
Robotic Harvesting of a Moving Swarm
Represented by a Markov Process

Shriya Bhatnagar† Steban Soto† Javier Garcia Aaron T. Becker

Abstract— This paper investigates motion planning for one
or more robot(s) that attempt to harvest agents from a moving
swarm. Generating motion paths that maximize the number
of agents harvested differs from many traditional coverage
problems because the agents move. This movement allows
previously cleared areas to become recontaminated. We assume
that the swarm agents prefer certain regions over others, and
that we can represent the swarm by a Markov Process that
encodes the agents’ preferred regions and their speed of motion.
We exploit this model to design and simulate robotic coverage
paths that maximize the number of agents harvested by a fleet
of robots in a given time budget.

I. INTRODUCTION

Canonical robotic coverage seeks to navigate a robot such
that the robot’s coverage footprint passes over every point
in the workspace. Coverage tasks have received significant
attention from the robotics community with applications
from search and rescue to painting [1]. Coverage problems
with dynamic workspaces, such as having moving targets,
changing or unknown environments, or coverage uncertainty
are more challenging than variants with static workspaces
and deterministic actions. This paper focuses on a form of
time-varying coverage where a large population of moving
agents are distributed in the workspace, and the robot har-
vests a fraction of all the agents within its coverage footprint.
Furthermore, we assume that the agents’ movements can
be represented by a spatially discretized Markov model
that is specified by a stationary distribution and a scalar
diffusion coefficient. The model chosen moves the agents
probabilistically, positioning this problem, as illustrated in
Table I, between periodic coverage problems and pursuit-
evasion problems.

This model enables encoding preferences swarm agents
might have for certain locations. The coverage goal is to
maximize the number of agents harvested in a given time
budget. Areas previously covered by the robot may be
recontaminated, as illustrated in Fig. 1.

This research has much in common with visibility-based
coverage tasks. In these tasks, robots clear adversaries within
their coverage footprint, and attempt to construct a series
of movements that prevent adversaries from being able to
enter previously cleared regions while enlarging the cleared
area [7]–[10]. Such problems assume that adversaries are
infinitely clever, so planners attempt to design a solution that

*This work was supported by the National Science Foundation under
Grant No. [IIS-1553063] and [IIS-1619278].

† These authors contributed equally to this paper. Authors are with the
Department of Electrical and Computer Engineering, University of Houston,
Houston, TX 77204 USA atbecker@uh.edu.

(a) (b)

(d) (c)

Fig. 1. Three successive snapshots of harvesting a moving swarm. Robots
(represented as green points) pass through an agent distribution (represented
by a density plot). Although many agents are harvested, the swarm reforms
and contaminates the cleared regions.

guarantees coverage, or returns failure. In contrast, this paper
assumes adversary motion is predictable in the aggregate, and
represents adversaries by a Markov motion model. This paper
is also related to the work of Pimenta et al., who devised
a controller that minimizes the time required for coverage
of an environment while also tracking moving targets [13].
Because the targets are moving, their coverage solution
requires constant adjustment. Similarly, our coverage robots
must continue to move due to the changing environment.

Previous work in path planning for persistent sensing
resulted in algorithms that allow a robot to modify a path
by shifting a set of waypoints to focus on dynamic areas of
interest [5]. The controllers are custom designed to find a
locally optimal path given an unknown environment. While
the current population of agents in each workspace cell cor-
responds to the areas of interest in [5], this paper compares
a variety of controllers that either follow a consistent path
or plan using greedy or heuristic policies.

Other previous research on coverage under uncertainty
provided a “probably approximately correct” measure of
coverage. This enabled a robot to generate policies that
guarantee (to an arbitrary level of certainty) the coverage
of a fraction of the free space [14]. Similarly, in this work,
agent populations obey dynamics with large variance and we
wish to design policies that reliably harvest the agents.

Optimization problems related to this research include

http://nsf.gov/awardsearch/showAward?AWD_ID=1553063
http://nsf.gov/awardsearch/showAward?AWD_ID=1619278

Time-Varying Coverage Problems
Item count changes but no cell-to-cell movement Probabilistic motion models for many agents Pathological cases–intelligent agents

Lawn mowing/vacuuming [1], [2] Killing mosquitoes/larvae [3] Art gallery problem [4]
Persistent sensing [5], [6] Commercial fishing/hunting Pursuit/evasion problems [7]–[10]
Data ferry/sensor recharge [5] Multiple pesticides applications [11], [12] Coverage and tracking [13]

TABLE I
SPECTRUM OF ROBOTIC COVERAGE WITH TIME-VARYING CHARACTERISTICS. THIS PAPER FOCUSES ON THE MIDDLE COLUMN.

the traveling salesman problem (TSP) and the art gallery
problem [4]. Both problems are proven to be nondetermin-
istic polynomial-time hard (NP-hard) and typically rely on
heuristics for a complete, but not optimal solution. This paper
explores using heuristic-based algorithms to cover a swarm
of moving agents.

This work is inspired by motion planning challenges
involved in mosquito control. Coverage of mosquitoes is
difficult because movement of both larva and adults causes
recontamination of previously cleared regions. However,
mosquito motion is at least partially predictable in the
aggregate. Mosquitos exhibit preferences for certain re-
gions. Recent research on mosquito control methods that
incorporate robotics include the use of Unmanned Aerial
Vehicles (UAV) with chemical larvicides [15], UAVs with
controlled release of sterile adult male mosquitoes [16],
and experiments in trajectory-planning for a UAV equipped
with a mosquito-zapping electric screen [17]. Past work in
mapping of mosquito larvae exploit satellite imagery and
vision processing techniques to locate where mosquito larvae
are most likely to be found [18].

Another application for this research is environmental
tracking in marine environments. Tokekar et al., designed a
robotic boat capable of covering a region to look for tagged
invasive fish [19]. They introduced a coverage problem that
requires a robot to cover only specific regions of a lake
by assuming that fish have preferred regions over others.
They assumed that these preferred regions were distinct and
solved a TSP to minimize the time to move between the
preferred regions. In contrast, we assume that agents can
move probabilistically throughout the workspace, but have
higher probabilities of moving toward preferred regions.

This paper is organized as follows: Markov processes for
modeling are covered in Section II, and several controllers
are presented in Section III. Simulation results are reported
in Section IV.

II. MODELING

We assume that some agents prefer certain regions over
others. In previous work, we represented these preferences by
a 2D histogram where each grid cell represented the relative
prevalence of agents in that cell and designed paths that
maximized the number of agents harvested while respecting
an energy budget [17], [20]. That model assumed agents were
immobile. Representing agent mobility requires increasing
the model complexity. One method to represent mobility is
to directly model individual agents, as in [21], however this
approach becomes unwieldy with large numbers of agents
and required running a statistically significant number of
trials to obtain representative data.

In this paper, we model aggregate behavior of the agent
population as a whole. This eliminates the need for running
many trials for each situation. We can then generalize the
behavior of the agents’ movement by representing it as a
Markov process.

Algorithm 1 Markov Transition Matrix P (w, k)
w is the stationary distribution (wi,j ≥ 0,

∑
w = 1) and k ∈

[0, 1/4] is the dispersion parameter (fraction of swarm that leaves
a cell in any direction).

1: (`w, `h)← size(w)
2: P ← zero matrix that is (`w`h)× (`w`h)
3: for r = 1 to `h do
4: for c = 1 to `w do
5: x← `w(c− 1) + r . current cell
6: e← `wc+ r . cell to east
7: s← `w(c− 1) + r + 1 . cell to south
8: if c < `w then

9:

[
Pe,x

Px,e

]
←

[
k

k w(r,c)
w(r,c+1)

]
w(r, c) < w(r, c+ 1)[

kw(r,c+1)
w(r,c)

k

]
else

10: if r < `h then

11:

[
Ps,x

Px,s

]
←

[
k

k w(r,c)
w(r+1,c)

]
w(r, c) < w(r + 1, c)[

kw(r+1,c)
w(r,c)

k

]
else

12: for i = 1 to `w`h do
13: Pi,i = 1−

∑`w`h
j=1 Pi,j . columns sum to 1

14: return P

A. Uncontrolled System

This paper assumes agents are distributed in a 2D grid
of size `w × `h and that the system state is represented at
time t by x(t). x(t) is a 1D vector of (x(t) ∈ IR`w`h) that
represents the agent population in each grid cell at time t.
To propagate the moving swarm one time step, we use

x(t+ 1) = Px(t). (1)

The system evolution matrix P ∈ IR`w`h×`w`h assumes
interaction only between grid cells that share edges, and is
parameterized by the diffusion rate k. The transition matrix
P is determined entirely by the stationary distribution w and
the diffusion rate k, and is computed once in O(w2) time by
Alg. 1. If `w = `h = `, this produces a sparse `2× `2 matrix
Px,y , with only `(5`−4) non-zero entries. If all the w values
are greater than zero and k > 0, the resulting Markov chain
is aperiodic and irreducible. Disturbed distributions heal and
return to their stationary distribution after some time. The
evolution of such a system is shown in Fig. 1.

(a)

(b)

Fig. 2. Sequence of simulations showing the agent distribution as a density plot and the path of the robot in red. The agents’ position evolves according
to a Markov process, but the robot harvests fkill = 1 fraction of the agents in the cell it is covering and the agents diffuse with parameter k = 0.005. (a)
Greedy Controller (b) h-step horizen heuristic controller See simulation video at https://youtu.be/u1OTBK5kq70.

B. Controlled System

We assume that the robot’s coverage footprint is the size

of one grid cell, that all nr robots are in different cells, and

that each robot harvests fkill ∈ [0, 1] of the agents in its grid

cell. fkill is a parameter that represents the efficiency of the

harvester. The following algorithm propagates the moving

swarm one time step, under the actions of nr robots:

1: x′ ← x(t)
2: for j = 1 to nr do
3: i = position of robot j
4: x′

i = (1− fkill)x
′
i

5: x(t+ 1) = Px′.

(2)

III. CONTROLLERS

This section compares several controllers used for single

and multi-robot applications.

A. Controllers for single robot applications

The boustrophedon controller steers the robot back and

forth from west to east, moving one row upwards each time

it reaches a boundary. If the agents are evenly distributed and

cannot move, this controller harvests the most agents since

it covers the whole region without overlapping. When these

assumptions are violated, it performs poorly.

The random coverage controller randomly commands the

robot to move one grid cell east, south, west, or north. If

this move is blocked by the boundary, a different direction

is chosen. Since the random controller does not use any

sensor measurements besides boundary detection, it performs

poorly, but it does not get stuck in local minimums.

In contrast, a greedy controller with 1-step lookahead

compares the utility of moving one grid cell east, south,

west, north, or for staying still. The movement that results

in the largest number of agents harvested is selected. This

type of controller is an exploitation strategy that does little

exploration. Similarly, a greedy controller with d-step looka-

head computes the number of expected agents harvested by

all possible 5d movement sequences, and implements the

first step of the sequence that harvests the largest number of

agents.

All these controllers have a limited ability to predict into

the future. In the simulation of Fig. 2.A, the Gaussian peaks

are at least 70 units apart. Due to the curse of dimensionality,

the brute-force greedy controller cannot predict far enough

into the future to make crossing between the Gaussian hills

competitive with staying in the initial distribution (570 ≈
8× 1048).

To address this, our final controller is the h-step hori-
zon heuristic, which switches between exploration and ex-

ploitation strategies by simulating a small number of deep

searches, as shown in Fig. 2.B. This controller is similar to

model predictive control because each time step it simulates

the expected number of agents harvested h steps into the

future by following different strategies. Each strategy is

simulated, and the strategy that harvest the most agents is

selected. All strategies start by setting a goal destination. If

the simulated robot reaches the destination within h steps,

the robot uses its remaining time by obeying a d-step greedy

controller. The null policy sets the current position as the goal

destination, so the robot obeys a d-step greedy policy for all

h iterations. The implementation in this paper compares the

null policy and sending the robot to each of the Gaussian

peaks. If there are α peaks, α + 1 policies are compared.

While moving to a destination, the robot makes locally

https://youtu.be/u1OTBK5kq70

optimal choices if the movement requires both horizontal
and vertical movements, choosing the option that harvests
more agents.

There is a trade-off when choosing h because at each
time step, the heuristic only simulates one switch of goal
destination. If the horizon h is too short, the robot will not
harvest many agents from a distant peak (and may not even
reach the destination). If h is too long, the simulated robot
will overexploit the destination. There is also a computation
trade-off. To calculate h steps into the future, each of the h
steps compares 5d options and selects the best, and then (2)
is evaluated which is dominated by the matrix multiplication
Px. The total computation is roughly (α+1)·h·5d multiplied
by the cost of the matrix multiplication Px. In practice we
use d = 1 to make the simulation fast.

B. Controllers for multi-robot applications

The forest boustrophedon [22] controller moves the robots
to starting positions that evenly divide the workspace, and
then robots perform boustrophedon paths. This is shown in
Fig. 3(A).

The formation boustrophedon controller performs cover-
age paths in echelon form with the robots moving in a
diagonal formation. This can be seen in Fig. 3(B).

Both controllers in Fig. 3(A) and Fig. 3(B) do not use
any sensor measurements. Adding sensing can improve per-
formance. The greedy depth controller in Sec. III-A can be
implemented on multiple robots to achieve higher amounts
of harvesting. However, Fig. 3(C) shows an instance where
the robots fail to discover a distribution peak in the north.
They could be more effective if they were spread out based
on the initial agent density map.

To implement such a controller, goal destinations are
introduced to the greedy depth controller. We build a mixture
of Gaussians model that is fit to x(0) using an expectation
maximization (EM) algorithm. This expectation maximiza-
tion identifies τi, the variables that encode the relative
probabilities of each Gaussian. The robots are distributed
so that τi robots are sent to each Gaussian peak. Once the
robots are positioned, they continue to perform their regular
greedy algorithm. These initial goal positions can send robots
to distant peaks that the regular greedy depth controller may
be unable to reach. A resulting path is shown in Fig. 3(D).
In this simulation, two robots are sent to the Gaussian peak
at the top of the map that was missed by the greedy depth
controller.

To combat the exponential cost of simulating nr robots d
steps into the future, our approach instead uses a priority-
based system, where the (i + 1)th robot computes its con-
troller after simulating the harvesting performed by robots 1
to i.

IV. SIMULATION

For most simulations, we used a stationary distribution of
agents described as the sum of three Gaussian distributions
on an ` × ` grid with ` = 100 and used World 1, defined
with

• 1/2 of the agents distributed with mean `(1/7, 1/4) and
(σx, σy) = `(1/8, 1/8),

• 1/3 of the agents distributed with mean `(1/4, 7/8) and
(σx, σy) = `(1/12, 1/12), and

• 1/6 of the agents distributed with mean `(1/6, 1/2) and
(σx, σy) = `(1/12, 1/12).

The robot was initialized in the southwest corner of the
workspace, and the percentage of population harvested when
a robot visits a cell was set to 100% (fkill = 1). All
simulations were performed in MATLAB with open source
code1.

a) Comparing controllers: Our first set of simulations
compare six controllers with the same agent diffusion param-
eter, k = 0.05. The amount of harvested agents as a function
of simulation steps are shown in Fig. 4(a). As expected, the
random strategy performed the worst with 874 agents har-
vested. The boustrophedon pattern performed only slightly
better, with 1103 agents harvested. The greedy controller
exploits local information and kills approximately twice as
many as boustrophedon. However, the greedy controller can
not explore further than d steps ahead. Due to local maximas,
having a deeper lookahead function did not always translate
into a higher number of harvested agents. For the d-step
greedy strategy, d = {1, 3, 5} harvested {2583, 2583, 2580}
agents.

In contrast, the heuristic controller balances exploration
and exploitation. This enables the heuristic controller to
eventually outperform the greedy controller. However, due
to the time spent on moving toward goal destinations, the
greedy controller often outperforms the heuristic during the
early stages of the simulation. Each time the heuristic con-
troller travels to a new maxima, the harvesting rate flattens,
which shows up as the five plateaus in Fig. 4(a). The heuristic
with a 200-step horizon harvested 3138 agents, even though
its greedy search had only a d=1 step lookahead.

b) Varying k, the agent diffusion rate: The second
set of simulation experiments compared the effect of the
dispersion parameter, which is the maximum fraction of
agents in a cell moving in a cardinal direction (k ∈ [0, 1/4]).
The results are shown in Fig. 4(b). If k = 0 the agents are
stationary and the problem is equivalent to traditional cover-
age. As k increases, the distribution returns to the stationary
distribution more quickly. With one notable exception, per-
formance was inversely proportional to k. For the largest,
k = 0.25, only 2478 agents were harvested. Diffusions of
k = {0.1, 0.01, 0.005} harvested {2495, 2689, 2801} agents.
However, for k = 0 only 702 agents were harvested, even
though for the first 142 steps this strategy performed better
than all others. The system reached a configuration where
all the agents in every direction had been harvested and the
limited 1-step lookahead was unable to plan a trajectory.

c) Comparing controllers for multiple robots: The third
experiment compared four different controllers with multiple
robots. For each controller the number of robots is nr =
10, with k = 0.05. The amount of harvested agents as a

1Simulation: github.com/RoboticSwarmControl/2018mosquitoCoverage

https://github.com/RoboticSwarmControl/2018mosquitoCoverage

BA C D

Fig. 3. Simulations using different multi-robot coverage algorithms with nr = 9 robots and N = 10, 000 agents over 1,000 simulation steps, with
a d = 3 depth greedy search, k = 0.05, and nr = 10. (A) Forest coverage boustrophedon path. (B) Formation boustrophedon path. (C) Greedy-Depth
implementation. (D) Greedy-Depth search with initial goal destinations assigned based on population density.

(a) (b) (c)

Fig. 4. (a) Simulations comparing the controllers presented in Section III with nr = 1 robot, N = 10, 000 agents, 1,000 simulation steps, and diffusion
parameter k = 0.05. (b) Simulations varying agent dispersion parameter k, as described in Section IV, with nr = 1 robot, N = 10, 000 agents over
1,000 simulation steps, with a d = 3 depth greedy search. (c) Simulations varying the controllers as described in Section III, with N = 10, 000 agents,
1,000 simulation steps, a d = 3 depth greedy search, k = 0.05, and nr = 10. See simulation video.

function of simulation steps are shown in Fig. 4(c). The
forest boustrophedon coverage performed the worst, with
5815 agents harvested. It had a spike in agents harvested at
125 steps, and briefly outperformed formation boustrophedon
coverage. The formation boustrophedon coverage performed
better, harvesting 7266 agents. The greedy depth search
without goal destinations for nr robots captured 7914 agents.
The best performance, harvesting 9157, was earned by the
d = 3 greedy depth search with robots assigned to goal
destinations based on the agent population density.

d) Varying fkill in two different worlds: The fourth
experiment compared two different worlds while also varying
the fkill parameter from 0.1 to 1, with an increment of 0.1
between each run. World 1 is the same world used in all
the other simulations. World 2 is a stationary distribution
of agents described as the sum of four Gaussians with the
following parameters: ` = 100, with
• 1/6 of the agents distributed with mean `(1, 1/2) and

(σx, σy) = `(1/8, 1/8),
• 1/3 of the agents distributed with mean `(2/5, 8/9) and

(σx, σy) = `(1/12, 1/12),
• 1/6 of the agents distributed with mean `(1/2, 1/2) and

(σx, σy) = `(1/12, 1/12),
• 1/3 of the agents distributed with mean `(1/5, 1/10)

and (σx, σy) = `(1/8, 1/8).
In this experiment, the efficacy of the robots is put the test.
When fkill is set to 0 the robots completely fail at harvesting
the agents. When fkill is set to 1, the robots harvest all agents
present in their cell. In Fig. 5.A, increasing fkill increases

the amount of agents harvested. After increasing fkill above
0.7, the marginal utility decreases. However, in Fig. 5.B, in
World 2, increasing fkill did not always increase the amount
of agents harvested. This could be the effect of resource
starvation, where after a certain amount of simulation steps
robots are not sent back to areas with recontaminated areas.
This could be avoided by implementing the h-step horizon
heuristic controller for multi-robot applications.

e) Marginal utility of additional robots: The fifth ex-
periment compared the marginal effect of additional robots.
The robots were programmed to follow a d = 3 depth
greedy search once they had reached their assigned initial
goal destination, with k = 0.05 and nr ∈ [1, 30]. Robots
beyond nr = 10 have low impact on the number of agents
harvested. Figure 6 fits this data with an exponential decay.

V. CONCLUSIONS

This paper presented an alternate coverage problem where
the objects to be covered are moving agents that obey a
Markov motion model and have a stationary distribution. We
presented heuristic and greedy controllers that outperform
standard coverage techniques for this problem. This research
was motivated by current challenges in mosquito larvae
control, but may have applications to commercial fishing,
pesticide treatments, or steering a predator to maximize the
number of prey harvested when the predator has a limited
coverage footprint and the prey obey a Markov motion
model. For future work, we plan on expanding the h-
step horizon heuristic controller to multi-robot applications,

(a)

(b)

Fig. 5. Simulation parameters: N = 10, 000 agents, 1,000 simulation
steps, running Heuristic with Goals DFS, k = 0.05, and nr = 10
(a) Simulation comparing the number of agents harvested as the kill rate
parameter varies, fkill ∈ [0.1, 1], run in World 1. (b) Simulation comparing
the number of agents harvested as the kill rate parameter varies, fkill ∈
[0.1, 1], run in World 2.

N(1-Exp[-x
3.72

])

5 10 15 20 25 30
2000

4000

6000

8000

10000

Number of Robots nr

E
xp
ec
te
d
A
ge
nt
s
H
ar
ve
st
ed

Fig. 6. Simulations varying the number of robots with N = 10, 000
agents, 1000 steps, d = 3 depth greedy search, and diffusion parameter
k = 0.05. Subplots show the heat map of the agents, and the robot paths
(in multi-colors) after 50, 100, and 250 steps.

where every n number of simulations steps, it re-evaluates

the expected return for redistributing the robots across the

world. We also plan to enable the controller to avoid over-

exploitation by choosing the amount of time it spends at a

goal. Finally, we plan on verifying the results seen in the

simulations through hardware experiments.

REFERENCES

[1] Howie Choset. Coverage for robotics – a survey of recent results. Ann
Math Artif Intell, 31(1):113–126, Oct 2001.

[2] J Colegrave and A Branch. A case study of autonomous household
vacuum cleaner. AIAA/NASA CIRFFSS, 107, 1994.

[3] Sachit Butail, Nicholas Manoukis, Moussa Diallo, José M Ribeiro,
Tovi Lehmann, and Derek A Paley. Reconstructing the flight kine-
matics of swarming and mating in wild mosquitoes. Journal of The
Royal Society Interface, 9(75):2624–2638, 2012.

[4] D. Lee and A. Lin. Computational complexity of art gallery problems.
IEEE Trans Inf Theory, 32(2):276–282, March 1986.

[5] D. E. Soltero, M. Schwager, and D. Rus. Generating informative
paths for persistent sensing in unknown environments. In IROS, pages
2172–2179, Oct 2012.

[6] Stephen L Smith, Mac Schwager, and Daniela Rus. Persistent robotic
tasks: Monitoring and sweeping in changing environments. IEEE
Transactions on Robotics, 28(2):410–426, 2012.

[7] Timothy H. Chung, Geoffrey A. Hollinger, and Volkan Isler.
Search and pursuit-evasion in mobile robotics. Autonomous Robots,
31(4):299, Jul 2011.

[8] Andreas Kolling and Alexander Kleiner. Multi-UAV motion planning
for guaranteed search. In Proceedings of the 2013 international
conference on Autonomous agents and multi-agent systems, pages 79–
86. International Foundation for Autonomous Agents and Multiagent
Systems, 2013.

[9] Alexander Kleiner and Andreas Kolling. Guaranteed search with large
teams of unmanned aerial vehicles. In ICRA, pages 2977–2983. IEEE,
2013.

[10] Nicholas M Stiffler and Jason M O’Kane. Complete and optimal
visibility-based pursuit-evasion. The International Journal of Robotics
Research, 36(8):923–946, 2017.

[11] Philip J Sammons, Tomonari Furukawa, and Andrew Bulgin. Au-
tonomous pesticide spraying robot for use in a greenhouse. In
Australian Conference on Robotics and Automation, pages 1–9, 2005.

[12] Kyukwang Kim, Hwijoon Lim, Whimin Kim, Duckyu Choi, Sung-
wook Jung, and Hyun Myung. Collaborative UAV type robotic system
for mosquito habitat puddle searching and larvicide spray. In IROS.
IEEE, 2016.

[13] Luciano CA Pimenta, Mac Schwager, Quentin Lindsey, Vijay Kumar,
Daniela Rus, Renato C Mesquita, and Guilherme AS Pereira. Simul-
taneous coverage and tracking (SCAT) of moving targets with robot
networks. In Algorithmic foundation of robotics VIII, pages 85–99.
Springer, 2009.

[14] Colin Das, Aaron Becker, and Timothy Bretl. Probably approximately
correct coverage for robots with uncertainty. In IROS, pages 1160–
1166. IEEE, 2011.

[15] John-Thones Amenyo, Daniel Phelps, Olajide Oladipo, Ekuoe Se-
wovoe, Sangeeta Jadoonanan, Sandeep Jadoonan, Tahseen Tabassum,
Salim Gnabode, Taging D Sherpa, Michael Falzone, Abrar Hossain,
and Aerren Kublal. Ultra-low cost, low-altitude, affordable and
sustainable UAV multicopter drones for mosquito vector control in
malaria disease management. In IEEE Global Humanitarian Technol-
ogy Conference, pages 590–596. IEEE, 2014.

[16] Evan Ackerman. Drones distribute swarms of sterile mosquitoes to
stop zika and other diseases. IEEE Spectrum, 2017.

[17] An Nguyen, Dominik Krupke, Mary Burbage, Shriya Bhatnagar,
Sándor P Fekete, and Aaron T. Becker. Using a UAV for destructive
surveys of mosquito population. In ICRA. IEEE, May 2018.

[18] Li Zou, Scott N. Miller, and Edward T. Schmidtmann. Mosquito
larval habitat mapping using remote sensing and GIS: Implications of
coalbed methane development and west nile virus. Journal of Medical
Entomology, 43(5):1034–1041, 2006.

[19] P. Tokekar, E. Branson, J. Vander Hook, and V. Isler. Tracking aquatic
invaders: Autonomous robots for monitoring invasive fish. IEEE
Robotics Automation Magazine, 20(3):33–41, Sep. 2013.

[20] Aaron T Becker, Mustapha Debboun, Sándor P Fekete, Dominik
Krupke, and An Nguyen. Zapping zika with a mosquito-managing
drone: Computing optimal flight patterns with minimum turn cost. In
LIPIcs-Leibniz International Proceedings in Informatics, volume 77.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[21] Mary Burbage. Maximizing swarm coverage: Hunting for members of
a moving population. Master’s thesis, University of Houston, Houston,
TX, May 2017.

[22] Xiaoming Zheng, Sonal Jain, Sven Koenig, and David Kempe. Multi-
robot forest coverage. In IROS, pages 3852–3857. IEEE, 2005.

	Introduction
	Modeling
	Uncontrolled System
	Controlled System

	Controllers
	Controllers for single robot applications
	Controllers for multi-robot applications

	Simulation
	Conclusions
	References

