and nano devices have little room onboard
for computation and little storage space for the energy required
for propulsion. For overviews, see the excellent surveys in [5],
[6], [22], [25], [30], [32], which outline both the diverse
applications of tiny robots inside the body, and the challenges
of sensing and control of tiny robots. Instead of internal
computation and propulsion, these biomedical devices are
propelled by an external source, by biological processes (such
as blood flow) or by diffusion.

Many tasks for such robots including drug delivery, clotting,
and targeted therapy can be characterized as aggregation
tasks, in which devices spread through an environment are
gathered in a single location. Motivated by the the potential for

R. A. Moan is with the Department of Computer Science, Winthrop Univer-
sity, Rock Hill, South Carolina, USA. V. Montano Baez and A. T. Becker are
with the Department of Electrical and Computer Engineering, University of
Houston, Houston, Texas, USA. J. M. O’Kane is with the Department of Com-
puter Science and Engineering, University of South Carolina, Columbia, South
Carolina, USA. moanr2@mailbox.winthrop.edu, {vjmontano,
atbecker}@uh.edu; jokane@cse.sc.edu This material is based
upon work supported by the National Science Foundation under Grant [IIS-
1659514], [IIS-1553063], and [IIS-1619278].

Move 0

Move 5

0.1 Move 1

Move 2 Move 3 Move 4

0.9

50 mm

Fig. 1. A collection of particles spread through a known environment with a
curved boundary. The particles are aggregated in response to carefully planned
global translations of the underlying substrate. The frames marked 0.1 and 0.9
depict the particles in the process of executing the first move. This corresponds
to SEQUENCE 1 in the attached video, https://youtu.be/fVhFc41T88I.

these kinds of applications —and noting that, at small scales,
localizing a single robot and aggregating many robots become
the same essential problem— we consider the localization
problem for a very simple robot with only a single capability:
that of moving in a commanded direction until it reaches the
obstacle boundary. This behavior could be implemented, for
example, using a traditional mobile robot equipped with a
compass and a contact sensor, or by a swarm of medicine-
bearing micro-robots suspended in a fluid and responding to
an externally supplied magnetic field [17].

Prior work by O’Kane and LaValle [23] described a family
of localization algorithms for several types of extremely simple
robots, including a model similar to the setting described
above. However, the applicability of that work was strongly
limited by a deep reliance on polygonal models of the robot’s
environment. Moreover, their algorithms depended in crucial
ways on an assumption that the robot’s motion stops im-
mediately when it comes into contact with the environment
boundary, without any ‘sliding’ behavior. Many biological
systems are slippery; nearly all are non-polygonal [13], [18],
[29]. Thus, in this paper, we show how to generalize that prior
approach to a substantially more realistic setting that removes
these two limitations. Specifically, we model the environment
boundary as a composite cubic Bézier curve, and consider
movement models and planning algorithms that can account
for robots that may slip along the boundary after reaching it.
See Figure 1.

The main contribution of this paper is a planning algorithm
for this problem, along with demonstrations of the effective-

http://nsf.gov/awardsearch/showAward?AWD_ID=1659514
http://nsf.gov/awardsearch/showAward?AWD_ID=1659514
http://nsf.gov/awardsearch/showAward?AWD_ID=1553063
http://nsf.gov/awardsearch/showAward?AWD_ID=1619278
https://youtu.be/fVhFc41T88I

ness of this approach both in simulation and in laboratory
experiments. Our results are applicable both for actively lo-
calizing a single robot from a collection of possible starting
positions, and for aggregating a collection of simple robots
moving in response to common control signals within the same
environment.

The remainder of the paper is organized as follows. Sec-
tions II and III review related work and formally define the
problem, respectively. Then, in Section IV, we describe how to
solve the passive problem of predicting the robot’s (or robots’)
movements in response to given movement commands, under
both ‘sticking’ and ‘sliding’ models of motion. In Section V,
we present a planning algorithm that generates motion se-
quences to localize the robot. Results from both simulated and
physical executions appear in Section VI, before concluding
discussion in Section VII.

II. RELATED WORK

Effective localization, which is widely viewed as essential
for robot autonomy, has been intensely studied for systems
with a variety of sensor systems [15], [16], [20], [24].
Representatives of the wide variety of well-known solution
approaches include techniques based on the Kalman filter [7],
[26], Markov approaches [10], [11], and Monte Carlo tech-
niques [31].

An important distinction can be made between passive
localization, which estimates the robot’s position using an
incoming stream of data and is based on the assumption
that the motion of the robot cannot be controlled, and active
localization, which assumes that the robot’s movement and
orientation can be partially or fully controlled [4].

Relative localization requires that the approximate position
of the robot is known, whereas global localization can deter-
mine the position of a robot without any prior knowledge of
its position [12], [28] This paper considers an active global
localization problem.

Specifically, we are interested in solving such problems
with robots whose sensing and movement capabilities are
severely limited. Active, global localization algorithms have
been studied from this perspective [9], [23], but only in
polygonal environments, and only executed on traditionally-
sized (dozens of centimeters) mobile robots.

Micro and nano-scale robots are often steered by a global
field, such as a magnetic, gravitational, or electric field in
such a way that all the robots get approximately the same
input commands. See overviews in [3], [5], [6], [25], [30].
Dealing with swarms of tiny robots offers another approach to
localization, by designing a control sequence that if executed
would steer all particles to a common destination.

Huang et al. studied this problem using a magnetic field to
aggregate microscale iron particles at a goal location in [13].
In a discretized world where particles move on a bounded
polyomino grid, Mahadev et al. proved that iteratively moving
one particle to another was sufficient to collect all the particles
to a single point in O(n3) time, where n is the total number
of free spaces in the polyomino [18].

Another related problem is that of using gravity to drain
water out of a punctured polygon by rotating the shape [1].
For a polygon with n vertices, they provide an O(n2 log n)
time algorithm to determine the minimum number of holes
required to drain the polygon.

III. PROBLEM STATEMENT

In this section, we give a formal definition of the problem
addressed by our algorithm. The two central components
are the environment (Section III-A) and the robot model
(Section III-B).

We are interested in both localization of individual simple
robots, and in aggregation of collections of multiple robots in
a shared workspace. However, in this context, the problems
share much of their essential structure: we can use the same
approach to reason about a set of candidate locations for
a robot in the process of localizing itself as for a set of
actual robot locations during aggregation. Thus, to simplify the
explanation, we describe our approach using language attuned
to the localization interpretation.

A. The environment

A robot moves within a bounded, planar, simply-connected
environment E ⊂ R2. We assume that the boundary of E, de-
noted ∂E, can be described as a composite cubic Bézier curve.
That is, the boundary of E is described by a finite sequence
of n curves c(1), . . . , c(n). Each curve ci is a parametric curve
defined by four control points P (i)

0 , P (i)
1 , P (i)

2 , and P
(i)
3 . A

scalar parameter t varies across the range [0, 1] in the equation

c(i)(t) = (1− t)3P (i)
0 + 3(1− t)2tP (i)

1

+ 3(1− t)t2P (i)
2 + t3P

(i)
3 . (1)

To ensure that these curves define a continuous boundary for
E, we require that the endpoints of successive curves coincide.
That is, for all 1 ≤ i ≤ n, we assume that P (i)

3 = P
(i+1)
0 .

Similarly, to ensure that the curves describe a closed boundary
for E, we require that P (n)

3 = P
(1)
0 . Finally, to ensure that

the boundary of E is differentiable, for all 1 ≤ i ≤ n, we
assume that P (i)

2 , P (i)
3 , and P (i+1)

1 are collinear with P (i)
3 in

the middle of the three. We assume that the curve is oriented
so that increasing values of t travel counterclockwise around
the boundary. See Figure 2 for an example.

B. The robot model

For simplicity, we model the robot as a point in E. (If the
robot has a non-zero radius, as real robots generally do, we
can adjust E so that its boundary corresponds to the set of
points that can be occupied by the robot’s center point without
causing a collision.) Time proceeds in a series of discrete
stages, indexed k = 1, 2, 3, At each stage k, the robot
occupies a state xk ∈ E.

The robot’s motion at stage k is determined by its selection
of an action uk ∈ U , in which U is the set of unit vectors
in the plane. The intuition is that each action uk describes a
motion direction for the robot in stage k.

P
(1)
1

P
(4)
2

P
(2)
1

P
(1)
2

P
(2)
2

P
(4)
1

P
(4)
3 = P

(1)
0

P
(3)
3 = P

(4)
0

P
(3)
2

P
(3)
1

P
(1)
3 = P

(2)
0

P
(2)
3 = P

(3)
0

Fig. 2. An example environment with n = 4 curves. The 12 distinct control
points are shown. Dashed segments illustrate the colinearity constraints.

We consider two distinct models for how the robot’s actions
change its state.

1) Under the sticky model, the robot moves from position
xk in direction uk as far as possible without leaving E.
That is, the robot moves until it reaches the boundary,
and then stops at that point. This behaviour might be
realized, for example, either via direct sensing or via
friction between the robot and the environment. We
express this motion model as a state transition function
fstk : E × U → E, under which xk+1 = fstk(xk, uk).
Details about how to compute fstk appear in Sec-
tion IV-A.

2) Under the slipping model, the robot moves in direc-
tion uk, possibly sliding along ∂E, until it reaches
a local maximum of ∂E in that direction. We write
fslp : E×U → E and xk+1 = fslp(xk, uk) for the state
transitions that occur under this motion model. Details
are in Section IV-B.

Figure 3 illustrates these two models, which are intended
to capture two extremal cases for how our robots may be-
have upon coming in contact with the environment. Which
of them is most appropriate in a given setting depends on
the physical characteristics of the robot and its interactions
with the boundary of E. When the difference between fstk
and fslp is not relevant, we instead write a generic f for
whichever of the two is apropos. We also extend the notation to
sequences of actions, writing f(xk, uk, uk+1, . . . , uK) instead
of f(· · · f(f(xk, uk), uk+1) · · ·), uK).

C. The active localization problem

At the start of its execution, the robot does not know its
own location. However, we assume that the robot does have
access to a finite list of possible starting locations, which we
denote η1 ⊆ E.

Fig. 3. [left] Motion of the robot under the sticky (fstk) motion model.
[right] Motion under the slipping (fslp) motion model.

As the robot moves, it can update this set in correspondence
with the actions it selects. More precisely, we can define an
information transition function F : 2X × U → 2X , in which

F (ηk, uk) = ∪xk∈ηk{f(xk, uk)}. (2)

In this way, we can define a sequence of information states,
staring from η1:

ηk+1 = F (ηk, uk). (3)

Notice that, under this model, the robot does not have access
to any direct feedback from its sensors. Thus, the passive view
of the localization problem viewed by some as traditional —
namely, that the localization algorithm should merely process
sensor and action data, without any control over which actions
the robot executes— is quite unsuitable here. Indeed, even the
typical ‘active localization’ viewpoint is a poor fit, because
the lack of direct sensor data in the model means that the
robot cannot adjust its strategy based on its own observations.
As a result, the robot’s localization strategy can be expressed
simply as a finite sequence of actions, under which any starting
point in η1 is driven to the same final point. That is, we want
to select an action sequence u1, . . . , uK such that, for any
x, x′ ∈ η1,

f(x, u1, . . . , uk) = f(x′, u1, . . . , uk). (4)

Equivalently, we seek an action sequence that reduces the size
of the information state down to a single point:

Problem: Localization in a curved boundary
Input: An environment E described by its 3n distinct

control points, a finite list η1 of starting loca-
tions, and a motion model f (either fstk or fslp).

Output: A sequence of actions u1, . . . , uK , for which
|ηK | = 1.

IV. COMPUTING ACTION EFFECTS

Before describing how to select an action sequence that
localizes the robot, we first consider in this question the
passive problem of determining, under the models introduced
in Section III, what the effects a given action will be. That is,
if the robot is at position xk and executes a motion in direction
uk, what location xk+1 will the robot reach? We begin with the
sticking model (Section IV-A) and then extend that approach
to the slipping model (Section IV-B).

A. Computing action effects under fstk
Under the sticking model fstk, at stage k, the robot starts

at xk and moves in direction uk as far as possible while
remaining within E. The resulting location is fstk(xk, uk),
that is, xk+1. Computing this xk+1 is, in essence, a form of
ray shooting query in E.

We can parameterize the line along which the robot moves
as `(s) = xk + suk and find its intersections with a single
curve c(i) along ∂E by setting `(s) = c(i)(t), yielding a vector
equation in the two parameters s and t:

xk + suk = at3 + bt2 + ct+ d, (5)

in which the vector-valued constant coefficients on the right-
hand side are

a = −P (i)
0 + 3P

(i)
1 − 3P

(i)
2 + P

(i)
3

b = 3P
(i)
0 + 6P

(i)
1 + 3P

(i)
2

c = −3P (i)
0 + 3P

(i)
1

d = P
(i)
0 .

Viewing Eq. 5 as a system of two scalar equations, we
eliminate s by solving each of the scalar equations for s and
equating the results. This yields a cubic equation in t,

At3 +Bt2 + Ct+D = 0,

in which the coefficients are

A = axxky − ayxkx
B = byukx + xkxxky

C = cyukx + xkxxky

D = (ukx − xkx)(dy − xky − uky)
+ xky(dx + xkx + ukx).

The real solutions of this equation within the interval t ∈ [0, 1]
provide the intersection points between the given curve and the
line along which the robot is moving.

Iterating this process over all n curves gives a set of at
most 3n candidates for xk+1. For each, we can compute the
parameter s that determines how far ahead the robot would
have moved to reach that point. In general, we select the
point with the smallest non-negative s, since negative values
of s represent backward motion. However, if xk ∈ ∂E —
an extremely common occurrence after the first stage, since
our robot cannot stop except when it reaches the environment

xk
uk

xk+1

Fig. 4. Computing fstk. The algorithm computes a collection of candidate
locations by intersecting the boundary curves with a line, and then selects the
nearest eligible point from amongst the candidates.

xk
uk

uk

xk

Fig. 5. Handling the case where s = 0 to determine whether a movement in
direction uk would collide immediately (right) with the environment or not
(left).

boundary— we will obtain a candidate point at xk itself, that
is, with s = 0, which must be handled specially.

Specifically, when s = 0, we rely upon the counterclockwise
presentation of ∂E assumed in Section III and test (using
the standard clockwise test from computational geometry)
whether the three points (i) xk, (ii) xk + v where v is the
counterclockwise tangent vector at xk, and (iii) xk + uk are
arranged in clockwise order. If so, then the robot’s motion is
directly into the boundary, and the robot does not move. If
those three points are counterclockwise, the robot can move
freely away from xk, and that candidate is ignored. See
Figure 5.

B. Computing action effects under fslp
Next, we turn to the slipping motion model fslp. As with

the fstk, the robot starts at xk and moves in direction uk until
reaching the environment boundary. From there, fslp differs
in that the robot may ‘slide,’ due to extremely low friction
between itself and the environment boundary. It continues to
move until it reaches a local maximum of ∂E in direction uk.

The robot’s motion within a single stage can thus be
characterized as alternating, perhaps several times, between
jumping motion within the interior of ∂E and sliding motion,
along ∂E. Algorithm 1 summarizes this process. Changes
in the robot’s motion computed by this algorithm can be
characterized as jumps, where the robot reaches a point at
which the tangent to the environment boundary is parallel to
the motion direction, and extrema, at which the tangent to the
environment boundary is orthogonal to the motion direction.

To compute such points for a given boundary curve c(i),
we need to find values of t ∈ [0, 1] for which the tangent
vector c′(t) is parallel or antiparallel to uk. This occurs when
uk ·c′(i)(t)⊥ = 0. Equating these two implicit scalar equations
gives a quadratic in t:

(axuky−ayukx)t2 + (bxuky−byukx)t+ (cxuky−cyukx) = 0,

Algorithm 1 COMPUTESLIPPINGMOTION(xk, uk, E)

jumps← JUMPPOINTS(uk, E)
extrema← EXTREMEPOINTS(uk, E)
events← jumps ∪ extrema
xcurr ← xk
while xcurr /∈ extrema do
xcurr ← fstk(xcurr, uk)
v ← counterclockwise tangent vector of ∂E at xcurr
if cw(xcurr, xcurr + v, xcurr + u⊥k) then
xcurr ← nearest point to xcurr from events, measured

in clockwise distance around ∂E.
else
xcurr ← nearest point to xcurr from events, measured

in counterclockwise distance around ∂E.
end if

end while
xk+1 ← xcurr
return xk+1

in which a, b, c, and d are the vector-valued constant coeffi-
cients of c′(i):

a = −3P (i)
0 + 9P

(i)
1 − 9P

(i)
2 + 3P

(i)
3

b = 6P
(i)
0 − 12P

(i)
1 + 6P

(i)
2

c = −3P (i)
0 + 3P

(i)
1

d = P
(i)
0 .

The real solutions of this equation, for any t on the interval
[0, 1], provide the jump points for the path of the robot.
Repeating this process for all curves provides a list of all the
possible jump points for the robot. The process to compute
the extrema nearly identical, but seeks values of t for which
uk · c′(i)(t) = 0.

Algorithm 1 uses these points to determine how far the
robot slides before its motion stops (in the case of an extreme
point) or moves into the interior of E (in the case of a jump
point.) This process continues until the robot reaches a local
maximum, at which point we have our fslp(xk, uk) = xk+1.

V. LOCALIZATION PLANNING

Based on these approaches to passively compute the out-
comes of a given action, we can now attack the problem of
generating, for a given environment E, a set of possible initial
positions η1, and a choice of motion model f ; a sequence of
actions u1, . . . , uk that localizes our robot.

The overall approach appears as Algorithm 2. The algorithm
constructs the plan sequentially, maintaining ηk, selecting uk,
and then moving to stage k + 1 by computing ηk+1. The
underlying idea is to consider just a single pair (p, q) of distinct
possible locations for the robot, and to generate motions that
drive those two points from their distinct current locations
to the same final location. In our implementation, we select p
and q at random. The locations of the other points are updated
along the way. After p and q are merged, the algorithm selects

Algorithm 2 CHOOSEMOTIONDIRECTIONS(E, η1, f)

k ← 0
while |ηk| > 1 do
(p, q)← pair of distinct points in ηk
while p 6= q do
k ← k + 1
if pq ⊂ E then
uk ← (q − p)/||q − p||

else
S(p, q)← region in E hidden from p, containing q
z ← anchor point of S(p, q)
uk ← (z − p)/||z − p||

end if
ηk ← F (ηk, uk)

end while
end while
return u1, . . . , uk

a new pair of distinct possible points and repeats the process.
When only a single possible location remains, the localization
plan is complete.

How, then, can we select actions that bring p and q together?
One approach is based on the following idea.

Observation 1 (actions for visible points): If the line seg-
ment connecting p to q is contained entirely within E, then

1) fstk(p, p− q) = fstk(q, p− q), and
2) fslp(p, p− q) = fslp(q, p− q).

This provides a mechanism for the case in which p and q can
‘see’ each other in E: We simply move in a direction parallel
to the line segment between those two points.

In the general case, however, it is possible that pq 6⊂ E. In
such a case, we let S(p, q) ⊂ E denote the maximal connected
portion of E not visible to p but containing q. This region has
an ‘anchor point’ z at which its bounding ray is tangent to
E. See Figure 6. Under fstk, we can make progress toward
merging p with q by moving toward this point z:

Observation 2: Let p = fstk(p, z−p) and q′ = fstk(q, z−p).
Then either p′q′ or S(p′, q′) ⊂ S(p, q).

Thus, the robot chooses direction z − p. Under fslp, the
process is the same, though we cannot make as strong a
guarantee that the S regions will decrease monotonically at
each step. This overall process repeats until p and q are
merged, after which we select a new p and a new q. When
the candidate points have all been merged with each other, the
localization plan is complete and the algorithm terminates.

VI. EXPERIMENTAL RESULTS

This section presents the results of our experimental evalu-
ation of the approach. We show some computed examples,
describe the results of a quantitative comparison against a
baseline, and show a physical demonstration.

A. Simulated examples

Figure 7 shows the simulated execution of paths computed
for both fstk and fslp. Each plan was computed based on a set

p
z

q′

q
p′ uk

Fig. 6. Selecting motions that merge p and q. If p cannot see q, it moves
toward the tangent point of ∂E that hides q from p.

Fig. 7. Simulated paths generated by our algorithm. Starting locations are
shown with open circles; the single final location is shown with a filled circle.
[left] A sequence of 11 actions generated under fstk for a simple environment.
[right] A sequence of 4 actions generated under fslp for a more complex
environment. See video for animation [21].

η1 of 50 randomly selected points. From these starting points,
our algorithm generated plans of length 11 and 4 respectively.
In both cases, from each starting point, executing the same
action sequence, the simulated robots all reached the same
final point.

B. Quantitative evaluation

We evaluated the success of our algorithm quantitatively
by measuring the average distance between the particles after
each action was executed. Using the environment in Figure 1,
we selected 25 random starting positions, and executed Al-
gorithm 2, using both fstk and fslp. We then simulated those
plans and periodically calculated the mean distance between
the particles, as a measure of the progress toward localization;
when the distance reaches 0, the robot is localized. For
comparison purposes, we also implemented a simple algorithm
that selects motion directions uniformly at random. (There is
some evidence that simple random plans can be surprisingly
successful in contexts like this [19].) The results, which appear
in Figure 8, show that our approach achieves a meaningful
improvement in the efficiency of localization compared to this
baseline.

C. Physical proofs-of-concept

There are many methods to generate global inputs on a
2D set of particles, ranging from gravity-based tilting [8],
[19], using light to steer kilobots [27], or magnetic fields on
cells [2] or particles [14]. In this work, we use a tabletop made
of white tile hardboard (often used to make markerboards).
The boundaries are laser cut from 6 mm thick acrylic and the
particles are 2 mm diameter glass seed beads. When the acrylic

Alg. 2 with fstk
Random with fstk

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160

M
ea
n
d
is
ta
n
ce

(c
m
)

Time elapsed (s)

Alg. 2 with fslp
Random with fslp

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

M
ea
n
d
is
ta
n
ce

(c
m
)

Time elapsed (s)

Fig. 8. Comparison of localization progress as a function of time. [top] Under
fstk [bottom] Under fslp

UR3

arm

GoPro

camera

Isolation

bucket

White

hardboard table

Acrylic boundaries are

inside lighted bucket

Move 0

Move 5

2 mm glass

beads

Dual lock

boundary

50 mm

Fig. 9. A robot arm executes a plan generated by Algorithm 2 using a high-
friction scenario, solved using fstk. [right] two snapshots from the sequence.
See video https://youtu.be/fVhFc41T88I for full experiment [21].

boundaries are translated above the table, the seed beads stay
in place until a boundary wall touches them. We then place
an inverted plastic bucket over the acrylic tray and attach
them. The bucket is filled with LED lights and a camera is
affixed above the assembly, looking down. The bucket is then
translated by a UR3 robot arm along a precomputed trajectory.
In this work we used two different walls. The unadorned
acrylic walls reproduce the slipping (fslp) motion model, while
attaching a thin strip of Dual Lock (3M Reclosable Fastener)
reproduce the sticky (fstk) motion model.

VII. CONCLUSION AND FUTURE WORK

This paper presented a localization/aggregation technique
for extremely simple robots within a Bézier curve boundary.
A number of interesting questions remain for future work.
Chief among them is the question of optimality; rather than
arbitrarily choosing a pair of points to merge, one might
attempt plans that take a more global view, with an eye toward
minimizing the plan’s execution time. Interesting questions
also remain about motion models situated between the two
extremes considered here.

https://youtu.be/fVhFc41T88I

REFERENCES

[1] G. Aloupis, J. Cardinal, S. Collette, F. Hurtado, S. Langerman, and
J. ORourke, “Draining a polygon —or— rolling a ball out of a polygon,”
Computational geometry, vol. 47, no. 2, pp. 316–328, 2014.

[2] D. Arbuckle and A. A. Requicha, “Self-assembly and self-repair of arbi-
trary shapes by a swarm of reactive robots: algorithms and simulations,”
Autonomous Robots, vol. 28, no. 2, pp. 197–211, 2010.

[3] A. T. Becker, “Controlling swarms of robots with global inputs: Breaking
symmetry,” in Microbiorobotics. Elsevier, 2017, pp. 3–20.

[4] W. Burgard, D. Fox, and S. Thrun, “Active mobile robot localization,”
in IJCAI, 1997, pp. 1346–1352.

[5] X.-Z. Chen, M. Hoop, F. Mushtaq, E. Siringil, C. Hu, B. J. Nelson,
and S. Pane, “Recent developments in magnetically driven micro-and
nanorobots,” Applied Materials Today, vol. 9, pp. 37–48, 2017.

[6] S. Chowdhury, W. Jing, and D. J. Cappelleri, “Controlling multiple
microrobots: recent progress and future challenges,” Journal of Micro-
Bio Robotics, vol. 10, no. 1-4, pp. 1–11, 2015.

[7] A. Curran and K. J. Kyriakopoulos, “Sensor-based self-localization for
wheeled mobile robots,” Journal of Robotic Systems, vol. 12, no. 3, pp.
163–176, 1995.

[8] M. A. Erdmann and M. T. Mason, “An exploration of sensorless
manipulation,” IEEE Journal on Robotics and Automation, vol. 4, no. 4,
pp. 369–379, 1988.

[9] L. H. Erickson, J. Knuth, J. M. O’Kane, and S. M. LaValle, “Prob-
abilistic localization with a blind robot,” in 2008 IEEE International
Conference on Robotics and Automation. IEEE, 2008, pp. 1821–1827.

[10] D. Fox, W. Burgard, and S. Thrun, “Active markov localization for
mobile robots,” Robotics and Autonomous Systems, vol. 25, no. 3-4,
pp. 195–207, 1998.

[11] ——, “Markov localization for mobile robots in dynamic environments,”
Journal of artificial intelligence research, vol. 11, pp. 391–427, 1999.

[12] P. Goel, S. I. Roumeliotis, and G. S. Sukhatme, “Robust localization
using relative and absolute position estimates,” in Proceedings 1999
IEEE/RSJ International Conference on Intelligent Robots and Systems.
Human and Environment Friendly Robots with High Intelligence and
Emotional Quotients (Cat. No. 99CH36289), vol. 2. IEEE, 1999, pp.
1134–1140.

[13] L. Huang, L. Rogowski, M. J. Kim, and A. T. Becker, “Path planning
and aggregation for a microrobot swarm in vascular networks using a
global input,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2017, pp. 414–420.

[14] P. S. S. Kim, A. T. Becker, Y. Ou, A. A. Julius, and M. J. Kim,
“Imparting magnetic dipole heterogeneity to internalized iron oxide
nanoparticles for microorganism swarm control,” Journal of Nanoparti-
cle Research, vol. 17, no. 3, pp. 1–15, 2015.

[15] P. Koch, S. May, M. Schmidpeter, M. Kühn, C. Pfitzner, C. Merkl,
R. Koch, M. Fees, J. Martin, D. Ammon et al., “Multi-robot localization
and mapping based on signed distance functions,” Journal of Intelligent
& Robotic Systems, vol. 83, no. 3-4, pp. 409–428, 2016.

[16] A. Ledergerber, M. Hamer, and R. D’Andrea, “A robot self-
localization system using one-way ultra-wideband communication,” in
2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2015, pp. 3131–3137.

[17] A. S. Lübbe, C. Alexiou, and C. Bergemann, “Clinical applications of
magnetic drug targeting,” Journal of Surgical Research, vol. 95, no. 2,
pp. 200–206, 2001.

[18] A. V. Mahadev, D. Krupke, J.-M. Reinhardt, S. P. Fekete, and A. T.
Becker, “Collecting a swarm in a grid environment using shared, global
inputs,” in 2016 IEEE International Conference on Automation Science
and Engineering (CASE). IEEE, 2016, pp. 1231–1236.

[19] P. Mannam, A. V. Volkov, R. Paolini, G. Chirikjian, and M. T. Mason,
“Sensorless pose determination using randomized action sequences,”
Entropy, vol. 21, no. 2, p. 154, 2019.

[20] F. Martinelli, “A robot localization system combining rssi and phase shift
in uhf-rfid signals,” IEEE Transactions on Control Systems Technology,
vol. 23, no. 5, pp. 1782–1796, 2015.

[21] R. A. Moan, V. M. Baez, A. T. Becker, and J. M. OKane,
“Aggregating simple robots in curved environments,” March 2020.
[Online]. Available: https://youtu.be/fVhFc41T88I

[22] B. J. Nelson, I. K. Kaliakatsos, and J. J. Abbott, “Microrobots for
minimally invasive medicine,” Annual review of biomedical engineering,
vol. 12, pp. 55–85, 2010.

[23] J. M. O’Kane and S. M. LaValle, “Localization with limited sensing,”
IEEE Transactions on Robotics, vol. 23, no. 4, pp. 704–716, 2007.

[24] T. Pire, T. Fischer, J. Civera, P. De Cristóforis, and J. J. Berlles, “Stereo
parallel tracking and mapping for robot localization,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2015, pp. 1373–1378.

[25] F. Qiu and B. J. Nelson, “Magnetic helical micro-and nanorobots:
Toward their biomedical applications,” Engineering, vol. 1, no. 1, pp.
021–026, 2015.

[26] S. Rezaei and R. Sengupta, “Kalman filter-based integration of dgps and
vehicle sensors for localization,” IEEE Transactions on Control Systems
Technology, vol. 15, no. 6, pp. 1080–1088, 2007.

[27] M. Rubenstein, C. Ahler, N. Hoff, A. Cabrera, and R. Nagpal, “Kilobot:
A low cost robot with scalable operations designed for collective
behaviors,” Robotics and Autonomous Systems, vol. 62, no. 7, pp. 966–
975, 2014.

[28] S. Se, D. Lowe, and J. Little, “Local and global localization for
mobile robots using visual landmarks,” in Proceedings 2001 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Expanding
the Societal Role of Robotics in the the Next Millennium (Cat. No.
01CH37180), vol. 1. IEEE, 2001, pp. 414–420.

[29] S. Shahrokhi, H. Zhao, and A. T. Becker, “Reshaping particle configura-
tions by collisions with rigid objects,” in 2019 International Conference
on Robotics and Automation (ICRA). IEEE, 2019, pp. 4436–4443.

[30] M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim,
and E. D. Diller, “Biomedical applications of untethered mobile
milli/microrobots.” Proceedings of the IEEE, vol. 103, no. 2, pp. 205–
224, 2015.

[31] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte carlo
localization for mobile robots,” Artificial intelligence, vol. 128, no. 1-2,
pp. 99–141, 2001.

[32] B. Wang, Y. Zhang, and L. Zhang, “Recent progress on micro-and nano-
robots: Towards in vivo tracking and localization,” Quantitative imaging
in medicine and surgery, vol. 8, no. 5, p. 461, 2018.

https://youtu.be/fVhFc41T88I

	Introduction
	Related Work
	Problem Statement
	The environment
	The robot model
	The active localization problem

	Computing action effects
	Computing action effects under fstk
	Computing action effects under fslp

	Localization planning
	Experimental Results
	Simulated examples
	Quantitative evaluation
	Physical proofs-of-concept

	Conclusion and future work
	References

