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Abstract— Small-scale robots have great potential in
medicine, micro-assembly and many other areas. For example,
robots containing iron can be steered using the magnetic
gradient generated by MRI scanners. Since the gradient is
approximately the same everywhere inside the scanner, each
robot receives the same input and therefore they all are
subjected to the same force. A similar technique can be used
with rotating magnetic fields. Each robot receives the same
inputs, making motion planning challenging. This paper uses
a Rapidly Exploring Random Tree (RRT) to plan paths that
deliver multiple robots to goal positions by using obstacles to
break the actuation symmetry.

I. INTRODUCTION

This paper investigates the individual control of mul-
tiple particle-like robots actuated by the same force and
torque. Each robot moves in the same direction and the
same distance (a shared global input) until its movement
is obstructed. Our goal is to simultaneously deliver robots
at different starting positions to different goal positions with
these identical inputs. The problem is trivial if there is only
one robot, but as the number of robot increases it becomes
more difficult. The set of goal locations often requires that
the robots move in different directions, so moving one robot
toward its goal may move other robots away from their
goals. We derived shortest path solutions for two robots
under this control paradigm in [1], but only for obstacle-
free, convex workspaces. We also derived a planner under
this control paradigm for the special case of a workspace
with a single, square-shaped obstacle in [2]. However, no
general-purpose motion planner has addressed this problem.
The motion planning problem at hand is hard because the
global inputs make the problem coupled and so the path-
planning complexity increases exponentially with the number
of robots. This problem is especially challenging because
the effects of collisions are often not time reversible: if the
robots collide with obstacles at different times, moving in the
opposite direction will not undo the effect of the collision.
Because such collisions cannot be undone, two configura-
tions close in the configuration space may be unreachable
or require a long movement sequence to connect. This paper
presents a modified version of a motion-planning technique
called Rapidly Exploring Random Tree (RRT) to search for
solutions.
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Fig. 1. Solving a complex vascular network with three robots moving under
global inputs. All robots move in the same direction unless their movement
is blocked by an obstacle.

Global inputs are common for tiny robots. For instance,
magnetic actuation can be used to actuate a swarm of micro-
scopic magnetic robots [3]–[6]. They could navigate inside
the human body to deliver medication or create imaging
contrast [7]–[10]. Because the magnetic field generators must
be placed outside the patient’s body, it is reasonable to
assume all the robots would be subjected to same magnetic
field and would move in the same direction [11].

Figure 1 presents a representative workspace containing
obstacles (shown in black color) and three robots (shown
as colored discs). The robots move under global inputs and
their goal positions are shown by similarly colored circles.
The relative initial positions of the robot are different from
the relative position of the goals. In this case only one robot
can reach its goal at a time unless obstacles are used to
break the control symmetry. A control sequence found by
our planner is shown by the correspondingly colored paths.

The contributions of this paper are (1) the introduction
of a local planner for non-time reversible global inputs, (2)
extensive testing of this planner in an RRT in simulation,
and (3) hardware implementation of the paths generated by
the RRT planner. In this paper, simulations were performed
with up to four robots and the hardware experiments were
performed using two robots. This paper is an expansion of
work presented in the MS thesis [12].

Section II presents our model, Sec. III explores how
parameters affect map coverage, and Sec. IV examines in-
creasing numbers of robots, more complicated environments,
and reuse of the RRT for multiple planning queries.

The developed algorithm was tested experimentally as
reported in Sec. V. Two cylindrical permanent magnets (the
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robots) were rolled on a flat surface by a rotating magnetic
field. Obstacles were present in the workspace to break the
actuation symmetry. Six electromagnets produced a global
magnetic field with controlled time-dependent orientation.
The magnetic field vectors for the tested path were computed
offline and then generated by the magnetic manipulator to
steer the robots to their separate goal locations.

II. MODEL & METHODS

The goal of robot motion-planning is often to plan a
collision-free path from start to goal for a robot. How-
ever, because we have more robots than control inputs, our
algorithm requires collisions with obstacles to break the
symmetric effect of control inputs.

This paper models robots actuated by the same field
e.g., iron particles pulled by a magnetic field [13]. Con-
sider a group of n robots with configuration r =
[r1x, r1y, . . . , rnx, rny]>, r ∈ R2n, all controlled by the
same input sequence u to move from a start configuration
s = [s1x, s1y, . . . , snx, sny]> towards their goal configura-
tion g = [g1x, g1y, . . . , gnx, gny]>. Each move command in
the sequence u is a force vector in 2D. Robots slide along,
but do not pass through obstacles. When any robot collides
with an obstacle, components of u normal to the obstacle
are set to zero.

A Rapidly-exploring Random Tree (RRT) [14] is a tree-
based algorithm designed to explore high-dimensional con-
figuration spaces. The tree is rooted at the initial config-
uration. To generate another node the following procedure
is employed: First, Xrand, a random configuration in the
free configuration space is generated [15]. Second, the node
already in the tree that is nearest to the randomly generated
configuration, nNN, is selected [16], [17]. Third, the algo-
rithm tries to expand node nNN by generating a movement
command from nNN towards Xrand. If the movement results
in a valid configuration, a new node is created and connected
to nNN. The RRT continues generating nodes until it finds
the desired goal or reaches its limit of time or memory.

a) Distance Function: A distance metric is necessary
for an RRT to determine the nearest node. This paper uses the
Euclidean distance between two configurations as a distance
metric. For two configurations r and g, the distance is

DISTANCE(r,g) =

√√√√ n∑
i=1

(
(rxi − gxi)2 + (ryi − gyi)2

)
.

b) RRT algorithm modified for global inputs: For given
start configuration s and goal configuration g, an RRT Tree
with K vertices is constructed as shown in Alg. 1. The key
innovation in this paper is the LOCALPLANNER in step 5.

c) A LOCALPLANNER Function: Collisions are often
not time-irreversible because the system has uniform inputs.
This makes it difficult to determine the optimal movement
command that would bring one configuration closest to
another configuration. Instead of computing the optimal
input, we generate k potential inputs and select the input
that minimizes the distance to the goal when collisions are

Algorithm 1 GENERATERRT(s,K)

s is the starting particle configuration and K is the maximum
number of nodes. SAMPLERANDOMFREECONFIG samples a
configuration for which every robot is in the free configura-
tion space.

1: Tree.initialize(s)
2: for all i = 1 to K do
3: xrand ← SAMPLERANDOMFREECONFIG
4: xnear ←NEARESTNEIGHBOR(Tree,xrand)
5: (xnew, u)← LOCALPLANNER(xnear,xrand)
6: Tree.add vertex(xnew)
7: Tree.add edge(xnear,xnew, u)

8: return Tree

accounted for. In our implementation, Alg. 2, each candidate
input is of length Robostep, and the k potential directions are
evenly spaced along the unit circle.

Algorithm 2 LOCALPLANNER(s, e)

Computes which move of length Robostep in k directions
from configuration s gets closest to configuration e.

1: mindist ←∞
2: for all a = 0 to k − 1 do
3: φ← 2πa

k
4: u← Robostep · [cosφ, sinφ]
5: t← {}
6: for i = 1 to n do
7: ti ← APPLYCOLLISION(si, u)

8: if DISTANCE(t, e) < mindist then
9: mindist ← DISTANCE(t, e)

10: tbest ← t
11: ubest ← u

12: return (tbest, ubest)

d) Calculation of Configuration Space Coverage: Map
coverage is a proxy for exploration of the configuration
space [18], and is computed by dividing the configuration
space into equal volume hypercubes, and computing what
fraction of the hypercubes contain at least one RRT node.
The size of the grid (cube edge length) can be decreased
to improve precision. As shown in Fig. 2, the frame and
the bounds remain the same in all the environments we
used in the simulation for this paper. With n robots, the
configuration space has 2n dimensions, so as the number
of robots increases, the memory requirement for the grid

increases exponentially as O
((boundary length

edge length

)2n)
. For

high resolution maps, calculating coverage requires more
computation time than generating the RRT.

III. SIMULATION RESULTS

This section presents several simulation results, all pro-
grammed using the C++ language and the OMPL library
(Open Motion Planning Library) [19]. Configuration space
coverage is calculated when changing parameters including
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Fig. 2. Example of a grid on an environment
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Fig. 3. Average coverage percentage as a function of Robostep length
using the environment shown in the right-hand corner. Increasing numbers
of RRT nodes improves coverage.

(1) number of nodes, (2) step size of the robot, (3) envi-
ronment, (4) grid size, (5) distance between start and goal
location and, (6) changing the initial location of robots. All
simulations use k = 16 candidate control inputs in Alg. 2.

As shown in Fig. 4, environment 1 has a border of
obstacles (shown in black) on the sides and an L-shaped
obstacle (in black) in the center. The starting positions for
the robots are shown as black discs for robot 1 and green for
robot 2. The goals for robot 1 and robot 2 are shown as a
blue circle and a red circle respectively. In addition, the RRT
for robot 1 is shown in cyan and for robot 2 in yellow. The
configuration space is 4D, but the picture projects the 4D
space into 2D. The aim of each robot is to simultaneously
reach its individual goal when moved by global inputs.

a) Changing the Number of Nodes: Increasing the
number of RRT nodes increases coverage, as shown in Fig. 3.

b) Changing Step Size: In the RRT algorithm defined
above, at every random sample, the robots are moved by a
fixed step of length Robostep. The aim of this simulation is
to observe how Robostep affects the coverage of the C-space.
The RRT Tree for two robots projected onto 2D dimensions
for five step lengths are shown in Fig. 4. The start and goal
positions of the robots are the same for each experiment. The
grid size is 50×50×50×50. The coverage of this grid as a

Fig. 4. The image represents the effect of step size in RRT on coverage
of the search space. The RRT ran for 0.5 s with step sizes (a) 1, (b) 3, (c)
5, (d) 50, (e) 200 units.
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Fig. 5. Workspace coverage as a function of step size for a tree with 7500
nodes and two robots. Grid size is 50× 50× 50× 50.

function of Robostep is plotted in Fig. 5. Small step lengths
results in a small tree, but too large of step lengths cause
all inputs to terminate in collisions and results in a tree with
poor coverage. The optimal step size was 60 units.

c) Changing Grid Size: In this experiment, the grid
size was changed to observe the effect on the coverage
percentage. The coverage is not actually changing, but each
configuration space voxel is made smaller. The experiment is
performed by changing the grid size to 40, using environment
1. As shown in Fig. 6, the coverage decreases as grid
size decreases. The memory required for the grid increases
exponentially with the number of the robots in the swarm.
As the dimension increases, dividing the map into the grid
becomes computationally complex and time-consuming.

d) Changing the Initial Distance Between Robots: The
initial positions of the robots affects the performance of
the RRT with the same number of nodes and Robostep.
We selected eight initial robot positions (with decreasing
spacing) and measured the effect on coverage, as shown
in Fig 7. We performed 10 trials for each case. Decreasing
the initial separation decreases the RRT coverage. As shown
in Fig. 7 (b) the initial separation of the robots has little
effect until a critical distance, after which the coverage drops
quickly. These experiments indicate that the motion planner
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Fig. 6. Decreasing the grid size decreases the exploration percentage.

could not cover the map area when the robots are initialized
too close together because it must separate the robots to
achieve goal positions that are far apart.

IV. INCREASING COMPLEXITY

This section reports on our RRT planner with more than
two robots, and tests them inside complex environments as
shown in Fig. 1 and 8. The time needed to solve an RRT
increases exponentially with the number of robots. RRT
algorithms generate a large number of nodes that fill the
environment. The generated nodes are independent of the
goal locations. It is therefore possible to reuse a computed
RRT tree if only the goal locations are changed.

To solve the problem for four robots, a dense RRT tree was
computed with 341,997 nodes and Robostep = 5. This tree
was then reused to solve the problem for different locations.
Results of these simulations are show in Fig. 9 and 10.

V. HARDWARE EXPERIMENTS

Magnetic manipulation was used to test the RRT algo-
rithm. The agents manipulated were two cylindrical perma-
nent magnets having a radial magnetization. A workspace
containing obstacles was designed and built using 3D print-
ing (see fig. 12). The bottom of the workspace was filled with
epoxy to produce a smooth flat surface. The epoxy was set
to cure inside the magnetic manipulator to ensure that the
surface is leveled during the experiments. A thin layer of
canola oil was added to facilitate the steering of the agents.

The magnetic manipulator was configured to generate a
magnetic flux density having a magnitude of 3 mT. When the
agents were placed inside the workspace their magnetization
aligned with the applied magnetic field. The magnetic field
was then slowly rotated to move the agents.

Two reference frames were defined (see Fig. 11). The first,
noted xyz, is linked to the workspace. The second reference
frame, noted uvw is linked to the agents and facilitates the
calculation of the magnetic field. Axis u is collinear to the
agent revolution axis and w is collinear to the z axis. Axis
v is situated within the xy plane. The agents performed two
types of movements: rolling and steering.
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Fig. 7. Top: Maps with different initial configurations. The initial distance
between two robots decreases from case 1 to case 8. Bottom: Graph of
percentage coverage for all the cases presented above.

Fig. 8. 2D environment representing the human digestive system.

Fig. 9. Solving environment 3 for four robots.
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Fig. 10. Reusing an RRT generated for four robots.
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Permanent magnetWorkspace
Fig. 11. Schematic drawing of the experimental setup and presentation
of the reference frames used during the magnetic field calculation. The
manipulator has six electromagnets. The electromagnet situated on x+ is
not represented to show the workspace.

a) Rolling Movement: During rolling movements, the
cylinders roll around their revolution axis and change posi-
tion. This movement is accomplished by keeping B within
the vw plane and rotating it around the u axis (rotational
speed ω oriented along the u axis). The equation for B
corresponding to this rotation is shown in (1) where B0 is
the magnitude of the applied flux density and ti is the time
at which the rolling movement begins. Complete rotations
(360 degrees) are always performed. They always start and
end with B inside the uv plane. During the next movement,
steering, the magnetic field is always kept inside the uv plane.
By starting and ending rolling movement with B inside the
uv plane the continuity of B is ensured which produces a
smooth transition between the two types of movements.BuBv

Bw

 =

 0
B0 · cos(ω · t− ti)
B0 · sin(ω · t− ti)

 (1)

b) Steering Movement: During steering movements,
the cylinders rotate around the w axis and change orien-
tation. Steering movements are effectuated before a rolling
movement to orient the revolution axis of the cylinders
perpendicular to the upcoming displacement. To perform the
steering movement, B is kept within the uv plane and rotated
around the w axis (rotational speed Ω oriented along the
w axis). The equation for B corresponding to the steering

movement is shown in eq. 2. θi corresponds to the orientation
of the magnets at the beginning of the movement. This
equation is expressed in the xyz reference frame because the
uvw reference frame in this case rotates with the magnet.BxBy

Bz

 =

B0 · cos(Ω · t− θi)
B0 · sin(Ω · t− θi)

0

 (2)

c) Electromagnets Current Calculation: The method
presented in [20] and [21] was used to compute the current
to apply to the electromagnets to produce the desired flux
density at the center of the workspace. The flux density pro-
duced by an air-core electromagnets is linear with the current
that circulates in it. In addition, the total flux density is the
sum of the flux density produced by each electromagnet.
These properties allow writing linear system (3) where A is
the actuation matrix containing coefficients calculated from
the Biot-Savart law [22] and Ii is the current circulating
in electromagnet i. This system is underdetermined. A least
square pseudo inverse is used to find a solution (see eq. 4) as
this solution minimizes the norm of the current vector and
therefore minimizes Joules losses and heating.

Bxyz =

BxBy
Bz

 = A ·
[
I1 I2 I3 I4 I5 I6

]t
(3)

[
I1 I2 I3 I4 I5 I6

]t
=
(
A> ·A

)−1 ·A> ·Bxyz (4)

d) Magnetic Manipulator: The magnetic manipulator
possesses six electromagnets arranged in a cubic shape. The
electromagnets are placed inside G10 boxes and can be
cooled by liquid Nitrogen [20]. This feature is not used
in this study as the flux density produced is low (3 mT).
The manipulator is powered by twelve Kepco BOP 50-20
power supplies. Each electromagnet is powered by two power
supplies connected in series and can receive a maximum of
20A under 100V. A National Instruments IC31-73 industrial
real-time controller is used to perform the computation of the
currents to generate. A Basler Aca800 camera is mounted
on the top of the workspace to monitor and record the
movements of the agents.

e) Experimental Results: The workspace presented in
Fig. 12 was used to experimentally test the developed algo-
rithm. The obstacles of the workspace have their sides either
oriented vertically or horizontally. The RRT was configured
to only move the robots along these directions to ensure that
the cylindrical magnets collide with the obstacles when their
revolution axis is perpendicular to the walls. If this condition
is not respected, the movements of the robots while in contact
with the walls are unpredictable.

The modified RRT was used to compute the global input.
40,000 nodes were computed and a solution was found. The
magnetic field to apply was then computed and applied to
the workspace.

Fig. 12 shows the position of the robots at different instants
and the trajectory followed. Both robots reach their goal.

© 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org .



Start Positions Goal Positions Obstacles

t=0s

t=30s t=60s

t=90s t=120s t=150s

t=180s t=191s

Robots positions
Robot 1 experimental path
Robot 2 experimental path

10mm

Fig. 12. The workspace used experimentally, the position of the robots at
different times, and the experimental trajectory followed.

VI. CONCLUSION

Motion-planning for a swarm of robots is a challeng-
ing task when all the robots are moving under a global
input and the inputs are not time-reversible. To address
this challenge, we used open source libraries to create an
RRT motion planner. Our code solution is available at
github.com/pjparthjoshi/Swarm-Robots-OMPL.git. We also
studied the effect of varying algorithm parameters on map
coverage, including the movement step size, the number of
RRT nodes, the grid size used to measure coverage, the initial
positions of the robots, and different environments.

The hardware experiment demonstrated the feasibility of
RRT motion planning for radially magnetized cylinders actu-
ated by global inputs. Translating the path planned from the
RRT required proper design of the workspace that allowed
for non-slip rotations and accurate turning. The experiment is
imperfect—the magnets sometimes deviate from the desired
trajectories. Some instances of the experiment were unsuc-
cessful because one of the magnets failed to reach the target
due to an excessive accumulation of error. A solution to this
problem was proposed in [23] for a single robot. Future work
should implement a similar algorithm for multiple robots.

Additional algorithmic adjustments are needed to find a
path that prevents the magnets from coming close enough
to magnetically attract each other. Future works will, in
addition, include different experiments with different shapes
of robots, improving upon map coverage calculation algo-
rithm, increasing the number of robots in the swarm, and
consideration of the dynamics of the robots.
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