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Abstract
We investigate algorithmic approaches for targeted drug delivery in a complex, maze-like envi-
ronment, such as a vascular system. The basic scenario is given by a large swarm of micro-scale
particles (“agents”) and a particular target region (“tumor”) within a system of passageways.
Agents are too small to contain on-board power or computation and are instead controlled by a
global external force that acts uniformly on all particles, such as an applied fluidic flow or elec-
tric field. The challenge is to deliver all agents to the target region with a minimum number of
actuation steps. We provide a number of results for this challenge. We show that the underlying
problem is NP-hard, which explains why previous work did not provide provably efficient algo-
rithms. We also develop a number of algorithmic approaches that greatly improve the worst-case
guarantees for the number of required actuation steps.

1 Introduction

A crucial challenge for a wide range of vital medical problems, such as the treatment of cancer,
localized infections and inflammation, or internal bleeding is to deliver active substances to
a specific location in an organism. The traditional approach of administering a sufficiently
large supply of these substances into the circulating blood may cause serious side effects, as
the outcome intended for the target site may also occur in other places, with often undesired,
serious consequences. Moreover, novel custom-made substances that are specifically designed
for precise effects are usually in too short supply to be generously poured into the blood
stream. In the context of targeting brain tumors (see Figure 1), an additional difficulty is
the blood-brain barrier. This makes it necessary to develop other, more focused methods for
delivering agents to specific target regions.

Given the main scenario of medical applications, this requires dealing with navigation
through complex vascular systems, in which access to a target location is provided by pathways
(in the form of blood vessels) through a maze of obstacles. However, the microscopic size of
particles necessary for passage through these vessels makes it prohibitively difficult to store
sufficient energy in suitably sized microrobots, in particular in the presence of flowing blood.

A promising alternative is offered by employing a global external force, e.g., a fluidic
flow or an electromagnetic field. When such a force is applied, all particles are subjected
to the same direction and distance of motion, unless they are blocked by obstacles in their
way. While this makes it possible to move all particles at once, it introduces the difficulty of
using uniform forces for many particles in different locations with different local topology to
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Figure 1 (Left) An MRI image of a brain tumor (red circle), located in the cerebellum.
(Right) How can the swarm of particles (yellow dots) be delivered to the target region?

navigate them to one final destination. In this paper, we investigate how this objective can
be achieved with a small number of actuator steps.

Previous work [11] described a basic approach that delivers all particles in a polyomino
with n pixels to a target in at most O(n3) actuator steps. While a delivery time of this
magnitude is usually impractical, we investigate how to improve this.

Our Contribution.
We prove that minimizing the length of a command sequence for gathering all particles
is NP-hard, even if the environments are modeled by polyominoes. Our reduction
implies hardness for the related localization problem (as explained in Section 3 before
Corollary 3.2).
We develop an algorithmic strategy for gathering all particles in a polyomino with a
worst-case guarantee of at most O(kD2) steps; here D denotes the maximum distance
between any two pixels of the polyomino and k the number of its convex corners. Both k
and D are usually much smaller than the number n of grid locations in the polyomino: n
may be in Ω(D2), for two-dimensional and in Ω(D3) for three-dimensional environments.
For the special case of hole-free polyominoes, we can gather all particles in O(kD) steps.

Further details and algorithmic studies can be found in [7].

1.1 Related Work
This paper seeks to understand control for large numbers of microrobots, and uses a generalized
model that could apply to a variety of drug-carrying microparticles. An example are particles
with a magnetic core and a catalytic surface for carrying medicinal payloads [10, 15]. An
alternative are aggregates of superparamagnetic iron oxide microparticles, 9 µm particles
that are used as a contrast agent in MRI studies [14]. Real-time MRI scanning can allow
feedback control using the location of a swarm of these particles.

Steering magnetic particles using the magnetic gradient coils in an MRI scanner was
implemented in [12, 15]. 3D Maxwell-Helmholtz coils are often used for precise magnetic
field control [14]. Still needed are motion planning algorithms to guide the swarms of robots
through vascular networks. To this end, we build on the techniques for controlling many
simple robots with uniform control inputs presented in [4–6]; see video and abstract [3] for
a visualizing overview. For a recent survey on challenges related to controlling multiple
microrobots (less than 64 robots at a time), see [8].
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As the underlying problem consists of bringing together a number of agents in one location,
a highly relevant algorithmic line of research considers rendezvous search, which requires two
or more independent, intelligent agents to meet [1, 2, 9, 13].

2 Preliminaries

The “robots” in this paper are simple particles without autonomy. Every environment is
modeled by a polyomino, i.e., a set of unit squares, so called pixels, in the plane which are
joined edge to edge. An example of a polyomino is illustrated in Figure 2. Pixels in the plane
not belonging to P are blocked because they stop the motion from an adjacent pixel. The
particles are commanded in unison: In each step, all particles are relocated by one unit in
one of the directions “Up” (u), “Down” (d), “Left” (l), or “Right” (r), unless the destination
is a blocked pixel; in this case, a particle remains in its previous pixel. A motion plan is a
command sequence C = 〈c1, c2, c3, . . . 〉, where each command ci ∈ {u, d, l, r}.

We assume that the size of a particle is insignificant compared to a pixel. Hence, many
of them can be located in the same pixel. During the course of a command sequence, two
particles π1 and π2 may end up in the same pixel p, if π1 moves into p, while π2 remains
in p due to a blocked pixel. Once two particles share a pixel, any subsequent command will
relocate them in unison—they will not be separated, so they can be considered to be merged.

The distance between two pixels p and q is the length of a shortest path on the integer
grid between p and q that stays within P . The diameter of a polyomino P describes the
maximum distance between any two of its pixels; we denote it by D. A configuration of P is
a set of pixels containing at least one particle. The set of all possible configurations of P is
denoted by P . We call a command sequence gathering if it transforms a configuration A ∈ P
into a configuration A′ such that |A′| = 1, i.e., if it merges all particles in the same pixel.

3 Hardness

We show that the following decision problem, which we call Min-Gathering, is hard: Given
a polyomino P and a set of particles, is there a gathering sequence of length `?

I Theorem 3.1. Min-Gathering is NP-hard.

Proof-Sketch. The proof is based on a reduction from 3-Sat. For every instance Φ of 3-Sat,
we construct a polyomino PΦ of diameter D containing a particle in every pixel such that
there exists a gathering sequence of length ` := 1

2 (D + b) if and only if Φ is satisfiable.
PΦ is constructed as follows, see Figure 2: For every variable, we insert a variable gadget.

We join all variable gadgets vertically in a row to a variable block; we call the top row of each
variable gadget its variable row. For every clause, we construct a clause gadget that contains
a left (right) literal arm for each incident positive (negative) literal in the corresponding
variable row and an exit arm in the bottom. To obtain PΦ, we join all clause gadgets from
left to right by a bottom row and insert a variable block at the left and right end of the
bottom row of length b. Note that b denotes the number of pixels in the bottom row of PΦ,
and that the distance between the two red particles (i.e., the two leftmost particles above
the variable blocks) realizes the diameter D.

We can argue that by applying a command sequence according to a satisfying assignment
for Φ, the left (right) red particle moves to the left (right) pixel of the bottom row, where
these particles can be merged, yielding a gathering sequence of length `. Note that in this
command sequence, particles in the clause gadgets traverse one of the literal arms, reaching
the bottom row at the exact same time.
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Conversely, if Φ is not satisfiable, then in at least one clause a particle uses the exit arm
(see blue particle). Therefore, due to the different heights of the exit arms of the variable
and the clause gadgets, particles remain in the exit arms and do not reach the bottom row
simultaneously with the red particles. Thus, there is no gathering sequence of length `. J

x1

x2

x3

x4

variable block

clause gadget

variable gadget

b

Figure 2 The polyomino PΦ for the 3-Sat-instance Φ = (x1 ∨x2 ∨x3)∧(x2 ∨x3 ∨x4). A gathering
sequence for the two red particles of length 1

2 (D + b) corresponds to a variable assignment of Φ.

Note that the left pixel of the bottom row is one of two possible merge location for a
gathering sequence of length 1

2 (D+b). Therefore, the same reduction shows that the problem
remains hard if a target location is prescribed. Because every pixel contains a particle, this
implies that the decision problem of Robot Localization is also hard. In an instance of
this problem, we are given a sensorless robot r in a polyomino, and wonder whether there
exists a command sequence of length ` such that we know the position of r afterwards. The
above observations yield the following.

I Corollary 3.2. Robot Localization is NP-hard.

4 Algorithmic Approaches

We start by merging two particles in a special class of polyominoes. A polyomino P is simple
(or hole-free) if decomposing P with horizontal lines through pixel edges results in a set of
rectangles R such that the edge-contact graph C(R) of R is a tree. The edge-contact graph
of R has a vertex for each rectangle and an edge for each side contact; a point contact does
not suffice.

I Theorem 4.1. For any two particles in a simple polyomino P with diameter D, there
exists a gathering sequence of length D.

Proof-Sketch. Let R be a decomposition of P into rectangles by cutting P with horizontal
lines through pixel edges. Then, because P is simple, the edge-contact graph C(R) of the
rectangles R is a tree. For an example, consider Figure 3.
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π

π′

Figure 3 A simple polyomino P , and its edge-contact graph C(R) (in gray). When the red
particle π moves towards the green particle π′, π and π′ follow the red and the green path, respectively.

For every t, let Rt and R′
t be the rectangles of P containing the two particles π and π′

after applying t commands, respectively. Moreover, let St be a shortest path from Rt to R′
t

in C(R). Moreover, let St(1) be the successor of Rt on St (if it exists, i.e., Rt 6= R′
t).

We use the following strategy.
Phase 1: While Rt 6= R′

t, compute a shortest path St from Rt to R′
t in C(R). Move π to

St(1) via a shortest path in P . Update Rt and R′
t.

Phase 2: If Rt = R′
t, move π towards π′ by a shortest (horizontal) path; note that this

gathering sequence merges the particles within Rt.

In fact, the resulting sequence has the following property: For every s > t, the rectan-
gles Rs and R′

s are either equal to Rt or lie in the connected component C of C(R \ Rt)
containing R′

t. This implies that the merge location and R′
t lie in C or are equal to Rt. Con-

sequently, in every step, π moves towards the merge location on a shortest path and thus the
gathering sequence is at most of length D. J

We call the strategy used to prove Theorem 4.1 DynamicShortestPath (DSP): Move
one particle towards the other along a shortest path; update the shortest path if a shorter
one exists. The example in Figure 4 shows that DSP may perform significantly worse in
non-simple polyominoes, i.e., it may not yield a gathering sequence of length O(D).

h

w

Figure 4 When the red particle π moves towards the green particle π′ by shortest paths, π visits
the entire bottom path.

Nevertheless, DSP always merges two particles: When a particle π follows π′ in a
polyomino with n pixels, then within n commands either the shortest path is updated or
π′ must meet a wall. Therefore, for every n commands, the distance between the particles
decreases by at least 1. Therefore, the following holds true.

I Proposition 4.2. For every polyomino P with n pixels and diameter D and every configu-
ration with two particles, DSP yields a gathering sequence of length O(nD).

EuroCG’20
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Using a different strategy yields a better bound.

I Theorem 4.3. For any two particles in a polyomino P , there exists a gathering sequence
of length at most D2.

Proof. Let q be the top-rightmost pixel of P . To merge the two particles in q, our strategy
is as follows: Identify the particle π that is bottom-leftmost. Apply a command sequence
that moves π to q on a shortest path. Repeat.

I Claim. In each iteration, the sum of the distances ∆ of the two particles to q decreases.

Note that ∆ decreases when the other particle π′ has a collision. If π′ had no collision,
there exist a pixel that is higher or more to the right than q, contradicting the choice of q.
Consequently, the sum of distances ∆, which is at most 2D at start, decreases at least by 1
for every D steps. Hence after O(D2) steps, ∆ is reduced to 0. J

Note that there exist polyominoes, e.g., a square, where the number n of pixels is in
Ω(D2). Therefore, Theorem 4.3 significantly improves the bound of O(n3) in [11]. Finally, we
note that a shortest gathering sequence for two particles in a non-simple polyomino may need
to exceed D; Figure 5 illustrates the non-simple polyomino used to obtain Proposition 4.4.

I Proposition 4.4. There exists a non-simple polyomino P with two particles such that a
shortest gathering sequence has length 3/2D −O(

√
D).

h

1
2 (h− 1) 1

2 (h− 1)h+ 5

Figure 5 Merging the two particles in this non-simple polyomino needs to exceed D.

In the following, we show how to guarantee with few commands that the number of
remaining particles is proportional to the complexity of the polyomino, namely the number
of its convex corners.

I Lemma 4.5. Let P be a polyomino with diameter D and k convex corners. For every
configuration A ∈ P, there exists a command sequence of length 2D which transforms A to a
configuration A′ ∈ P such that |A′| ≤ k/4.

Proof. We distinguish four types of convex corners; northwest (NW), northeast (NE),
southwest (SW), southeast (SE). By the pigeon hole principle, one of the types occurs at
most k/4 times; without loss of generality, let this be the NW corners.

We show that after applying the sequence 〈l, u〉D, every particle lies in a NW corner:
Consider a particle π in pixel p. Unless π lies in a NW corner, it moves for at least one
command in {l, u}. Because P is finite, there exists an ` large enough such that π ends in
a NW corner q when the command sequence 〈l, u〉` is applied, i.e., there exists an pq-path
consisting of at most ` commands of types l and u, respectively. Because a monotone path is
a shortest path, it holds that ` ≤ D. J
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By combining Lemma 4.5 with Theorem 4.1 and Theorem 4.3, respectively, we obtain
the following upper bounds.

I Corollary 4.6. For a set of particles in a simple polyomino P with diameter D and k
convex corners, there exists a gathering sequence of length O(kD).

I Corollary 4.7. For any set of particles in a polyomino P with diameter D and k convex
corners, there exists a gathering sequence of length at most O(kD2).

References
1 Steve Alpern and Shmuel Gal. The theory of search games and rendezvous. International Se-

ries in Operations Research and Management Science. Kluwer Academic Publishers, Boston,
Dordrecht, London, 2003.

2 Edward J Anderson and Sándor P Fekete. Two dimensional rendezvous search. Operations
Research, 49(1):107–118, 2001.

3 A. T. Becker, Erik D. Demaine, Sándor P. Fekete, S. H. Mohtasham Shad, and R. Morris-
Wright. Tilt: The video. Designing worlds to control robot swarms with only global signals.
In 31st International Symposium on Computational Geometry (SoCG), pages 16–18, 2015.

4 Aaron T. Becker, Erik D. Demaine, S. P. Fekete, and James McLurkin. Particle computa-
tion: Designing worlds to control robot swarms with only global signals. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 6751–6756, 2014.

5 Aaron T. Becker, Erik D. Demaine, Sàndor P. Fekete, Golnaz Habibi, and James McLurkin.
Reconfiguring massive particle swarms with limited, global control. In Algorithms for
Sensor Systems (ALGOSENSORS), pages 51–66, 2014.

6 Aaron T. Becker, Erik D. Demaine, Sándor P. Fekete, Jarrett Lonsford, and Rose Morris-
Wright. Particle computation: Complexity, algorithms, and logic. Natural Computing,
18(1):181–201, 2019.

7 Aaron T. Becker, Sándor P. Fekete, Li Huang, Phillip Keldenich, Linda Kleist, Dominik
Krupke, Christian Rieck, and Arne Schmidt. Targeted Drug Delivery: Algorithmic Methods
for Collecting a Swarm of Particles with Uniform, External Forces. In IEEE International
Conference on Robotics and Automation (ICRA), 2020. To appear.

8 Sagar Chowdhury, Wuming Jing, and David J. Cappelleri. Controlling multiple microrobots:
recent progress and future challenges. Journal of Micro-Bio Robotics, 10(1-4):1–11, 2015.

9 Paola Flocchini. Gathering. In Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro,
editors, Distributed Computing by Mobile Entities, Current Research in Moving and Com-
puting, pages 63–82. Springer, 2019.

10 Julia Litvinov, Azeem Nasrullah, Timothy Sherlock, Yi-Ju Wang, Paul Ruchhoeft, and
Richard C Willson. High-throughput top-down fabrication of uniform magnetic particles.
PloS one, 7(5):e37440, 2012.

11 Arun V. Mahadev, Dominik Krupke, Jan-Marc Reinhardt, Sándor P. Fekete, and Aaron T.
Becker. Collecting a swarm in a 2D environment using shared, global inputs. In 13th
Conference on Automation Science and Engineering (CASE), pages 1231–1236, 2016.

12 Jean-Baptiste Mathieu and Sylvain Martel. Magnetic microparticle steering within the
constraints of an MRI system: proof of concept of a novel targeting approach. Biomedical
microdevices, 9(6):801–808, 2007.

13 Malika Meghjani and Gregory Dudek. Multi-robot exploration and rendezvous on graphs.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
5270–5276, 2012.

14 Lyes Mellal, David Folio, Karim Belharet, and Antoine Ferreira. Magnetic microbot design
framework for antiangiogenic tumor therapy. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1397–1402, 2015.

EuroCG’20



8:8 Targeted Drug Delivery

15 Pierre Pouponneau, Jean-Christophe Leroux, and Sylvain Martel. Magnetic nanoparticles
encapsulated into biodegradable microparticles steered with an upgraded magnetic reso-
nance imaging system for tumor chemoembolization. Biomaterials, 30(31):6327–6332, 2009.


	Introduction
	Related Work

	Preliminaries
	Hardness
	Algorithmic Approaches

