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Abstract— This paper investigates strategies for 3D multi-
agent position control using a shared control input and self-
propelled agents. The only control inputs allowed are rotation
commands that rotate all agents by the same rotation matrix.
In the 2D case, only two degrees-of-freedom (DOF) in position
are controllable. We review controllability results in 2D, and
then show that interesting things happen in 3D. We provide
control laws for steering up to nine DOF in position, which
can be mapped in various ways, including to control the x, y, z
position of three agents, make four agents meet, or reduce the
spread of n agents.

I. INTRODUCTION

Interest in swarm robotics in the control and robotics

communities has increased. Compared to highly intelligent

and advanced robots, each agent in a swarm robot system is

inexpensive, easy to manufacture, and suitable to deploy in

large populations [1]. At macro scales, swarm robots such

as micro aerial vehicles and 2D autonomous ground vehicles

have great potential to be applied to sensing, mapping,

localization, surveillance, rescue, etc; at micro scale, agents

such as ferromagnetic microrobots, magnetotactic bacteria,

and catalytic Janus particles are researched for target drug

delivery, non-invasive surgery, micro assembly, etc.

In this paper, we consider a swarm of simple robots

with limited communication capability such that agents are

commanded by a central system, and agent-to-agent infor-

mation exchange is not applicable. The swarm system might

consist of hundreds or thousands of agents, but each agent

receives a copy of the same control input. For example, one

potential application is steering catalytic Janus particles with

uniform magnetic fields. These particles are self-propelled

by a reaction between platinum on the particle and the

liquid the particle swims in. The particles are also magnetic.

The external magnetic field applies a torque that aligns the

magnetic dipole of the particle with the external field. The

results in [2] demonstrated steering an individual particle to

a desired location and demonstrated that multiple particles

could be made to move in different directions when under

the control of a single magnetic field.

Consider a swarm with n agents in free space, with their

headings randomly initialized. The agents are modeled as

self-propelled points that move at a constant velocity along

a thrust vector that is fixed in their local coordinate frame.

A central system controls agents via a broadcast mechanism.

The only control inputs allowed are rotation commands
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Fig. 1. Schematic of self-propelled agent in 2D (A) and in 3D (B). 2D
motion is defined by the offset angle φ of the thrust vector (blue) from the
local coordinate frame, while the 3D motion is defined by angles φ and
ψ. (C) Seven agents with different thrust vector orientations. See video at
https://youtu.be/sSSQgnmjmJw.

that rotate each agent’s local coordinate frame by the same

rotation matrix.

This model is similar to ensemble control systems [3]–

[13]. In these problems an ensemble of nearly identical

agents that differ only in a set of one or more parameters, are

each steered by the same control input. However, the major

challenge in this paper is the constrained control input in

(28), where R(t) needs to be a rotation matrix.

This paper address the 3D position control problem of

a multi-agent system using a shared rotation control input,

including (i) with no state perturbations, simultaneously

steering up to three agents to arbitrary locations; (ii) with

independent rotation perturbations, enabling simultaneously

steering many agents (n > 3) to arbitrary locations. While

boundary interactions could be another method to steer large

populations of agents [14], this paper focuses on simple

agents in free-space that are affected only by their thrust,

local coordinate frames, and the shared control command.

Previous works have addressed control strategies for 3D

multi-agent navigation and planning, for example, [15] dis-

cussed a distributed control scheme based on Navigation

Functions to drive aircraft-like vehicles towards their targets

while avoiding colliding into each other or obstacles; [16]

proposed an acyclic minimally structural persistent graph

based formation control to steer a group of autonomous

agents in 3D space; and in [17], a decentralized 3D formation

control algorithm was developed for a multi-agent system

with unknown dynamics. However, these control schemes

rely on independent control of each agent, which is not



applicable within the scope of this paper.

The key results of the this paper include techniques to

make n agents follow orbits (section III-B), steering a swarm

of agents to arbitrary x, y, z positions, and reducing the

variance of the swarm (sections III-D to III-F). Simulation

code is available at GitHub [18] and Wolfram Demonstration

Projects [19], and the video demo is on Youtube [20].

II. 2D CONTROL OF SELF-PROPELLED AGENTS

We begin our analysis with a 2D version of the broadcast

control problem. Figure 1 shows a schematic of a self-

propelled point robot in 2D (a disk) and 3D (a sphere).

Bretl [21] and Das et al. [22] have discussed the shared

control problem in a 2D plane. Bretl proposed a control law

that directs two agents to meet at the same location simulta-

neously, and with input perturbations. Das demonstrated the

possibility of achieving position consensus for large number

of agents.

Consider n agents in a 2D xy plane: the origin of each

local coordinate frame coincides with the individual center of

mass, and let the local coordinate frame be initially aligned

with the global coordinate frame. The kinematics of the ith

agent is given by

xi(t+ 1) = xi(t) +Rθvi(t), (1)

with xi(t) ∈ R2×1 the position at time t, vi(t) ∈ R2×1 the

thrust vector, and Rθ the shared control command that rotates

the agent along its local z-axis:

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
(2)

Given two self-propelled agents with any initial positions

x1,x2 ∈ R2×1, and thrust vectors v1,v2 ∈ R2×1 (v1 �‖ v2),

they can meet at only one unique location x̂1,2,

x̂1,2 = x2 +
1

2

[
1 tan 2

φ2−φ1

tan −2
φ2−φ1

1

]
(x1 − x2) (3)

where φi = arctan(vi). For n > 2 such agents in a 2D

workspace, there are n(n−1)/2 potential collision locations,

as shown in Fig. 2.

In general, a sequence of commands for shared control

cannot make large number of agents (n > 2) to meet

simultaneously except for some special initial conditions.

If thrust vector perturbations are permitted, Das shows the

possibility of point convergence for all agents in [22].

III. 3D CONTROL OF SELF-PROPELLED AGENTS

The effect of any command sequence for 2D position

control (without perturbations) of self-propelled agents can

be replicated by three commands: an initial rotation along the

local z-axis, a translation, and a final rotation along the local

z-axis. Therefore, the configuration space for these agents’

position is two-dimensional, no matter how many agents are

used. This is because the ending position of each agent is

the result of the same rigid body transformation modulo an

initial rotation. Interestingly, in 3D-space multiple rotation

Fig. 2. The configuration space for self-propelled agents in 2D is in R2.
The potential collision locations are drawn as gray disks determined by the
initial agent location and orientation. The radius of the collision disk is a
function of agent radius and difference in orientation. Right panel shows
a set of control inputs that brings agents 1 and 5 into collision. Online
demonstration available at [19].

and translation operations can be concatenated to control

more than three degrees of freedom.

This work reports on simultaneous 3D position control for

multiple self-propelled agents. Without loss of any generality,

each agent is initialized with different thrust vectors. The

origin of each agent’s coordinate frame is at the agent’s

position, and the x, y, and z axes are aligned with the

global coordinate frame. The agents implement shared ro-

tation commands based on their local coordinate frames. For

simplification, the actuation time for rotations is negligible

compared to the time of translation.

A. Steer one self-propelled agent

To deliver a single self-propelled agent from its initial

position x ∈ R3×1 to a goal location x̂, the agent must be

rotated so that the thrust vector points toward x̂. Let v be the

initial thrust vector defined in the global coordinate frame.

The desired thrust vector can be described as

v̂ =
x̂− x

‖x̂− x‖2 . (4)

First, identify the normal vector k of a plane containing both

v and v̂.

k = v × v̂. (5)

Next, rotate θ about k to align the thrust vector with v̂, where

θ = arccos(v, v̂). (6)

B. Station-keeping (orbits) with multiple agents

The following sections provide control laws for steering

3D agents to goal positions. A preliminary challenge is to

keep multiple agents at given locations. The solution in 2D

is to revolve about the local z-axis at a constant rate, where

the z-axis is perpendicular to the motion plane. The orbital

radius is the thrust velocity divided by the angular frequency:

r = |v|/ω. The faster we revolve, the tighter the orbit. In

three dimensions this technique no longer works.

The position change of the ith agent under a shared

command that rotates θ(t) radians about an axis k is given

by
∫ t

0
Rk,θ(τ)vi dτ. It is easy to show that a rotation about

the x-axis does not, in general, return all agents to the initial



r

(φ, ψ) =

(0.91,-1.2) (2.3,-0.8) (1.4,-0.4) (0.46,-2.8)

(1.8,-0.7)

(0,0) (2.7,1.0)

Fig. 3. (Top) In 2D, revolving about the local z-axis results in circular
orbits for self-propelled agents with orbit radius r = |v|/ω. This is not
generally true in 3D (Bottom). Paths of the seven agents shown in Fig. 1C
when revolving four times around the local x-axis. Single axis rotation does
not return the agents to the origin.

location. As shown in Fig. 3, rotating θ radians at 1 radian

per second about the local x-axis moves the agents to

[θvx, vz(cos θ − 1) + vy sin θ, vy(1− cos θ) + vz sin θ]
�.

After one revolution, each agent has been displaced by

[2πvx, 0, 0], and any agent with a non-zero vx has followed a

helical trajectory. Self-propelled agents with positive vx will

have moved in the positive x direction, and the others in the

negative x.

A solution that returns all self-propelled agents to their

initial positions is given by eight revolutions that toggle be-

tween revolving about the local x and y-axes. All revolutions

proceed at a constant angular velocity and, as in 2D, the

maximum deviation scales linearly with the inverse of the

angular velocity:

Rx,πRy,−πRx,−πRy,πRx,−πRy,πRx,πRy,−π = I3. (7)

All x, y, z subscripts for any rotation R refer to the current

local x, y, z-axes in the following sections. The positions for

an agent initially at the origin after each rotation are

θ̇−1

(⎡
⎣ πvx
−2vz
2vy

⎤
⎦,
⎡
⎣ πvx + 2vz
−πvy − 2vz
2vx + 2vy

⎤
⎦,
⎡
⎣ 2vz

−πvy
2vx + 4vy

⎤
⎦,
⎡
⎣ 0

0
4vx + 4vy

⎤
⎦,

⎡
⎣ πvx

2vz
4vx + 2vy

⎤
⎦,
⎡
⎣ πvx − 2vz
−πvy + 2vz
2vx + 2vy

⎤
⎦,
⎡
⎣−2vz
−πvy
2vx

⎤
⎦,
⎡
⎣00
0

⎤
⎦
)

(8)

Trajectories of this input sequence are shown in Fig. 4.

C. Simultaneous Position Control

For a system of n ≥ 2 arbitrary self-propelled agents in a

3D free-space, there are 6n DOF: the position vectors xi ∈
R3×1 and the thrust vectors vi ∈ R3×1. This work provides

both open-loop and closed-loop algorithms to control up to

nine DOF in positions with no state perturbations.

For ease of exposition, the shared controller only uses

Rx,θx and Ry,θy as rotation primitives to control the thrust

vector heading, because any 3D rotations Rk,θ about a local

axis k can be represented by a series of rotations about the

current local x, y, and x axis:

Rk,θ = Rx,θ1Ry,θ2Rx,θ3 . (9)

If the shared command steers agents to rotate θx about the

current local x-axis, the corresponding rotation matrix and

Fig. 4. Periodic orbits of the seven agents shown in Fig. 1C, under the
open-loop input (7). The agents and current thrust arrows are redrawn at
ti = kπ.

resultant thrust orientations in the global coordinate frame

are

Rx,θx =

⎡
⎣ 1 0 0

0 cos θx sin θx
0 − sin θx cos θx

⎤
⎦ , (10)

v̂i = Rx,θxvi, (11)

where the subscripts x, θx in Rx,θx denote the local x-axis

and rotation angle. If the next command is to rotates θy about

the current local y-axis, the corresponding rotation matrix

and thrust orientations in the global coordinate frame are

Ry,θy =

⎡
⎣ cos θy 0 − sin θy

0 1 0
sin θy 0 cos θy

⎤
⎦ , (12)

v̂i = Rx,θxRy,θyvi. (13)

These rotations are performed about the current local x or

y-axis instead of the fixed global coordinate frame, and both

(11) and (13) give a thrust vector v̂i defined in the global

frame.

Each rotation is followed by a translation motion. To

simplify the derivation, the time required for any rotation

is assumed to be negligible compared to the translation

actuation time.

In 3D space multiple self-propelled agents cannot be

driven to arbitrary goal locations x̂1, ..., x̂n ∈ R3×1 with one

rotation and translation. However, concatenating the rotation

operations (10) and (12) followed by translations enables

controlling additional DOF.

This can be written in matrix form as⎡
⎢⎣

Δx1

...

Δxn

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

R1v1 R2v1 · · · RNv1

R1v2 R2v2 · · · RNv2

...
...

...
...

R1vn R2vn · · · RNvn

⎤
⎥⎥⎥⎦ t = Rvt

(14)

with Δxi = x̂i − xi, Rj = Rx,θ1Ry,θ2 · · ·Rx,θj , Rj+1 =
RjRy,θj+1

, and t = [t1, t2, · · · , tN ]�. If all Rj and t are



unknown, solving (14) directly is computationally intensive.
Instead, randomly generating the N angles is computation-
ally cheap and works well in simulation, though methods
shown later can outperform this.

Given the N rotation angles, ∆xi, and vi, where i ∈
{1, 2, · · · , n}, the goal is to choose t for (14) that minimizes
‖t‖1 with tj ≥ 0, ∀j ∈ [1, N ].

Any three independent vectors in R3×1 forms a basis
for the 3D space. Without loss of generality, assume that
v1,v2,v3 in Rv (14) are independent and all vi are unique.
So any vi of Rv can be expressed as a linear combination
of v1,v2,v3

vi = λi,1v1 + λi,2v2 + λi,3v3, (15)

where λi,1, λi,2, λi,3 ∈ R. Recall that row 3i − 2 to row 3i
in Rv has the form

Rv(3i− 2 : 3i, ∗) = [R1vi R2vi · · · RNvi], (16)

where vi ∈ R3×1. Substitute vi with (15),

Rv(3i− 2 : 3i, ∗) = λi,1[R1v1 R2v1 · · · RNv1]
+ λi,2[R1v2 R2v2 · · · RNv2]
+ λi,3[R1v3 R2v3 · · · RNv3]

which indicates that any row of Rv is a linear combination
of its first nine rows. So the row rank of Rv is at most nine.

Recall that column j in Rv has the form

Rv(∗, j) =


Rjv1

Rjv2

...
Rjvn

 (17)

Assuming there are at most k independent columns of Rv ,
without loss of generality, let Rv(∗, 1 : k) be these columns.
Hence, Rv(∗, j) can be expressed as

Rv(∗, j) = lj,1Rv(∗, 1) + lj,2Rv(∗, 2) + · · ·+ lj,kRv(∗, k)
Rjv1

Rjv2

...
Rjvn

 =


(lj,1R1 + lj,2R2 + · · ·+ lj,kRk)v1

(lj,1R1 + lj,2R2 + · · ·+ lj,kRk)v2

...
(lj,1R1 + lj,2R2 + · · ·+ lj,kRk)vn


That is, ∀i ∈ {1, 2, . . . , n}

(lj,1R1 + lj,2R2 + · · ·+ lj,kRk −Rj)vi = 03×1 (18)

Therefore

lj,1R1 + lj,2R2 + · · ·+ lj,kRk = Rj (19)

We write Rk as

Rk =

 rk,11 rk,12 rk,13

rk,21 rk,22 rk,23

rk,31 rk,32 rk,33

 , (20)

and let rk = [rk,11, rk,12, rk,13, · · · , rk,31, rk,32, rk,33]>,
lj = [lj,1, lj,2, · · · , lj,k]>. Then (19) can be written as

[ r1 r2 · · · rk ]lj = rj . (21)

To have a unique solution to lj , [r1, r2, · · · , rk] needs to be
invertible, that is, k = 9. We can conclude that the column
rank of Rv is at most nine. Because the maximum rank of
Rv is nine, n ≤ 3 self-propelled agents can be steered to
arbitrary goal locations, and only if these agents have linearly
independent initial thrust vectors.

Only nine of 3n DOF can be manipulated if n > 3. A
special case is to make four agents to meet simultaneously.
There is a unique position x̂ where four such agents can
meet.

x̂ = x1 +
N∑
i=1

Riv1ti = x2 +
N∑
i=1

Riv2ti

= x3 +
N∑
i=1

Riv3ti = x4 +
N∑
i=1

Riv4ti

(22)

Let Rt =
N∑
i=1

Riti,

x1 − x2 = Rt(v2 − v1)
x2 − x3 = Rt(v3 − v2)
x3 − x4 = Rt(v4 − v3)

(23)

Flatten Rt as a vector rt. Rewrite the right side of (23) as x1 − x2

x2 − x3

x3 − x4

 =

 RΛ(v2,v1)
RΛ(v3,v2)
RΛ(v4,v3)

 rt = RΛvrt. (24)

where

RΛ(vi,vj) =

 v>i − v>j 01×3 01×3

01×3 v>i − v>j 01×3

01×3 01×3 v>i − v>j

 (25)

So rt (i.e., Rt) has a unique solution if and only if RΛv is
invertible. Hence we can derive the meeting point

x̂ = x1 +Rtv1. (26)

D. Open-loop control using linear programming

One way to solve (14) is via linear programming. The
objective is to find a vector t such that the total control time
‖t‖1 is minimized subject to (14) with n = 3.

min
N∑
j=1

tj , s. t. tj ≥ 0, j = 1, ..., N andR1v1 R2v1 . . . RNv1

R1v2 R2v2 . . . RNv2

R1v3 R2v3 . . . RNv3

 t =

∆x1

∆x2

∆x3

 (27)

where the initial thrust vectors are linearly independent.
Because the tj must be nonnegative, the number of rotation
matrices (N ) should be much greater than nine, as shown in
Fig. 7a.

E. Feedback control

Let the state space representation of n such agents be[
ẋ1 · · · ẋn

]
= R(t)

[
v1 · · · vn

]
. (28)

where xi denotes position of the ith agents, vi describes the
initial thrust vector, and R(t) is the shared control input. We



Fig. 5. Open-loop control simulations using linear programming. The left
figure has two self-propelled agents, and the right figure has three agents.
The goal locations are indicated by green orbits. In each figure, all spheres
move the same total distance and reach the goal location at the same time.
A colored line describes the trajectory of each sphere. Black arrows indicate
the local coordinate frame z-axis for the subsequent move.

construct an objective function based on the sum of squared

Euclidean distance error

V (t) =
1

2

n∑
i=1

(x̂i − xi(t))
�
(x̂i − xi(t)) , (29)

where x̂i is the ith goal location. We hold R(t) constant

for time interval [tk, tk + τk), such that τk minimizes the

convex objective function. Consider the first-order necessary

condition:

V̇ (tk + τk) =
d

dτk
V (tk + τk) = 0,

−
n∑

i=1

(x̂i − xi(tk)− τkR(tk)vi))
�R(tk)vi = 0,

(30)

and thus τk =

n∑
i=1

(x̂i − xi(tk))
�R(tk)vi

n∑
i=1

‖R(tk)vi‖22
. (31)

Note that the time interval τk must be non-negative, so if

there exists an R(tk) such that τk > 0, then
∫ tk+τk
tk

V̇ (t)dt <
0, and the total distance error decreases monotonically with

time; otherwise, the objective function has reached the min-

imum. Thus the system kinematics can also be written as

xi(tk+1) = xi(tk) +R(tk)viτk. (32)

F. Greedy optimal control

We discussed the optimal actuation time to minimize the

objective function V (t) with a constant rotation matrix R(t)
within time interval [t, t + τk). By carefully choosing this

R(t), the objective function follows the steepest gradient

during each time interval:

R(tk) = argmin
αk,βk,γk

V̇ (tk), (33)

with R(tk) a function of rotation angles αk, βk, and γk

R(tk) = R(tk−1)Rx,αk
Ry,βk

Rx,γk
. (34)

This indicates that at tk, each agent implements the shared

rotation control R(tk) which is equivalent to rotating αk

about the current local x-axis, then βk about the current y-

axis, and finally rotating γk about the current x-axis.

(a) (b)

x: -6.105
y: -30.66
z: 10.15

(c) (d)

Fig. 6. Simulations of self-propelled agents using greedy optimal
control. All agents reach the goal location at the same time. Colored lines
describe the trajectories of each agent. (a) Three agents reach arbitrary goal
locations simultaneously. (b) The corresponding objective function plot with
simulation time. (c) Four agents move towards their mean position till they
meet. (d) The corresponding objective function plot with simulation time.

G. Control with state perturbations

Under ideal conditions, agent motions are assumed to be

perfectly implemented without errors. Up to four agents can

be steered to meet simultaneously with a shared control

input. In general, for n > 4 agents, the objective function

reaches a local minimum, and the shared control cannot bring

all agents to their target locations simultaneously.

In practice, agent rotations and translations may not be

precise due to process noise and measurement noise. Inspired

by the 2D results in [22], it is possible to escape local

minima in 3D, if we relax previous assumptions and assume

agents are subjected to independent random disturbances on

their thrust vectors after each translation. In the following

we show that there always exist disturbances that enable

steering the agents closer to their goal. In simulation, we

show that randomly perturbing each agent’s thrust vector

enables convergence.

Section III-E shows that τk ≤ 0 if the objective function

reaches a local minimum, and according to 31,

n∑
i=1

(x̂i − xi(tk))
�vi(tk) ≤ 0. (35)

where R(tk)vi is replaced by vi(tk). Let δi(tk) ∈ R3 be a

perturbation of the ith thrust vector, such that the perturbed

thrust vector v′
i(tk) ‖ (x̂i − xi(tk))

�, where

v′
i(tk) =

vi(tk) + δi(tk)

‖vi(tk) + δi(tk)‖2 ‖vi(tk)‖2. (36)

Therefore
n∑

i=1

(x̂i − xi(tk))
�v′

i(tk) > 0 (37)



(a) (b) (c) (d)

Fig. 7. Representative parameter optimization for controlling three self-propelled agents in 3D. (a) In open-loop control with linear programming, path
lengths decrease monotonically with the number of rotation matrices N . (b) Performance comparison of feedback control using random rotation matrices,
linear programming and greedy optimal control. (c) Greedy optimal control with or without position noises. The solid lines (with noises) are the average
results of 50 simulations, and the shaded areas represent the corresponding standard deviation. (d) Control of ten agents given the same initial conditions,
with or without thrust vector perturbations. The blue line (with perturbations) is the average results of 50 simulations, and the shaded area represents the
corresponding standard deviation. The greedy optimal control without perturbations gets trapped in a local minimum (red line).

except for the case that the total position error is 0.
This example proves the existence of a perturbation that

makes the objective function monotonically decreasing, even
if the system is in a local minimum. In this paper’s simu-
lations, the thrust vector perturbations are sampled from a
zero-mean normal distribution.

IV. CONTROL SIMULATIONS OF
SELF-PROPELLED SPHERES

In this section, we show the controllability for self-
propelled agents in 3D free-space, including steering up to
three spheres to arbitrary goals with a shared open-loop con-
trol (linear programming) and a shared closed-loop control,
and control of four agents to meet. With perturbations on
thrust vectors, we show the capability of driving ten agents
to the origin.

In Figure 5, open-loop control with linear programming
is implemented with up to three self-propelled agents and
drives them to arbitrary goals. According to section III-D,
N angles are randomly generated to provide a large number
of rotation matrix candidates, but linear programming selects
Nk among N (Nk � N ) matrices to apply actuation and
steer the spheres to goal locations. In the simulation, a ro-
tation matrix could be generated by R(t) = Rx,αRy,βRx,γ ,
where α, β, γ ∈ [0, 2π]. N is set to 200, and usually Nk = 9.
Figure 7a shows that N can affect the performance of linear
programming: if N is small, the provided paths to goals
might be much longer than the optimal solution. The total
path length decreases monotonically with N . The total path
length has little change when N ≥ 200.

Section III-E introduced a closed-loop control law such
that a rotation matrix R(t) is held constant for each actuation
time interval τk. Aptly choosing each τk, the cost function
decreases monotonically along the trajectory. In simulation,
R(t) is generated with the following methods: (i) random
angle generation, (ii) using the Nk rotation matrices selected
by linear programming, and (iii) minimizing V̇ (t) in (30)
with respect to αk, βk, γk. Figure 6 shows the trajectories of
greedy optimal control with 3 and 4 agents using method
(iii). Not all αk, βk, γk must be non-zero values. For exam-
ple, we could let αk, βk = 0, or αk, γk = 0, or γk = 0 for

greedy optimal control. For more simulation results, please
refer to the repository on GitHub [18].

A performance comparison of the above three methods is
shown in Figure 7b, which indicates that methods (ii) and
(iii) have competitive performance, while method (i) takes
about twice as long to converge.

Section III-C showed we can control up to nine DOF
with no state perturbations. Figure 6 gives two examples of
controlling up to four self-propelled agents: steering three
agents to predefined goal locations, and moving four spheres
to their mean positions, as shown in (26).

When thrust vector perturbations are considered, the
shared control is capable of moving out of local minima
and bringing many agents (n > 4) to arbitrary locations, as
shown in Figure 7d. In addition, the influence of position
noises are compared in Figure 7c.

V. CONCLUSIONS

This paper proved limitations on control for self-propelled
agents that all receive the same rotation commands, but
extended the existing literature which focused on two di-
mensional results to show that nine degrees-of-freedom of
position can be controlled. In 2D only one agent can be
steered to an arbitrary position, and two agents have only
one possible meeting point. In 3D up to three agents may be
steered to arbitrary positions, and four agents have only one
possible meeting point.

There are many avenues for future work. These include
optimal control results and analytical solutions to the optimal
rotations for the controllers in section III. In particular, we
would like to calculate the meeting location for two spheres
that requires the shortest control sequence. This problem is
trivial in 2D, but potentially hard in 3D.

These controllers have potential insights for real-world
systems that are self-propelled and can be steered by the
orientation of a global field. The size of micro-scale robots
makes it difficult to include onboard computation, so they are
often steered by external fields. Examples include steering
magnetized single-celled organisms [23]–[26], magnetotactic
bacteria [27]–[30] and catalytic Janus particles with magnetic
cores [2], [31]–[33].
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