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Abstract— We investigate advanced algorithmic approaches1

for targeted drug delivery in a complex, maze-like environment,2

such as a vascular system. The basic scenario is given by a3

large swarm of micro-scale particles (“agents”) and a particular4

target region (“tumor”) within a system of passageways. Agents5

are too small to contain on-board power or computation and6

are instead controlled by a global external force that acts7

uniformly on all particles, such as an applied fluidic flow or8

electromagnetic field. The challenge is to deliver all agents to9

the target region with a minimum number of actuation steps.10

We provide a number of results for this challenge. We show11

that the underlying problem is NP-hard, which explains why12

previous work did not provide provably efficient algorithms.13

We also develop a number of advanced algorithmic approaches14

that greatly improve the worst-case guarantees for the num-15

ber of required actuation steps. We validate our algorithmic16

approaches by a number of simulations, both for deterministic17

algorithms and searches supported by deep learning, which18

show that the performance is practically promising.19

I. INTRODUCTION20

A crucial challenge for a wide range of vital medical prob-21

lems, such as the treatment of cancer, localized infections22

and inflammation, or internal bleeding is to deliver active23

substances to a specific location in an organism. The tradi-24

tional approach of administering a sufficiently large supply of25

these substances into the circulating blood may cause serious26

side effects, as the outcome intended for the target site may27

also occur in other places, with often undesired, serious28

consequences. Moreover, novel custom-made substances that29

are specifically designed for precise effects are usually in too30

short supply to be generously poured into the blood stream.31

In the context of targeting brain tumors (see Fig. 1), an32

additional difficulty is the blood-brain barrier. This makes33

it necessary to develop other, more focused methods for34

delivering agents to specific target regions.35

Given the main scenario of medical applications, this36

requires dealing with navigation through complex vascular37

systems, in which access to a target location is provided38

by pathways (in the form of blood vessels) through a maze39

of obstacles. However, the microscopic size of particles40

necessary for passage through these vessels makes it pro-41

hibitively difficult to store sufficient energy in suitably sized42

microrobots, in particular in the presence of flowing blood.43
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Fig. 1. (Left) An MRI image of a brain tumor (marked by the red circle),
located in the cerebellum. (Right) How can the swarm of particles (indicated
by yellow dots) be delivered to the target region?

A promising alternative is offered by employing a global 44

external force, e.g., a fluidic flow or an electromagnetic field. 45

When such a force is applied, all particles are subjected 46

to the same direction and distance of motion, unless they 47

are blocked by obstacles in their way. While this makes 48

it possible to move all particles at once, it introduces the 49

difficulty of using uniform forces for many particles in 50

different locations with different local topology to navigate 51

them to one final destination. In this paper, we investigate 52

how this objective can be achieved with a small number of 53

actuator steps. 54

Previous work [?] described a basic approach that delivers 55

all particles in a grid environment with n grid cells to a 56

target in at most O(n3) actuator steps. While this shows 57

that delivery can always be achieved, a delivery time of this 58

magnitude is usually impractical, as the number of grid cells 59

may be prohibitively large. As a consequence, this warrants 60

more research on this (literally vital) topic. 61

Our Contribution 62

We provide a number of important insights: 63

• We prove that minimizing the length of a command 64

sequence for gathering all particles is NP-hard, even 65

for an environment that consists of a planar arrangement 66

of grid cells, explaining the observed difficulty of the 67

problem. Our reduction implies hardness for the related 68

localization problem. 69

• We develop an algorithmic strategy for collecting all 70

particles in one destination, with a worst-case guarantee 71

of at most O(kD2) steps; here D denotes the maximum 72

distance between any two points of the environment 73

and k the number of its convex corners. Both k and 74

D are usually much smaller than the number n of grid 75

locations in the environment: n may be in Ω(D2), for 76



two-dimensional and in Ω(D3) for three-dimensional77

environments.78

• For the special case of hole-free environments, we can79

gather all particles in O(kD) steps.80

• We successfully apply deep learning to search for short81

command sequences in individual, complex instances.82

• We perform a simulation study of the various ap-83

proaches, evaluating the respective performance for84

application-inspired instances and demonstrating the85

practical suitability of our algorithmic approaches.86

A. Related Work87

This paper seeks to understand control for large numbers88

of microrobots, and uses a generalized model that could ap-89

ply to a variety of drug-carrying microparticles. An example90

are particles with a magnetic core and a catalytic surface91

for carrying medicinal payloads [?], [?]. An alternative are92

aggregates of superparamagnetic iron oxide microparticles,93

9 µm particles that are used as a contrast agent in MRI94

studies [?]. Real-time MRI scanning can allow feedback95

control using the location of a swarm of these particles.96

Steering magnetic particles using the magnetic gradient97

coils in an MRI scanner was implemented in [?], [?]. 3D98

Maxwell-Helmholtz coils are often used for precise magnetic99

field control [?]. Still needed are motion planning algorithms100

to guide the swarms of robots through vascular networks. To101

this end, we build on the techniques for controlling many102

simple robots with uniform control inputs presented in [?],103

[?], [?]; see video and abstract [?] for a visualizing overview.104

For a recent survey on challenges related to controlling105

multiple microrobots (less than 64 robots at a time), see [?].106

As the underlying problem consists of bringing together107

a number of agents in one location, a highly relevant108

algorithmic line of research considers rendezvous search,109

which requires two or more independent, intelligent agents110

to meet. Alpern and Gal [?] introduced a wide range of111

models and methods for this concept as have Anderson112

and Fekete [?] in a two-dimensional geometric setting. Key113

assumptions include a bounded topological environment and114

robots with limited onboard computation. This is relevant115

to maneuvering particles through worlds with obstacles and116

implementation of strategies to reduce computational burden117

while calculating distances in complex worlds [?]. In a set-118

ting with autonomous robots, these can move independent of119

each other, i.e., follow different movement protocols, called120

asymmetric rendezvous in the mathematical literature [?]. If121

the agents are required to follow the same protocol, this122

is called symmetric rendezvous. This corresponds to our123

model in which particles are bound by the uniform motion124

constraint; symmetry is broken only by interaction with the125

obstacles. For an overview of a variety of other algorithmic126

results on gathering a swarm of autonomous robots, see the127

recent survey by Flocchini [?]; note that these results assume128

a high degree of autonomy and computational power for each129

individual agent, so their applicability for our scenarios is130

quite limited.131

II. PRELIMINARIES 132

The “robots” in this paper are simple particles without 133

autonomy. We assume that their size is insignificant com- 134

pared to the elementary cells in the workspace P . Due to 135

the limited space of this paper, our description focuses on 136

planar workspaces P , consisting of orthogonal sets of cells, 137

so-called pixels, that form an edge-to-edge connected domain 138

in the integer planar grid, i.e., a polyomino. (As we sketch 139

in appropriate places, an extension to three-dimensional 140

workspaces is largely straightforward.) Examples of poly- 141

ominoes are illustrated in Figs. 2 to 5. Pixels in the planar 142

grid not belonging to P are blocked: They form obstacles 143

for particles that stop the motion from an adjacent pixel. 144

The particles are commanded in unison: In each step, all 145

particles are relocated by one unit in one of the directions 146

“Up” (u), “Down” (d), “Left” (l), or “Right” (r), unless the 147

destination is a blocked pixel; in this case, a particle remains 148

in its previous pixel. A motion plan is a command sequence 149

C = 〈c1, c2, c3, . . . 〉, where each command ci ∈ {u, d, l, r}. 150

For a command sequence C and a non-negative integer `, 151

we denote the command sequence consisting of ` repetitions 152

of C by C`. 153

Because the particles are small, many of them can be 154

located in the same pixel. During the course of a command 155

sequence, two particles π1 and π2 may end up in the same 156

pixel p, if π1 moves into p, while π2 remains in p due 157

to a blocked pixel. Once two particles share a pixel, any 158

subsequent command will relocate them in unison—they will 159

not be separated, so they can be considered to be merged. 160

The distance dist(p, q) between two pixels p and q is 161

the length of a shortest path on the integer grid between 162

p and q that stays within P . The diameter of a polyomino P 163

describes the maximum distance between any two of its 164

pixels; we denote it by D. 165

A configuration of P is a set of pixels containing at least 166

one particle. The set of all possible configurations of P is 167

denoted by P . We call a command sequence gathering if it 168

transforms a configuration A ∈ P into a configuration A′ 169

such that |A′| = 1, i.e., if it merges all particles in the same 170

pixel. 171

III. ALGORITHMIC APPROACHES 172

In this section, we investigate several algorithmic ap- 173

proaches. For clarity of exposition, we focus on two- 174

dimensional scenarios; a generalization to three-dimensional 175

settings can be achieved with a limited amount of additional 176

work. As the main focus of this paper is the practical 177

relevance and applicability of the overall challenge, these 178

theoretical details are omitted due to limited space. 179

We start by showing that the problem is computationally 180

hard – for several variants. 181

A. The problem is hard 182

We show that the following decision problem, which we 183

call MIN-GATHERING, is hard: Given a polyomino P and a 184

set of particles, is there a gathering sequence of length `? 185



Theorem 1. MIN-GATHERING is NP-hard, even for the case186

of polyominoes.187

Proof. We reduce from 3-SAT. For every instance Φ of 3-188

SAT, we construct a polyomino PΦ as follows: For every189

variable, we insert a variable gadget as indicated in Fig. 2.190

We join all variable gadgets vertically in row to a variable191

block; we call the top row of each variable gadget its192

variable row. For every clause, we construct a clause gadget193

that contains a left (right) arm for each incident positive194

(negative) literal in the corresponding variable row and an195

exit arm in the bottom. To obtain PΦ, we join all clause196

gadgets from left to right by a bottom row and insert a197

variable block at the left and right end of the bottom row.198

For an illustration, consider Fig. 2.199

x1

x2

x3

x4

variable block

clause gadget

variable gadget

Fig. 2. The polyomino PΦ for the 3-SAT-instance Φ = (x1 ∨x2 ∨x3)∧
(x2∨x3∨x4). A sequence that merges the two red particles with 1

2
(D+b)

commands corresponds to a variable assignment of Φ.

Let I be the instance of MIN-GATHERING consisting200

of PΦ where the top row is filled with particles. We call201

the two leftmost particles above the variable blocks, the red202

particles and denote the length of the bottom row by b. Note203

that the distance between the red particles is the diameter D.204

Claim. I has a gathering sequence of length ` := 1
2 (D+ b)205

if and only if Φ is satisfiable.206

Details for this claim (and thus, a full proof of Theorem 1)207

are omitted for space reasons; they can be found in the full208

version of our paper.209

Note that the left pixel of the bottom row is one of two210

possible merge location for a gathering sequence of length211

1
2 (D+b). Therefore, the same reduction shows that problem212

remains hard if a target location is prescribed. In fact, an even213

stronger statement holds true: An instance of the polyomino214

PΦ where all pixels are filled has a gathering sequence of215

length 1
2 (D− b) if and only if Φ is satisfiable. This implies216

that the decision problem of ROBOT LOCALIZATION is also217

hard. In an instance of this problem, we are given a sensorless218

robot r in a polyomino, and wonder whether there exists219

a command sequence of length ` such that we know the220

position of r afterwards. The above observations yield:221

Corollary 2. ROBOT LOCALIZATION is NP-hard.222

B. Merging Two Particles 223

We start with a special class of polyominoes. We call a 224

polyomino P simple if decomposing P with horizontal lines 225

through pixel edges results in a set of rectangles R such 226

that the edge-contact graph C(R) of R is a tree. The edge- 227

contact graph of a set of rectangles in the plane contains a 228

vertex for each rectangle and an edge for each side contact; 229

a corner contact does not result in an edge. A hole of a 230

polyomino P is a maximal set of blocked cells (cells not 231

contained in P ) that are connected such that there exists a 232

closed walk within P surrounding it. As usual, simplicity of 233

a polyomino captures the feature of not containing holes. A 234

shortest path from a pixel p in P to a rectangle R in R is 235

a shortest path from p to a pixel q in R such that dist(p, q) 236

is minimal. 237

Theorem 3. For any two particles in a simple polyomino P , 238

there exists a gathering sequence of length D. 239

Proof. Let R be a decomposition of P into rectangles by 240

cutting P with horizontal lines through pixel edges. Then, 241

because P is simple, the edge-contact graph C(R) of the 242

rectangles R is a tree. For an example, consider Fig. 3.

π

π′

Fig. 3. A simple polyomino P , and its edge-contact graph C(R) (in
gray). When the red particle π moves towards the green particle π′, π and
π′ follow the respective red and green paths.

243

For every t, let Rt and R′t be the rectangles of P 244

containing the two particles π and π′ after application of t 245

commands, respectively. Moreover, let St be a shortest path 246

from Rt to R′t in C(R); and let St(1) be the successor of Rt 247

(if it exists, i.e., Rt 6= R′t). 248

We pursue the following strategy: 249

Phase 1: While Rt 6= R′t, compute a shortest path St from 250

Rt to R′t in C(R). Move π to St(1) via a shortest path in P . 251

Update Rt and R′t. 252

Phase 2: If Rt = R′t, merge π and π′ by moving π 253

towards π′ by a shortest (horizontal) path; note that this 254

gathering sequence merges the particles within Rt. 255

In fact, the resulting sequence has the following property; 256

details of the proof are omitted due to space limits. 257

Claim. For every s > t, the rectangles Rs and R′s are either 258

equal to Rt or lie in the connected component C of C(R\Rt) 259

containing R′t. 260

This claim implies that the merge location and R′t lie in C 261

or are equal to Rt. Consequently, in every step, π moves 262

towards the merge location on a shortest path and thus that 263

the gathering sequence is at most of length D. 264



In the remainder, we call the strategy used to prove265

Theorem 3 DYNAMICSHORTESTPATH (DSP): Move one266

particle towards the other along a shortest path; update the267

shortest path if a shorter one exists. The example in Fig. 4268

shows that DSP may perform significantly worse in non-269

simple polyominoes.270

Proposition 4. The strategy DSP may not yield a gathering271

sequence of length O(D) in non-simple polyominoes.272

Proof. By the symmetry of P , the distance between the two273

particles decreases for the first time when one of them is at274

the left or right side of P . Therefore, denoting the number275

of holes by H where each hole is of height h and width w276

as indicated in Fig. 4, the length of the gathering sequence277

C is H(6h + w) + 3, while the diameter is bounded by278

D ≤ (H − 2)w + 6h + 2w + 4 = Hw + 6h + 4. Choosing279

h := cw/6 for some constant c ≥ H , the ratio of |C| and |D|280

can be arbitrarily large: cHw+Hw+3
Hw+cw+4 ≥

H(c+1)
H+c+1 ≥

H
2 .281

h

w

Fig. 4. When the red particle π moves towards the green particle π′ by
shortest paths, π visits the entire bottom path.

Nevertheless, DSP always merges two particles; the proof282

is omitted due to limited space.283

Proposition 5. For every polyomino P with n pixels and284

diameter D and every configuration with two particles, DSP285

yields a gathering sequence of length O(nD).286

Using a different strategy yields a better bound: The287

strategy MOVETOEXTREMUM (MTE) iteratively moves an288

extreme particle (e.g. bottom-leftmost) to an opposite ex-289

treme pixel (e.g. top-rightmost) along a shortest path.290

Theorem 6. For any two particles in a polyomino P , MTE291

yields a gathering sequence of length at most D2.292

Proof. Let q be the top-rightmost pixel of P . To merge293

the two particles in q, our strategy is as follows: Identify294

the particle π that is bottom-leftmost. Apply a command295

sequence that moves π to q on a shortest path. Repeat.296

Claim. In each iteration, the sum of the distances ∆ of the297

two particles to q decreases.298

Note that ∆ decreases when the other particle π′ has a299

collision. If π′ had no collision, there exist a pixel that is300

higher or more to the right than q, contradicting the choice of301

q. Consequently, the sum of distances ∆, which is at most 2D302

at start, decreases at least by 1 for every D steps. Hence after303

O(D2) steps, ∆ is reduced to 0.304

Note that there exist polyominoes, e.g., a square, where305

the number of pixels n is in Ω(D2). Therefore, Theorem 6306

significantly improves the bound of O(n3) in [?].307

Finally, we note that a shortest gathering sequence for two 308

particles in a non-simple polyomino may need to exceed D. 309

Proposition 7. Let P be a polyomino with two particles. A 310

shortest gathering sequence may be of length 3
2D−O(

√
D). 311

See Fig. 5 for the idea; technical proof details are omitted 312

due to limited space. 313

h

1
2 (h− 1) 1

2 (h− 1)h+ 5

Fig. 5. A polyomino consisting of a base and S chimneys.

C. Reducing the number of particles 314

Now we show how to significantly decrease the number 315

of particles with few commands to a parameter proportional 316

to the complexity of the polyomino, namely the number of 317

convex corners. This is particularly relevant for establishing 318

the existence of oblivious gathering strategies that are capa- 319

ble of merging all particles in an efficient manner, even if 320

their initial configuration is not known. (See Section IV-C.) 321

Lemma 8. Let P be a polyomino with diameter D and k 322

convex corners. For every configuration A ∈ P , there exists 323

a command sequence of length 2D which transforms A to a 324

configuration A′ ∈ P such that |A′| ≤ k/4. 325

Proof. We distinguish four types of convex corners; north- 326

west (NW), northeast (NE), southwest (SW), southeast (SE). 327

By the pigeon hole principle, one of the types occurs at 328

most k/4 times; without loss of generality, let this be the 329

NW corners. 330

We show that after applying the sequence 〈l, u〉D, every 331

particle lies in a NW corner: Consider a particle π in pixel p. 332

Unless π lies in a NW corner, it moves for at least one 333

command in {l, u}. Because P is finite, there exists an ` 334

large enough such that π ends in a NW corner q when the 335

command sequence 〈l, u〉` is applied, i.e., there exists an 336

pq-path consisting of at most ` commands of types l and u, 337

respectively. Because a monotone path is a shortest path, it 338

holds that ` ≤ D. 339

D. General Upper Bounds 340

Combining Lemma 8 and Theorem 3 yields: 341

Corollary 9. For a set of particles in a simple polyomino P 342

with diameter D and k convex corners, there exists a 343

gathering sequence of length O(kD). 344

Lemma 8 and Theorem 6 imply the following fact: 345

Corollary 10. For any set of particles in a polyomino P with 346

diameter D and k convex corners, there exists a gathering 347

sequence of length at most O(kD2). 348

By analyzing cuboids instead of rectangles, six directions 349

of motion instead of four, and corners in eight quadrant 350



directions instead of four, we obtain the analogous result351

for three-dimensional settings. Details are omitted from this352

short paper.353

IV. EVALUATION IN SIMULATION354

A. Overview of Evaluated Approaches355

In this section, we evaluate the performance of the follow-356

ing approaches on practical instances in simulation.357

• The approach STATICSHORTESTPATH (SSP) iteratively358

merges pairs of particles by moving one to the position359

of the other along a shortest path, see Alg. 2 in [?].360

• The approach DYNAMICSHORTESTPATH (DSP).361

• The approach MOVETOEXTREMUM (MTE). Among362

the eight options, we choose an extremum that mini-363

mizes the initial sum of distances to both particles.364

• The heuristic MINSUMTOEXTREMUM (MSTE) gener-365

alizes the idea of MTE. It selects an extremum with366

the smallest initial sum of distances to all particles367

and iteratively performs a command that decreases this368

sum the most. If no command decreases the sum, two369

particles are selected and merged by MTE. Afterwards,370

MSTE resumes.371

• Additionally, we evaluate a machine learning approach372

REINFORCEMENTLEARNING (RL) based on a deep373

learning network for Q-learning that is trained via374

reinforcement learning to solve an instance; for details,375

we refer to Section IV-D.376

In addition to the commands {u, d, l, r}, we also allow377

diagonal motions in the experiments. Moreover, a target378

location for the particles is prescribed. While the strategy379

REINFORCEMENTLEARNING directly supports this, in all380

other strategies, the particles are merged in any location of381

the polyomino and then transported to the target location382

along a shortest path in unison.383

For the strategies SSP, DSP, and MTE, a significant384

parameter is the choice of the next pair of particles to be385

merged. For these strategies, we evaluate the options of386

(a) choosing a pair uniformly at random (RANDOMPAIR) or387

(b) choosing the pair with maximal distance (DISTANTPAIR).388

B. Simulation Results389

We evaluated our approaches on the three polyominoes390

depicted in Fig. 6 that are inspired by vascular networks.391

For each algorithm and polyomino, we carried out at least392

128 trials with exactly 1000 randomly distributed distinct393

particles that were to be gathered in a target pixel.394
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Fig. 6. The polyominoes Corridor, Capillary, and Brain on which
we evaluate the approaches. Target locations are indicated by a red dot.

Overall, REINFORCEMENTLEARNING shows a signifi- 395

cantly better performance than the other approaches, see 396

Fig. 9; note that this comes at the expense of significant time 397

spent on local optimization by carrying out extensive train- 398

ing for each individual polyomino, while the combinatorial 399

algorithms takes considerably less computation time. Among 400

these, DISTANTPAIR show on average a better performance 401

than RANDOMPAIR for nearly all instances and algorithms. 402

Moving particles to a corner first, as suggested by 403

Lemma 8, most of the time led to an increase in steps. This is 404

due to most steps being used to merge the last few remaining 405

particles, as discussed in the next section. 406

C. Oblivious Merging 407
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Fig. 7. Number of particle groups over time using MINSUMTOEXTREMUM
on Capillary (7169 pixel). This shows that the number of start particles
(7000, 6000, . . . , 1000) has negligible impact on the number of steps
needed. Collecting larger amounts of particles can be slightly quicker in
some cases due to the involved randomness and the non-optimal method.

In practice, it may be expensive to determine the position 408

of the individual particles; therefore, oblivious approaches 409

that do not need this information may be of interest. Such a 410

setting is equivalent to the situation where initially, each pixel 411

contains a particle; a gathering sequence for all particles is 412

certainly a gathering sequence for any other (partial) initial 413

distribution of particles. Recall that Corollary 2 implies that 414

this problem remains NP-hard. In order to estimate the cost 415

of this restriction in practice, we study how the number of 416

populated grid cells behaves over time, depending on the 417

initial number of particles; see Figs. 7 and 8. 418

Because the number of populated grid cells decreases 419

very sharply in the beginning and almost all steps are used 420

to merge the few remaining groups of particles, we can 421

conclude that missing knowledge of the position of the indi- 422

vidual particles has negligible cost for uniform distributions. 423

D. Deep Learning Implementation 424

The reinforcement learning approach uses the synchronous 425

Advantage Actor-Critic (A2C) method combined with an 426

intrinsic curiosity mechanism (ICM). We use the OpenAI 427

implementation of A2C [?] with slightly different data pre- 428

processing and hyperparameter settings. The environment 429

wrapper begins by applying sticky actions and max pooling 430

and then scales the gray-scale image to a 84 × 84 format. 431



Fig. 8. The process of gathering 1000 particles in the target location with
MINSUMTOEXTREMUM.

Then the neural network (with architecture as depicted in432

Fig. 10) is fed a stack of four successive frames.433

The feature extraction uses four convolutional layers with434

32 (8 × 8, s = 4), 64 (4 × 4, s = 2), and 64 (2 × 2, s = 1)435

filters, respectively. The output of each layer is activated by436

a leaky rectified linear unit (Leaky ReLU). After flattening,437

the output of the last convolutional layer is mapped to the438

policy (dimension = 4 or 8, depending on available actions)439

via a fully connected layer (512 units). The value function is440

also mapped from the last convolutional layer, with output441

dimension 1. A2C employs 128 parallel agents with different442

particle distributions to collect experience. The learning rate443

is set to 0.0001. Each agent collects 2048 rollouts (steps)444

before the four-epoch update in network weights. During445

each update, the mini batch size is set to 32.446

V. CONCLUSIONS447

We have described a spectrum of methodological progress448

on an important problem of great practical relevance. This449

exposition focuses on two-dimensional scenarios, but a450

generalization to three-dimensional settings appears to be451

straightforward. In addition, we point out three other relevant452

directions for future research.453

Firstly, our algorithmic simulations indicate the strength454

of our methods. However, the different outcomes for deter-455

ministic as well as ML approaches indicate that further, more456

detailed algorithmic studies are warranted to understand the457

most successful line of attack; this includes studies of the458
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Fig. 9. Comparison of the algorithms on the three environments with
1000 uniformly random particles. The boxes show the upper and lower
quartile, the whiskers the range, the orange line the median, and the circles
the outliers. For Brain, RANDOMPAIR is shown for SSP, DSP, and MTE;
otherwise, DISTANTPAIR is shown.

Fig. 10. Illustration of A2C neutral network architecture

necessary tradeoff between computation time and number of 459

actuation steps, but also includes modified models in which 460

an actuation step may be able to move particles by more 461

than an elementary distance. Secondly, how can we deal with 462

random errors in actuation and navigation? Our insights into 463

oblivious methods clearly indicate that these should remain 464

tractable, but more detailed considerations for frequency and 465

amount of errors should provide quantifications and error- 466

correcting approaches. Finally, it is typically not necessary 467

for our application scenarios to gather all particles in a target 468

area; moving an appropriate fraction should usually suffice. 469

Fig. 7 visualizes a slightly different aspect, but still highlights 470

the prospect that a considerably reduced number of actuation 471

steps may be achieved. 472
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