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Abstract. We investigate algorithmic control of a large swarm of mobile
particles (such as robots, sensors, or building material) that move in a 2D
workspace using a global input signal such as gravity or a magnetic field.
Upon activation of the field, each robot moves maximally in the same
direction, until it hits a stationary obstacle or another stationary robot.
In an open workspace, this system model is of limited use because it has
only two controllable degrees of freedom—all robots receive the same
inputs and move uniformly. We show that adding a maze of obstacles to
the environment can make the system drastically more complex but also
more useful. The resulting model matches ThinkFun’s Tilt puzzle.

If we are given a fixed set of stationary obstacles, we prove that it is
NP-hard to decide whether a given initial configuration can be trans-
formed into a desired target configuration. On the positive side, we pro-
vide constructive algorithms to design workspaces that efficiently imple-
ment arbitrary permutations between different configurations.

Keywords: Robot swarm, nano-particles, uniform inputs, parallel mo-
tion planning, complexity, array permutations.

1 Introduction

How can we control a swarm of particles when they have no individual identities,
have no computational power, and we can only signal them with a global “move
in this direction” command? For example, the logic puzzle Tilt, and dexterity
ball-in-a-maze puzzles such as Pigs in Clover and Labyrinth, involve tilting a
board to cause all mobile pieces to roll or slide in a desired direction. In a more
practical example, Becker et al. [7] demonstrate how to apply a magnetic field to
simultaneously move cells containing iron particles in a specific direction within
a fabricated workspace; see Fig. 1a. With such coarse global control, how can we
control a swarm particles to arrive at multiple different destinations in a (known)
complex vascular network such as the one in Fig. 1b?

aabecker@gmail.com
{gh4,jm23}@rice.edu
edemaine@mit.edu
s.fekete@tu-bs.de


.025 mm 0.5 mm 65 mm 0.5 mm 

(a) (Left, center) after feeding iron particles to ciliate eukaryon
(Tetrahymena pyriformis) and magnetizing the particles with a per-
manent magnet, the cell can be turned by changing the orientation
of an external magnetic field. (Right) using two orthogonal Helmholz
electromagnets (left), Becker et al. demonstrated steering many living
magnetized T. pyriformis cells [7]. All cells are steered by the same
global field.

(b) Biological vascular network (cottonwood leaf) Royce
Bair/Flickr/Getty Images. Given such a network along with ini-
tial and goal positions of N particles, is it possible to bring each
particle to its goal position using a global control signal? Note that
this arrangement is not a tree, but is a graph structure with loops.
Matlab code for driving n robots through this network available at
http://www.mathworks.com/matlabcentral/fileexchange/42892.

Fig. 1: (Top) State of the art in controlling small objects by force fields. (Bot-
tom) A complex vascular network, forming a typical environment for the parallel
navigation of small objects.

http://www.mathworks.com/matlabcentral/fileexchange/42892


Since the first visions of massive sensor swarms, more than ten years of work
on sensor networks have yielded considerable progress with respect to hard-
ware miniaturization; however, we are still far away from the visions of “Smart
Paint” [1] or “Smart Dust” [27], which triggered a considerable amount of the-
oretical research, e.g., our own work in [16,17,18,29].

This paper considers passive, computation-free particles as a new model on
how to achieve extremely small and numerous particles today, given recent devel-
opments in the ability to design, produce, and control particles at the nanoscale.
Compared to classical visions of sensor networks with stationary nodes, these
particles enable a wide range of possible applications, e.g., targeted drug de-
livery, micro and nanoscale construction, and Lab-on-a-Chip. Because (1) the
physics of motion at the low Reynold’s number nanoscale environment requires
overcoming a considerable amount of resistance, and (2) the capacity for stor-
ing energy for computation, communication and motion control shrinks with
the third power of object size, classical approaches based on individual motion
control cannot be applied.

The work in this paper is motivated by the challenges arising in micro- and
nano-robotics, where a global field is used to control many small agents. An
example is using the global magnetic field from a MRI to guide magneto-tactic
bacteria through a vascular network to deliver payloads at specific locations
[8], and recent work using electromagnets to steer a magneto-tactic bacterium
through a micro-fabricated maze [28].

Thus, we study the following basic problem: Given a map of an environment,
such as the vascular network shown in Fig. 1b, along with initial and goal posi-
tions for each particle, does there exist a sequence of inputs that will bring each
particle to its goal position?

In this paper, we study this problem on a two-dimensional grid. We assume
that particles cannot be individually controlled, but are all simultaneously given
a message to travel in a given direction until they collide with an obstacle or
another particle. This assumption corresponds to situations with limited state
feedback, or for robots that move at unpredictable speeds. Problems of this
type are similar to sliding-block puzzles with fixed obstacles [26,24,10,25], except
that all particles receive the same control inputs, as in the Tilt puzzle. Driving
ferromagnetic particles with a magnetic resonance imaging (MRI) scanner gives
a practical example of this challenge. Applying a magnetic gradient to move
particles prevents the scanner from simultaneously performing imaging [39].

1.1 Problem Definition: GlobalControl-ManyParticles

More precisely, we consider the following scenario, which we call GlobalControl-
ManyParticles:

1. Initially, the planar square grid is filled with some unit-square particles (each
occupying a cell of the grid) and some fixed unit-square blocks.

2. All particles are commanded in unison: a valid command is “Go Up” (u),“Go
Right” (r),“Go Down” (d), or “Go Left” (l). All particles move in the com-



manded direction until they hit an obstacle or another particle. A repre-
sentative command sequence is 〈u, r, d, l, d, r, u, . . .〉. We call these global
commands force-field moves. We assume we can bound the minimum
particle speed and can guarantee all particles have moved to their
maximum extent.

3. The goal is to get any particle to a specified position.

The algorithmic decision problem GlobalControl-ManyParticles is to de-
cide whether a given puzzle is solvable. As it turns out, this problem is compu-
tationally difficult: we prove NP-hardness in Section 3. While this result shows
the richness of our model (despite the limited control over the individual parts),
it also constitutes a major impediment for constructive algorithmic work.

Fig. 2: In this image, black cells are fixed, white cells are free, and solid green
discs are individual particles, and goal positions are dashed green circles. For the
simple world at left, it is impossible to maneuver both particles to end at their
goals. The world at right has a finite solution: 〈r, d, l〉.

Thus we turn our attention to developing algorithmic tools that enable global
control by uniform commands. In the second part of the paper (Section 4), we
develop several positive results. The underlying idea is to construct artificial
obstacles (such as walls) that allow arbitrary rearrangements of a given two-
dimensional particle swarm. For clearer notation, we will formulate the relevant
statements in the language of matrix operations, which is easily translated into
plain geometric language.

Our paper is organized as follows. After a discussion of related work in Sec-
tion 2, we provide our main result on the complexity of the problem in Section 3.
We then present constructive algorithmic results in Section 4, and end with con-
cluding remarks in Section 5.

2 Related Work

Large Robot Populations. Due to the efforts of roboticists, biologists, and chemists
(e.g. [37], [35],[9]), it is now possible to make and field very large (103–1014) pop-
ulations of simple robots. Potential applications for these robots include targeted
medical therapy, sensing, and actuation. With large populations come two fun-
damental challenges: (1) how to perform state estimation for the robots, and (2)
how to control these robots.



Traditional approaches often assume independent control signals for each
robot, but each additional independent signal requires bandwidth and engineer-
ing. These bandwidth requirements grow at O(n). Using independent signals
becomes more challenging as the robot size decreases. At the molecular scale,
there is a bounded number of modifications that can be made. Especially at the
micro- and nano-scales it is not practical to encode autonomy in the robots. In-
stead, the robots are controlled and interacted with using global control signals.

More recently, robots have been constructed with physical heterogeneity so
that they respond differently to a global, broadcast control signal. Examples in-
clude scratch-drive microrobots, actuated and controlled by a DC voltage signal
from a substrate [12]; magnetic structures with different cross-sections that could
be independently steered [19]; MagMite microrobots with different resonant fre-
quencies and a global magnetic field [20]; and magnetically controlled nanoscale
helical screws constructed to stop movement at different cutoff frequencies of a
global magnetic field [36]. In our previous work with robots modeled as nonholo-
nomic unicycles, we showed that an inhomogeneity in turning speed is enough to
make even an infinite number of robots controllable with regard to position. All
these approaches show promise, but they require precise state estimation and
heterogeneous robots. In addition, the control law computation required at best
a summation over all the robot states O(n) [6] and at worst a matrix inversion
O(n2.373)[4].

In this paper we take a very different approach. We assume a population
of approximately identical planar particles (which could be small robots) and
one global control signal that contains the direction all particles should move.
In an open environment, this system is not controllable because the particles
move uniformly—implementing any control signal translates the entire group
identically. However, an obstacle-filled workspace allows us to break symmetry,
we showed that if we can command the particles to move one unit distance at a
time, some goal configurations have easy solutions [5]. Given a large free space,
we have an algorithm showing that a single obstacle is sufficient for position con-
trol of N particles (video of position control: http://www.youtube.com/watch?
v=5p_XIad5-Cw). However, this result required incremental position control of
the group of particles, i.e. the ability to advance them a uniform fixed distance.
This is a strong assumption, and one that we relax in this work.

Dexterity Games. The problem we investigate is strongly related to dexterity
puzzles—games that typically involve a maze and several balls that should be
maneuvered to goal positions. Such games have a long history. Pigs in Clover,
involving steering four balls through 3 concentric incomplete circles, was invented
in 1880 by Charles Martin Crandall. Dexterity games are dynamic and depend
on the manual skill of the player. Our problem formulation also applies the same
input to every agent, but imposes only kinematic restrictions on agents. This is
most similar to the gravity-fed logic maze TiltTM, invented by Vesa Timonen
and Timo Jokitalo and distributed by ThinkFun since 2010.4

4 http://www.thinkfun.com/tilt
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Computational Geometry: Robot Box-Pushing. Many variations of block-pushing
puzzles have been explored from a computational complexity viewpoint, with a
seminal paper proving NP-hardness by Gordon Wilfong in 1991 [42]. The general
case of motion-planning when each command moves particles a single unit in a
world composed of even a single robot and both fixed and moveable squares is
in the complexity class PSPACE-complete [13,25,11].

Ricochet Robots [14], Atomix [26], and PushPush [10] have the same con-
straint that robots when moved must move to their full extent. This constraint
reflects physical realities where, due to uncertainties in sensing, control appli-
cation, and robot models, precise quantified movements in a specified direction
is not possible, but the input can be applied for a long period of time and be
guaranteed that the robots will move to their fullest extent. In these games the
robots move to their full extent with each input, but each robot can be actuated
individually. The complexity of the problem with global inputs to all robots has
remained an open problem.

Sensorless Manipulation. The algorithms in the second half of our paper do
not require feedback, and we have drawn inspiration from work on sensorless
manipulation [15]. The basic idea in this work is to explicitly maintain the set of
all possible robot configurations and to select a sequence of actions that reduces
the size of this set and drives it toward some goal configuration. Carefully selected
primitive operations can make this easier. For example, sensorless manipulation
strategies often use a sequential composition of primitive operations, “squeezing”
a part either virtually with a programmable force field or simply between two flat,
parallel plates [23]. Some sensorless manipulation strategies take advantage of
limit cycle behavior, for example engineering fixed points and basins of attraction
so that parts only exit a feeder when they reach the correct orientation [31,33].
These two strategies have been applied to a much wider array of mechanisms
such as vibratory bowls and tables [21,40,41] or assembly lines [23,2,38], and
have also been extended to situations with stochastic uncertainty [22,32] and
closed-loop feedback [3,34].

Parallel Algorithms: SIMD. Another related area of research is Single Instruction
Multiple Data (SIMD) parallel algorithms [30]. In this model, multiple proces-
sors are all fed the same instructions to execute, but they do so on different data.
This model has some flexibility, for example allowing command execution selec-
tively only on certain processors and no operations (NOPs) on the remaining
processors.

Our model is actually more extreme: the particles all respond in effectively
the same way to the same instruction. The only difference is their location, and
which obstacles or particles will thus block them. In some sense, our model is
essentially Single Instruction, Single Data, Multiple Location.

3 Complexity

We prove that the general problem 1.1 is computationally intractable:



Theorem 1. GlobalControl-ManyParticles is NP-hard: given an initial
configuration of movable particles and fixed obstacles, it is NP-hard to decide
whether any particle can be moved to a specified location.

Proof. We prove hardness by a reduction from 3SAT. Suppose we are given n
Boolean variables x1, x2, . . . , xn, and m disjunctive clauses Cj = Uj ∨ Vj ∨Wj ,
where each literal Uj , Vj ,Wj is of the form xi or ¬xi. We construct an instance of
GlobalControl-ManyParticles that has a solution if and only if all clauses
can be satisfied by a truth assignment to the variables.

Variable gadgets. For each variable xi that appears in ki literals, we construct
ki instances of the variable gadget i shown in Figure 3, with a particle initially
at the top of the gadget. The gadget consists of a tower of n levels, designed
for the overall construction to make n total variable choices. These choices are
intended to be made by a move sequence of the form 〈d, l/r, d, l/r, . . . , d, l/r,
d, l〉, where the ith l/r choice corresponds to setting variable xi to either true (l)
or false (r). Thus variable gadget i ignores all but the ith choice by making all
other levels lead to the same destination via both l and r. The ith level branches
into two destinations, chosen by either l or r, which correspond to xi being set
true or false, respectively.

In fact, the command sequence may include multiple l and r commands in
a row, in which case the last l/r before a vertical u/d command specifies the
final decision made at that level, and the others can be ignored. The command
sequence may also include a u command, which undoes a d command if done
immediately after, or else does nothing; thus we can simply ignore the u com-
mand and the immediately preceding d if it exists. We can also ignore duplicate
commands (e.g., d, d becomes d) and remove any initial l/r command. After
ignoring these superfluous commands, assuming a particle reaches one of the
output channels, we obtain a sequence in the canonical form 〈d, l/r, d, l/r, . . . ,
d, l〉 as desired, corresponding uniquely to a truth assignment to the n variables.
(If no particle reaches the output port, it is as if the variable is neither true nor
false, satisfying no clauses.) Note that all particles arrive at their output ports
at exactly the same time.

Clause gadgets. For each clause, we use the or gadget shown in Figure 4a. The
or gadget has three inputs corresponding to the three literals, and input particles
are initially at the top of these inputs. For each positive literal of the form xi,
we connect the corresponding input to the left output of an unused instance
of variable gadget i. For each negative literal of the form ¬xi, we connect the
corresponding input to the right output of an unused instance of a variable
gadget i. (In this way, each variable gadget gets used exactly once.)

We connect the variable gadget to the or gadget in a simple way, as shown
in Fig.5: place the variable gadget above the clause so as to align the vertical
output and input channels, and join them into a common channel. To make
room for the three variable gadgets, we simply extend the black areas separating
the three input channels in the or gadget. The unused output channel of each



(a) variable, i = 1 (b) variable, i = 2 (c) variable,
i = 3

(d) variable,
i = 4

Fig. 3: Variable gadgets that execute by a sequence of 〈d, l/r〉 moves. The ith l/r
choice sets the variable to true or false by putting the ball in a separate column.
This selection move is shown in blue. Each gadget is designed to respond to
the ith choice but ignore all others. This lets us make several copies of the same
variable by making multiple gadgets with the same i. In the figure n = 4, and the
input sequence 〈d, l, d, r, d, l, d, r, d, r, d〉 causes i = (1, 2, 3, 4) to produce (true,
false, true, false).

variable gadget simply ends; by the properties of the variable gadget, any particle
reaching that end cannot later reach the other output channel.

If any input channel of the or gadget has a particle, then it can reach the
output port by the move sequence 〈d, l, d, r〉. Furthermore, because variable gad-
gets place all particles on their output ports at the same time, if more than one
particle reaches the or gadget, they will move in unison as drawn in Figure 4a,
and only one can make it to the output port; the others will be stuck in the
“waste” row, even if extra 〈l, r, u, d〉 commands are interjected into the intended
sequence. Hence, a single particle can reach the output of a clause if and only if
that clause (i.e., at least one of its literals) is satisfied by the variable assignment.

x1¬x3x4

oi

waste

(a) 3-input or

o1 o2 o3 o4 o5

waste

Target

(b) m-input and (True)

o1 o2 o3 o4 o5

waste

Target

(c) m-input and (False)

Fig. 4: Gadgets that use the cycle 〈d, l, d, r〉. The 3-input or gadget outputs
one particle if at least one particle enters in an input line, and sends any extra
particle to be recycled. The m-input and gadget outputs one particle to the
Target Location, marked in gray, if at least m inputs are True. Here m = 5.
Excess particles are recycled.

Check gadget. As the final stage of the computation, we check that all clauses
were simultaneously satisfied by the variable assignment, using the m-input and



(a) Initial state. The objective is to get one particle to the grey square at lower left.

(b) Setting variables to (False, True, False, True) does not satisfy this 3SAT problem.

(c) Setting the variables (True, False, False, True) will satisfy this 3SAT problem.

(d) Successful outcome. (True, False, False, True) places a single particle in the goal.

Fig. 5: Combining 12 variable gadgets, three 3-input or gadgets, and an
m-input and gadget to realize the 3SAT expression (¬A ∨ ¬C ∨ D) ∧
(B ∨ ¬C ∨ D) ∧ ( A ∨ B ∨ D) ∧ (A ∨ ¬B ∨ C). Matlab code im-
plementing the examples for each figure in the paper is available online
http://www.mathworks.com/matlabcentral/fileexchange/42892.

http://www.mathworks.com/matlabcentral/fileexchange/42892-drive-magnetic-micro-robots-through-a-2d-vascular-network


gadget shown in Figure 4b. Specifically, we place the clause gadgets along a
horizontal line, and connect their vertical output channels to the vertical input
channels of the check gadget. Again we can align the channels by extending the
black areas that separate the input channels of the and gadget, as shown in the
composite diagram in Fig. 5.

The intended solution sequence for the and gadget is 〈d, l, d, r〉. The and
gadget is designed with the downward channel exactly m units to the right from
the left wall, and > 2m units from the right wall, so for any particle to reach
the downward channel (and ultimately, the target location), at least m particles
must be presented as input. Because each input channel will present at most one
particle (as argued in a clause), a particle can reach the final destination if and
only if all m clauses output a particle, which is possible exactly when all clauses
are satisfied by the variable assignment.

This completes the reduction and the NP-hardness proof.

We conjecture that GlobalControl-ManyParticles is in fact PSPACE-
complete. One approach would be to simulate nondeterministic constraint logic
[24], perhaps using a unique move sequence of the form 〈d, l/r, d, l/r, . . . 〉 to
identify and “activate” a component. One challenge is that all gadgets must
properly reset to their initial state, without permanently trapping any particles.
We leave this for future work.

4 Matrix Permutations

The previous sections investigated pathologically difficult configurations. This
section investigates a complementary problem. Given the same particle and world
constraints as before, what types of control are possible and economical if we
are free to design the environment?

First, we describe an arrangement of obstacles that implement an arbitrary
matrix permutation in four commands. Then we provide efficient algorithms for
sorting matrices, and finish with potential applications.

4.1 A Workspace for a Single Permutation

For our purposes, a matrix is a 2D array of particles (each possibly a different
color). For an ar × ac matrix A and a br × bc matrix B, of equal total size N =
ar ·ac = br ·bc, a matrix permutation assigns each element in A a unique position
in B. Figs. 6 and 7 show example constructions that execute matrix permutations
of total size N = 25 and 100, respectively. For simplicity of exposition, we assume
henceforth that all matrices are n× n squares.

Theorem 2. Any matrix permutation can be executed by a set of obstacles that
transforms matrix A into matrix B in just four moves. For N particles, the
arrangement requires (3N + 1)2 space, 4N + 1 obstacles, and 12N/speed time.
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Fig. 6: In this image for N = 15, black cells are obstacles, white cells are
free, and colored discs are individual particles. The world has been designed to
permute the particles between ‘A’ into ‘B’ every four steps: 〈u, r, d, l〉. See video
at http://youtu.be/3tJdRrNShXM.
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Fig. 7: In this larger example with N = 100, the different control sections are
easier to see than in Fig. 6. (1) The staggered obstacles on the left spread the
matrix vertically, (2) the scattered obstacles on the right permute each element,
and (3) the staggered obstacles along the bottom reform each row, which are
collected by (4). The cycle resets every 740 iterations. See http://youtu.be/

eExZO0HrWRQ for an animation of this gadget.

Proof. Refer to Figures 6 and 7 for examples. The move sequence is 〈u, r, d, l〉.
Move 1: We place n obstacles, one for each column, spaced n units apart, such
that moving u spreads the particle array into a staggered vertical line. Each
particle now has its own row. Move 2: We place N obstacles to stop each
particle during the move r. Each particle has its own row and can be stopped at
any column by its obstacle. We leave an empty column between each obstacle
to prevent collisions during the next move. Move 3: Moving d arranges the
particles into their desired rows. These rows are spread in a staggered horizontal
line. Move 4: Moving l stacks the staggered rows into the desired permutation,
and returns the array to the initial position.

By reapplying the same permutation enough times, we can return to the
original configuration. The permutations shown in Fig. 6 return to the original
image in 2 cycles, while Fig. 7 requires 740 cycles. For a two-color image, we
can always construct a permutation that resets in 2 cycles. We construct an
involution, a function that is its own inverse, using cycles of length two that
transpose two particles. This technique does not extend to images with more
than two colors.

http://www.youtube.com/watch?v=3tJdRrNShXM
http://www.youtube.com/watch?v=3tJdRrNShXM
http://www.youtube.com/watch?v=3tJdRrNShXM
http://www.youtube.com/watch?v=3tJdRrNShXM
http://www.youtube.com/watch?v=3tJdRrNShXM
http://www.youtube.com/watch?v=3tJdRrNShXM
http://youtu.be/eExZO0HrWRQ
http://youtu.be/eExZO0HrWRQ


Fig. 8: For any set of k fixed, but arbitrary permutations of n × n pixels, we
can construct a set of O(kN) obstacles, such that we can switch from a start
arrangement into any of the k permutations using at most O(log k) force-field
moves. Here k = 4 and transforms ‘A’ into ‘B’, C’, ‘D’, or ‘E’ in eight moves:
〈r, d, (r/l), d, (r/l), d, l, u〉.

4.2 A Workspace for Arbitrary Permutations

There are various ways in which we can exploit Theorem 2 in order to generate
larger sets of (or even all) possible permutations. As it turns out, there is a
tradeoff between the number of introduced obstacles and the number of moves
required for realizing a permutation.

We start with obstacle sets that require only few moves.

Theorem 3. For any set of k fixed, but arbitrary, permutations of n×n pixels,
we can construct a set of O(kN) obstacles, such that we can switch from a start
arrangement into any of the k permutations using at most O(log k) force-field
moves.

Proof. Build a binary tree of depth log k for choosing between the permutations
by a sequence of 〈r, d, (r/l), d, (r/l), . . . , d, (r/l), d, l, u〉 with log k (r/l)
decisions between the initial prefix 〈r, d〉 and final suffix 〈d, l, u〉. This gets the
pixels to the set of obstacles for performing the appropriate permutation.

Corollary 1. For any ε > 0, we can construct a set of (N !)ε obstacles such that
any permutation of n × n = N pixels can be achieved by at most O(N logN)
force-field moves.

Proof. Follows from Theorem 3 by k = (N !)ε/N .

Now we proceed to more economical sets of obstacles, with arbitrary per-
mutations realized by clockwise and counterclockwise move sequences. We make
use of the following lemma, which shows that two base permutations are enough
to generate any desired rearrangement.

Lemma 1. Any permutation of N objects can be generated by the two base per-
mutations p = (1, 2) and q = (1, 2, · · ·N). Moreover, any permutation can be
generated by a sequence of length at most N2 that consists of p and q.

Proof. See Fig. 9. Similar to Bubble Sort, we use two nested loops of N . Each
move consists of performing q once, and p when appropriate.

http://www.youtube.com/watch?v=3tJdRrNShXM
http://www.youtube.com/watch?v=3tJdRrNShXM
http://www.youtube.com/watch?v=3tJdRrNShXM
http://www.youtube.com/watch?v=3tJdRrNShXM
http://www.youtube.com/watch?v=3tJdRrNShXM
http://www.youtube.com/watch?v=3tJdRrNShXM


Fig. 9: Repeated application of two base permutations can generate any permu-
tation, when used in a manner similar to Bubble Sort. The obstacles above
generate the base permutation p = (1, 2) in the clockwise direction 〈u, r, d, l〉 and
q = (1, 2, · · ·N) in the counter-clockwise direction 〈r, u, l, d〉.

This allows us to establish the following result.

Theorem 4. We can construct a set of O(N) obstacles such that any n × n
arrangement of N pixels can be rearranged into any other n× n arrangement π
of the same pixels, using at most O(N2) force-field moves.

Proof. Use Theorem 2 to build two sets of obstacles, one each for p and q, such
that p is realized by the sequence 〈u, r, d, l〉 (clockwise) and q is realized by
〈r, u, l, d〉 (counterclockwise). Then we use the appropriate sequence for gener-
ating π in O(N2) moves.

Using a larger set of generating base permutations allows us to reduce the
number of necessary moves. Again, we make use of a simple base set for gener-
ating arbitrary permutations.

Lemma 2. Any permutation of N objects can be generated by the N base per-
mutations p1 = (1, 2), p2 = (1, 3), . . . , pN−1 = (1, (N − 1)) and q = (1, 2 · · ·N).
Moreover, any permutation can be generated by a sequence of length at most N
that consists of the pi and q.

Proof. Straightforward, analogous to Theorem 4: in each step i, apply q once,
and swap element π(i) into position i.

Theorem 5. We can construct a set of O(N2) obstacles such that any n × n
arrangement of N pixels can be rearranged into any other n× n arrangement π
of the same pixels, using at most O(N logN) force-field moves.

Proof. Use Theorem 2 to build N sets of obstacles, one each for p1, . . . , pN−1, q.
Furthermore, use Lemma 2 for generating all permutations with at most N
different of these base permutation, and Theorem 3 for switching between these
k = N permutations. Then we can get π with at most N cycles, each consisting
of at most O(logN) force-field moves.

This is the best possible with respect to the number of moves, in the following
sense:



Theorem 6. Suppose we have a set of obstacles such that any permutation of
an n× n arrangement of pixels can be achieved by at most M force-field moves.
Then M is at least Ω(N logN).

Proof. Each permutation must be achieved by a sequence of force-field moves.
Because each decision for a force-field move 〈u, d, l, r〉 partitions the remaining
set of possible permutations into at most four different subsets, we need at least
Ω(log(N !)) = Ω(N logN) such moves.

5 Conclusions

In this paper we analyzed the complexity of steering many particles with uni-
form inputs in a 2d environment with obstacles. We are motivated by practical
challenges in steering magnetically-actuated particles through vascular networks.
Many examples of natural, locally 2d vascular networks exist, e.g. the leaf ex-
ample in Fig. 1b, and endothelial networks on the surface of organs.

Clearly, there are may exciting new challenges that lie ahead. The next step
is to extend the complexity analysis to PSPACE-complete. We are also explor-
ing using particles and obstacles to construct logic gates. We can implement
and and or gates. Using dual-rail logic, where the signal and its inverse are
explicitly represented for all logic, we can also implement not, nand and nor
gates. Generating fan-out gates seems to require additional complexity in our
BlockWorld construction because conservation rules are violated. Some way
of encoding an order of precedence so that a reversible operation on particle a
will affect particle b is needed. Potential approaches use either 2×1 particles, or
0.5×1 obstacles so that the presence of a first particle can enable an action on
a second particle, and yet be distinguished from the absence of the first parti-
cle and the presence of the second. With uniform 1×1 obstacles and particles,
these cases are indistinguishable. Finally, platforms that can navigate in three
dimensions pose a large number of additional challenges.
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