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Abstract
We present methods for achieving arbitrary reconfiguration of two particles in convex work-

spaces, based on the use of external forces, such as a magnetic field or gravity. This concept can
be used for a wide range of applications in which particles do not have their own energy supply.

A crucial challenge for achieving any desired target configuration is breaking global symme-
try in a controlled fashion. Previous work made use of specifically placed barriers; however, intro-
ducing precisely located obstacles into the workspace is impractical for many scenarios. In this
paper, we present a different, less intrusive method: making use of the interplay between static
friction with a boundary and the external force to achieve arbitrary reconfiguration. Our key
contributions are a precise characterization of the critical coefficient of friction that is sufficient
for rearranging two particles in triangles, convex polygons, and regular polygons.

1 Introduction

Reconfiguring a large set of objects in a prespecified manner is a fundamental task for a
large spectrum of applications, including swarm robotics, smart materials and advanced
manufacturing. In many of these scenarios, the involved items are not equipped with
individual motors or energy supplies, so actuation must be performed from the outside.
Moreover, reaching into the workspace to manipulate individual particles of an arrangement
is often impractical or even impossible; instead, global external forces (such as gravity or a
magnetic force) may have to be employed, targeting each object in the same, uniform manner.
These limitations of individual navigation apply even in scenarios of swarm robotics: For
example, the well-known kilobots do have individual actuation and energy supply, but often
make use of an external light source for navigation [10]; as a consequence, directing a swarm
of kilobots by switching on a light beacon works just like activating an external force. This
concept of global control has also been studied for using biological cells as reactive robots
controlled by magnetic fields [2, 8]. Global control also has applications in assembling nano-
and micro-structures. Related work shows how to assemble shapes by adding one particle at
a time [7, 4], or combining multiple pairs of subassemblies in parallel in one time step [12].

Considering this approach of navigation by a global external force gives rise to a number
of problems, including navigation of one particle from a start to a goal position [9], particle
computation [5, 6], or emptying a polygon [1]. Zhang et al. [15, 16] show how to rearrange a
rectangle of agents in a workspace that is only constant times larger than the number of agents.

∗ A video showing context and animations of our results can be found in [3].
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Figure 1 A robot arm moving a triangle to reconfigure two particles. Top left: Two particles
are close together. Top right: Blue particles has been separated from the red particle with zig-zag
moves. Bottom left: Situation after a south-east and a south-west move. Bottom right: After the
blue particle is kept in the bottom left corner, the red particles is moved away with zig-zag moves.

A crucial issue for all these tasks is how to combine the use of a uniform force (which is the
same for all involved items) with the individual requirements of object relocation (which may
be distinct for different particles): How can we achieve an arbitrary arrangement of particles
if all of them are subjected to the same external force? Previous work (such as [6]) has shown
how arbitrary reconfiguration of an ensemble is possible with the help of specifically placed
barriers; however, introducing precisely located obstacles into the workspace is impractical
for many scenarios. In this paper, we present a different, less intrusive method: making use
of the interplay between static friction with a boundary of the workspace and the external
force to achieve any desired configuration. A real-world example is shown in Figure 1.

Shahrokhi et al. [13, 14] already considered reconfiguration problems of particles using
friction at the walls. However, they assume walls have infinite friction, i.e., a particle lying at
a wall cannot be moved when there is a movement parallel to the wall. This differs from the
more realistic assumptions in this paper, in which we only consider finite friction as in [11]

1.1 Our Results.
We provide a fundamentally new approach to manipulating a swarm of objects by an external,
global force, demonstrating how static boundary friction can be employed to achieve arbitrary
reconfiguration. Our results include the following.

We show that any two particles in an arrangement can be arbitrarily relocated in a convex
workspace, provided sufficient friction as a function of the geometry.
More specifically, for a triangle with second smallest angle β, we prove that an angle of
friction of π2 − β is always sufficient to guarantee any reconfiguration.
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Figure 2 Left: An input force command u(t) within the cone ±θ about the normal to the
boundary results in no motion of r1. Right: An input force command u(t) outside the cone results in
a motion of both particles. Observe that r1 slides along the boundary with a resulting force ures(t).

Ci

(0, 0)

r1

r2

r2 − r1r̃1

r̃2

r̃2 − r̃1

Cj

Figure 3 Left: A six-sided polygon P with start positions r1 and r2 for two particles and their
goal positions r̃1 and r̃2. Middle: The ∆ configuration of the polygon and the positions of the start
and end configuration. Right: Lightgray (darkgray) area corresponds to the Ci-area (Cj-area, resp.).

2 Preliminaries

I Definition 1. Let θ be the angle of friction and µ := tan θ be the coefficient of friction.
For a particle r lying at a boundary side b, let N(b) be the normal to b. If the angle between
force command ~u and N(b) is at most θ, then r does not move at all. If the angle is larger
than π

2 then r moves with full speed. In this paper we do not consider the remaining case.

I Problem 1. Given a workspace, i.e., a convex polygon with n corners C1, . . . , Cn, particles
r1 and r2, and an angle of friction θ, is it possible to reach the configuration r̃1 and r̃2?

In this paper, we do not make any assumption on the initial positions of r1 and r2, except
that they are well separated, i.e., they have a distance ε > 0 to each other.

I Definition 2 (∆ Configuration). The ∆ configuration space ∆P of a convex polygon P
with vertices C1, . . . , Cn is defined as ∆P := ch (Ci − Cj | Ci, Cj ∈ P ), where ch(·) denotes
the convex hull (for an example see Figure 3). This gives us the set of all relative positions
of r2 to r1.

From this definition follows that ∆P = ∆−P , where −P is P rotated by π. This motivates
the following definition.

I Definition 3. Let C be some vertex of P . The C-area in ∆P is the union of P and −P
having C centered at the origin (see Figure 3 right).

Note that the union of C-areas for all C ∈ P equals ∆P .

3 Reconfiguration of two particles

Just like in the context of sorting algorithms in computer science or discrete mathematics, a
critical component for achieving arbitrary reconfiguration of larger ensembles is the ability

EuroCG’20
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to rearrange two specific particles. For our purposes of employing external forces and static
friction, the additional aspects of geometry and physics have to be considered. These are
addressed in this section.

The main idea for this first step is to try to completely cover the ∆ configuration. We
start by developing a strategy for separating two particles in Subsection 3.1, which gives us
a lower bound for θ for every strategy in this section. This is followed by an upper bound for
θ in triangles (Subsection 3.1) and arbitrary convex polygons (Subsection 3.2), i.e., we can
guarantee any reconfiguration with any angle of friction higher than this bound. By each
strategy we develop, more parts of the ∆ configuration are covered. Thus, our goal is to give
strategies, whose union of covered areas is exactly the ∆ configuration.

3.1 Reconfiguration of two particles in arbitrary triangles
As a first step, we provide a sufficient large angle of friction to separate two specific particles.

I Lemma 4. Assume particle r1 is positioned in a corner with angle α, then we can move
r2 to any position in the polygon without moving r1 by performing zig-zag moves, if θ > α

2
(see Fig. 1 and 4a).

Proof. Omitted due to space constraints. J

Now, let T be a triangle with corners A,B and C, and angles α, β and γ. Furthermore, let
α be the smallest angle in T and we assume that θ > α

2 is guaranteed. Consider two particles
r1 and r2 within T and their goal positions r̃1 and r̃2. We have the following strategies to
reach the goal positions (see also Fig. 4 for a graphical sketch):
Blue: Move r1 to A. As shown in Figure 4a, use zig-zag moves to place r2 in T while r1 is

fixed in A, such that r2 − r1 = r̃2 − r̃1. Then, translate r1 and r2 to their goal positions.
Red: First, place r2 in A and move r1 to B. Then, place r2 anywhere in the area spanned

by AB and the angle π
2 − β + θ. Afterwards, translate r1 and r2 to their goal positions.

Green: First, Place r2 in A and move r1 to C. Then, place r2 in the area spanned by AC
and the angle π

2 − γ + θ, such that r2 − r1 = r̃2 − r̃1. Afterwards, translate r1 and r2 to
their goal positions.

Orange: Place r2 in C and r1 in B (as we will see later, this is always possible if θ > α
2 ). Then,

place r2 in the area spanned by BC and the angle π
2 − β + θ, such that r2 − r1 = r̃2 − r̃1.

Afterwards, translate both particles to their goal position.
Violet: Place r2 in B and r1 in C. Then, place r2 anywhere in the area spanned by CB and

the angle π
2 − γ + θ, such that r2 − r1 = r̃2 − r̃1 Finally, translate both particles to their

goal position.
These strategies can also be used by switching the particles r1 and r2: Assume that r1 lies
in corner A. To switch r1 and r2, we separate both particles to corners B and C, then we
use strategy orange or violet (depending on which particle is in which corner), and as a last
step, we move r2 to A.

I Observation 1. In the ∆ configuration, the covered areas of strategies that overlap are red
with orange and green with violet. The blue strategy covers the A-area, red and orange cover
parts of the B-area, and green and violet cover parts of the C-area (see Figure 5).

I Lemma 5. If θ > π
2 − γ, then the area of the red and orange strategy cover the B-area.
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(a) Blue strategy. Dotted lines in the right figure represent the vector r̃2 − r̃1. We move r1 to the cross
with zig-zag moves and then translate both particles to their goal positions.
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Figure 4 Illustration of the five strategies. Colored areas correspond to valid goal positions for
r2, if the goal position of r1 is r̃1. Left column: We fix r1 and move r2. Right column: We switch
the intermediate locations of r1 and r2.
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Figure 5 Shown in (a) and (b) are the ∆ configurations of top right blue triangle. Colors represent
the areas in the ∆ configuration covered by our five strategies with an angle of friction of α

2 + ε

for some ε > 0. (a),(b): We observe that every strategy may cover areas not covered by any other
strategy. (c): If θ > π

2 − β and β < γ then we can guarantee full coverage.

Proof. We can prove that the red strategy covers the B-area if θ > π
2 − γ, and that the

orange strategy covers the B-area if θ > π
2 − α >

π
2 − γ. Therefore, the lemma holds. Due

to space constraints, full details are omitted. J

With a similar proof, we can show the following lemma:

I Lemma 6. If θ > π
2 − β, then the area of the green and violet strategy cover the C-area.

I Theorem 7. Let T be a triangle with angles α ≤ β ≤ γ. If θ > π
2 − β, then we can

guarantee any reconfiguration of two particles, i.e., ∆T is completely covered by our strategies.

Proof. To cover the A-, B-, and C-area of the ∆ configuration, the angle of friction θ must
be greater than max(α2 ,

π
2 − β,

π
2 − γ). This is true for θ > π

2 − β. J

Because π
2 − γ = π−2γ

2 ≤ π−γ−β
2 = α

2 , the B-area is always covered if θ > α
2 . This leads

to the following corollary.

I Corollary 8. For a triangle T with angles α ≤ β ≤ γ, at least two thirds of all configurations
can be guaranteed if θ > α

2 .

3.2 Reconfiguration of two particles in convex polygons
In this section we generalize the strategy for triangles, i.e., for a particle r1 in corner Ci and
a particle r2 in corner Cj , moving particle r2 to cover the Ci-area. As shown in Figure 6, we
cannot guarantee full coverage with this strategy, because any movement for r2 in direction to
C1 would also move r1. This happens for all pairs of vertices (Ci, Cj) of P , where the segment
CjCj+1 has a larger negative slope than the segment CiCi−1, i.e., if the sum of exterior
angles between vertices Ci and Cj is smaller than γi. This motivates the following definition.

I Definition 9. For a vertex Ci ∈ P , let δi be the exterior angle at vertex Ci. Let
P+
i,j := {Ci, Ci+1, . . . , Cj−1, Cj} and P−i,j := {Ci, Ci−1, . . . , Cj+1, Cj}. We define

η+
i,j :=

∑
Ck∈P+

i+1,j−1

δk and η−i,j :=
∑

Ck∈P−
i−1,j+1

δk
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Figure 6 Left: Particle in C0 cannot be moved without moving a particle in C3, because δ0 < γ3.
Right: However, we can move the particle in C0 to any place in the polygon without moving a
particle in C2 (unless the friction is too small), because δ3 + δ0 > γ2 and δ1 + δ0 > γ2.

Furthermore, let Pi := {Cj ∈ P | η+
i,j+1 ≥ γi ∧ η

−
i,j−1 ≥ γi}, i.e., Pi contains every vertex

of P such that we can use the strategy described in the beginning of this section. Note that
all indices are modulo n.

I Lemma 10. For a vertex Ci of P , we have |Pi| ≥ 1.

Proof. Assume that |Pi| = 0. W.l.o.g., let j be the largest index, such that η+
i,j+1 < γi. If

η−i,j > γi, then it immediately follows that Cj+1 ∈ Pi and |Pi| ≥ 1. Otherwise, we have
two adjacent vertices Cj and Cj+1 such that η+

i,j+1 < γi and η−i,j < γi. This implies that
2γi > η+

i,j+1 + η−i,j−1 = −δi +
∑

Ck∈P
δk = −δi + 2π > 2π − 2δi = 2γi. This is a contradiction

and therefore |Pi| ≥ 1. J

I Lemma 11. Let P be a convex polygon with vertices C0, . . . , Cn−1 and angles γ0, . . . , γn−1.
We can cover the Ci-area if θ > min

j∈Pi

(
γi

2 ,max
(γj

2 , η
+
i,j − π

2 , η
−
i,j − π

2
))
.

Proof. Omitted due to space constraints. J

Combining Lemmas 10 and 11 yields the following theorem.

I Theorem 12. Let P be a convex Polygon with vertices C0, . . . , Cn−1 and angles γ0, . . . , γn−1.

If θ > max
0≤i<n

(
min
j∈Pi

(
γi

2 ,max
(γj

2 , η
+
i,j − π

2 , η
−
i,j − π

2
)))

, then every configuration of two parti-

cles can be reached.

I Corollary 13. If P is a regular polygon with n vertices and if µ > cot(π/n), then every
reconfiguration is possible.

4 Conclusion

We introduced a novel approach for rearranging the positions of particles by applying global
uniform forces, making use of different local static friction to achieve arbitrary goal positions.
To this end, we provided strategies enabling arbitrary rearrangements of two particles in
convex workspaces, giving a characterization of the critical coefficient of friction in terms of
the boundary geometry. Future work can now investigate optimal motion planning.

EuroCG’20
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