
On Designing 2D Discrete Workspaces

to Sort or Classify 2D Polyominoes

Phillip Keldenich1, Sheryl Manzoor2, Li Huang2, Dominik Krupke1, Arne Schmidt1,

Sándor P. Fekete1, and Aaron T. Becker2

Abstract— The paper studies the general problem of physi-
cally sorting according to shape a polyomino, a 2D structure
composed of square tiles joined along edges, using a 2D, rigid,
grid-based workspace. The workspace is designed for sensorless
operation, using a fixed set of open-loop force-field inputs that
move a polyomino from an inlet port, deliver the polyomino
to an outlet port that corresponds to the polyomino’s shape,
and reset the workspace to classify the next polyomino. This
paper proves that static workspaces can classify all orthoconvex
polyominoes of width w and height h, and provides a motion
sequence and size of workspace required for the workspace as
a function of w and h. By allowing moving polyomino cams
that assist in the sorting, we can design dynamic workspaces
that call sort all polyominoes that are “completely filled”. Hard-
ware experiments using magnetic and gravity-based actuation
demonstrate these static and dynamic sensorless classifiers at
the millimeter scale.

I. INTRODUCTION

While macro-scale assembly typically involves precision

manipulators and many actuators, assembly at small scales

often relies on self-assembly and the influence of global

external conditions, such as the temperature of a vessel, the

addition of a catalyst, or turning on a magnetic field.

Inspired by this paradigm, we have investigated techniques

that generate multiple copies of desired polyominos using a

series of actuations that move every tile in the workspace in

the same direction until halted by an obstacle. A polyomino

is a 2D structure composed of square tiles joined along edges.

Our model assumes individual tiles that stick together when

brought in contact. Recent experimental work by Manzoor

et al. [1] demonstrated this actuation with 300 µm alginate

particles, using external magnetic fields to sequentially attach

particles to an existing subassembly. Becker et al. [2] showed

that the decision problem of whether a simple polyomino

can be built or not is solvable in polynomial time. However,

errors can occur during the assembly process. Because the

assembly sequence is performed in open-loop, these errors

propagate, even to the point of plugging the workspace and

disabling further construction.

To address this challenge this paper studies the general

problem of physically sorting a polyomino according to

shape using open-loop actuation.

1Department of Computer Science, TU Braunschweig, Germany.
{p.keldenich, d.krupke, arne.schmidt, s.fekete}@tu-bs.de

2Department of Electrical and Computer Engineering, University of
Houston, USA. {atbecker, smanzoor2}@uh.edu. Work from these authors
were partially supported by National Science Foundation IIS-1553063 and
IIS-1619278.

Inlet

1x1

2x1

1x2

3x1

1x3

‘L’

10 mm

Fig. 1. A 2D workspace designed to sort all polyominos with 1, 2, or 3
tiles into bins that correspond to shape.

II. RELATED WORK

Error detection and shape recognition is a fundamental

skill at many size scales in biology, from error detection in

DNA strands to how antibodies bind to a specific shape of

antigen. Similar skills are used for industrial processes that

de-stone and clean grains and that sort the grains into grades

TODO: cite paper or online video. While these traditionally

use sieves of various sizes and blowing air, machine vision

is being increasingly used. Similar processes are used to

process minerals.

Sensorless manipulation has a rich history in robotics.

Peshkin introduced a framework for designing stationary

fences along a conveyor belt to align objects [3]. Early work

by Akella et al. demonstrated using a single-joint robot arm

mounted above a moving conveyor belt to position and orient

planar parts [4]. Recent work by Zhang et al. [5] uses the

same model of global controls and grid-based obstacles as

this paper, and shows there exists a workspace a constant

factor larger than the number of agents that enables efficient,

arbitrary rearrangement for a rectangle of agents.

III. MODEL

This paper analyzes two problems: sorting and error

detection. In both problems, we are constructing a workspace

that is represented as polyomino with holes. The exterior

of this workspace consists of rigid (immovable) obstacles.

The interior of a workspace contains one or more mobile

polyominos that can be moved in one of the directions d ∈
{�, �,�,�} using global controls. A control d concurrently



moves all mobile objects in the specified direction until they

become blocked. A mobile object is blocked if it is adjacent

to a rigid obstacle or another blocked polyomino in the

direction of motion. Friction does not influence the behavior

of our mobile objects and the objects do not change their

orientation.

In the sorting problem, we are given a family F of

input polyominos; we know in advance that only polyominos

from this family need to be considered. The goal is to

compute a workspace W and a global control sequence

σ ∈ {�, �,�,�}∗ that distinguishes the objects of F from

each other in the following sense. The workspace W must

contain a designated input region where a polyomino from

F is entering the workspace, and one output region for each

polyomino P ∈ F . These regions must be pairwise non-

intersecting. Applying σ to the workspace must move any

polyomino P ∈ F from the input region to its corresponding

output region without entering any other output region in the

process.

In the error detection problem, we are given a polyomino

P . The goal is to compute a workspace W and a global con-

trol sequence σ that determines whether the input polyomino

is correct, i.e., equal to P , or incorrect. We assume that

incorrect polyominos are not wider or higher than P ; filtering

polyominos by height and width is straightforward. Similar

to the situation for the sorting problem, the workspace W

must contain a designated input region where a polyomino is

placed, as well as accepting and rejecting output regions for

correct and incorrect polyominos. If P is placed in the input

region, it must be moved to an accepting output region; other

polyominos must be moved to a rejecting output region. A

general limitation of our approach is that we cannot detect

holes in polyominos; therefore, we do not consider errors

where an object that should be solid has a hole. Depending on

the situation, we want to optimize the constructed workspace

according to the criteria sorting speed, i.e., length of the

sorting sequence, and workspace size, i.e., the dimensions of

the workspace.

IV. STATIC WORKSPACES

In this section, we consider static workspaces that consist

only of rigid obstacles. The only mobile object in a static

workspace is the input polyomino that is currently being

sorted. On the positive side, static workspaces are relatively

simple and robust. On the other hand, there are limits to what

kind of polyominos can be sorted using static workspaces.

For instance, it is impossible to decide the depth of a dent;

see Fig. 2.

Definition 1. A dent of depth d in a polyomino P is a column

or row of d > 0 consecutive pixels not belonging to P , where

the first pixel is adjacent to exactly three pixels of P and all

remaining pixels are adjacent to exactly two pixels of P .

An important family of polyominos that do not have dents

are orthoconvex polyominos. For these polyominos, we can

show that static workspaces suffice for sorting and error

detection.

Fig. 2. Two polyominos with a (vertical) dent of depth 1 (left)
and 2 (middle). Static workspaces cannot distinguish these polyominos.
Introducing a difference between the top-left corners of the polyominos can
only be done by moving the polyominos downwards onto a rigid obstacle
(right). However, the only move that can be done after such a downward
move is an upward move, leaving both polyominos in the same position.

constant

constant

constant
constant

monotonic

monotonicmonotonic

monotonic

Fig. 3. Decomposition of the boundary of an orthoconvex polyomino.

Theorem 1. Families F of orthoconvex polyominos of width

w and height h can be sorted with a sorting sequence

of length O(min(|F|, w + h)) and a static workspace of

size O(|F|wh) × O(|F|wh). For orthoconvex polyominos,

error detection can be done with a static workspace of

size O(w(w + h))×O(h(w + h)) and sequences of length

O(w + h).

Proof. The proof is based on the following ideas. We can

subdivide the boundary of any orthoconvex polyomino into

four monotonic and four constant pieces as depicted in Fig. 3.

We can use a gadget such as depicted in Fig. 4 to classify a

polyomino based on the positions of the transition between

monotonic and constant pieces. To classify polyominos for

which these positions are identical, we can test each row

and column of the monotonic pieces individually; this can

be done in constantly many steps per row and column. For

error detection, we must also check that the polyomino is

orthoconvex; this can be done by checking each individual

Fig. 4. Applying the control sequence ����� classifies a polyomino based
on the row of the top end of the rightmost constant piece of the boundary.



Fig. 5. A family of orthoconvex polyominos that require linear time to
sort in static workspaces can be created by removing single tiles from a
staircase polyomino (left).

row and column in total time O(w + h) with a workspace

of dimensions O(w(
√
w +

√
h))×O(h(

√
w +

√
h)).

Moreover we can show that we cannot hope to sort

orthoconvex polyominos with fewer than Ω(min(w+h,F))
moves in static workspaces. In other words, static workspaces

cannot sort orthoconvex polyominos in sublinear time. Thus,

the sequence length required by the technique described in

Theorem 1 is asymptotically optimal in the worst case.

Theorem 2. For every n ∈ N, there is a family Gn of

n orthoconvex polyominos of size O(n) × O(n) for which

sorting requires Ω(n) moves in any static workspace.

Proof. The family Gn can be constructed as follows; see

Fig. 5 for an example. Starting with a staircase polyomino

of width n+2, each family member Gi ∈ Gn, 2 ≤ i ≤ n+1 is

constructed by removing the ith tile from the diagonal of the

staircase. Because the top and left side of all polyominos in

Gn are identical, only right and down moves can differentiate

between the polyominos. Let W be a workspace and σ =
σ1σ2 . . . be a control sequence sorting Gn. We consider

applying σ to n copies Wi of W in parallel; to obtain Wi,

we place Gi in W ’s input region. Let (xi
j , y

i
j) be the position

of the top-left corner of Gi in Wi after applying the first j

steps of σ. Let Sj be the size of the largest set Hj ⊆ Gn of

objects Gi for which (xi
j , y

i
j) are equal. Because the initial

position of all objects is identical, we have S0 = n. We

prove that |σ| ≥ n by proving Sj+1 ≥ Sj − 1, i.e., in one

step, we can only differentiate one element from the others.

If σj+1 ∈ {�,�}, Sj+1 ≥ Sj . If σj+1 = �, at most one

object can be differentiated from the others by becoming

blocked one unit later than the others by an obstacle in

the column where it has no diagonal tile. Placing such an

obstacle in more than one column results in all objects being

blocked at the same position. The situation is analogous for

σj+1 = �.

We also consider the following more general class of

polyominos.

Definition 2. A polyomino is called completely filled iff it

consists of all tiles that are below its upper envelope, above

its lower envelope, right of its left envelope and left of its

right envelope. The (lower) base line of a completely filled

polyomino is the horizontal line through its lowest points;

see Fig. 6.

Because these polyominos can have dents, static

workspaces are not sufficient to sort or error detect every

family of completely filled polyominos. However, we can

prove the following result that allows us to efficiently decide

0 1 2 3 1 0
Fig. 6. A completely filled polyomino, its lower envelope and base line
and the distance between base line and envelope.

whether sorting and error detection can be done using static

workspaces for a given completely filled polyomino.

Theorem 3. A family F of completely filled polyominos can

be sorted iff no pair of polyominos in F differs only by the

depth of a dent. Error detection using static workspaces can

be done for any completely filled polyomino P iff P does

not have a dent for which an error could change the depth.

V. DYNAMIC WORKSPACES

Dynamic workspaces are composed of rigid obstacles that

do not move and moving cams. Cams are affected by the

global controls in the same manner that input polyominos

are. However, they must not enter the input region or any

output region. Moreover, we require the sorting or error

reporting process to be repeatable; i.e., applying our control

sequence must return the workspace to a state that can

be used to sort the next incoming polyomino. Dynamic

workspaces are considerably more powerful than static ones

with respect to sortable objects, workspace size, and sorting

speed.

Theorem 4. Dynamic workspaces can sort any family F of

polyominos of width up to w and height up to h that are

completely filled with a sorting sequence of constant length

and a workspace of dimensions O(|F| ·wh)×O(|F| ·wh).
Proof. In the following, we describe how to construct

a workspace that sorts a given family F of completely

filled polyominos with a control sequence of constant

length. You can get an intuition of the construction

using our interactive visualization applet on https://

www.ibr.cs.tu-bs.de/projects/tilt-sort/

tilt-sort-dynamic-construction.html In a

first step, our procedure groups the polyominos from F
according to their height and width; we handle each group

separately. Therefore we assume in the following that all

polyominos have the same width w and height h. Our

sorting procedure checks the left, right, lower and upper

envelope separately. For each envelope, constantly many

operations are required; therefore, the entire procedure only

requires constantly many operations. The main idea of

sorting the lower envelope is as follows; the construction for

the other envelopes is analogous. We use a set of pins, one

for each column of the polyomino. To sort a polyomino,

the pins are pushed against the polyomino from below. The

pins consist of several stages, each stage corresponding to

a certain envelope to be tested for. If the envelope matches,

https://www.ibr.cs.tu-bs.de/projects/tilt-sort/tilt-sort-dynamic-construction.html
https://www.ibr.cs.tu-bs.de/projects/tilt-sort/tilt-sort-dynamic-construction.html
https://www.ibr.cs.tu-bs.de/projects/tilt-sort/tilt-sort-dynamic-construction.html


a set of interlocking cams called plug unlocks and can be

moved to the right, thereby extending a barrier that we

then use to move the polyomino to the right position. Refer

to Fig. 7 for an example of the construction.

In the following, we describe the construction in more

detail. Firstly, our construction requires a distance of three

between successive columns; therefore, as a first technical

step, we use one expansion cam per column as depicted

in Fig. 7 to introduce additional horizontal space. These

cams can move up and down independently of each other;

therefore, they copy the lower envelope of the polyomino

they are pushed up against. This requires O(wh) space,

because there must be a vertical distance of at least h

between the horizontal parts of each expansion cam to allow

them to move vertically without influencing each other.

Below the expansion cams, there is one stage for each lower

envelope E in F . At the top of each stage, there is a vertical

driver cam for each column of the polyomino. Let dj be

the distance between the lower envelope and base line in

column j, and let d′j be the distance between lower envelope

and base line in column j in the previous stage or 0 for the

first stage. Note that due to the polyomino having height h,

for at least one j we have dj = 0. The driver in column

j has height 3h + dj − d′j . When we push all columns up

against the polyomino, this ensures that the lower ends of

all drivers are at the same height iff its lower envelope is E.

We prevent any horizontal motion of the drivers using rigid

obstacles placed between the stages. Below the drivers of

each stage we place the plug of the stage. The plug consists

of one interlocking cam of width 3 for each column; see

Fig. 8 for its dimensions. The parts of each plug can move

vertically according to the lower envelope of the polyomino

without blocking each other. However, if one of the cams is

blocked w.r.t. motion to the right, it blocks all other cams.

Let y⊤, y⊥ be the topmost and bottommost row of the plug

if the polyomino has lower envelope E. On the right side of

each stage, there is a vertical wall of rigid obstacles with a

window from y⊥ to y⊤. On the left side of each stage, we add

a vertical wall of rigid obstacles with windows of height one

at y⊥ and y⊤ and two horizontal barriers extending through

these windows. The barriers are long horizontal cams that are

fixed at their left end as depicted in Fig. 7 and cannot move

vertically; they can only move to the right if the interlocking

cams are all at the same, correct height for the current stage,

i.e., if the polyomino has lower envelope E. In this case,

the plug can move to the right into a pocket, preventing any

motion other than to the left. The barriers move to the right

with the plug, blocking a corridor that the polyomino travels

through; their left end stays left of the left wall of the stages,

ensuring that the construction can be reset by a move to the

left. Below the last stage, there is one more group of drivers

that are held in place by narrow vertical pockets; see Fig. 7.

Theorem 5. For any completely filled polyomino P , errors

that change any of the four envelopes can be detected

in constant time; thus, for orthoconvex polyominos, error

detection can be done in constant time. Checking for other

errors can be done in time linear in the perimeter of P , which

is in O(wh); this is asymptotically optimal in the worst case.

Proof. To perform error checking for a given completely

filled polyomino, we have to make sure that there are no

missing tiles along the boundary of the polyomino. The

envelope of a completely filled polyomino can be error-

checked in constant time, analogous to the construction in the

sorting case. In the following, we prove that error-checking

the remainder of the boundary requires Ω(wh) moves in the

worst case. To prove this, we consider comb polyominos with

Ω(w) teeth of width five separated by gaps of width one; see

Fig. 9. Consider a pixel that is part of the right boundary of

a tooth and at least three units away from the upper and

lower end of the tooth. In order to verify that this pixel is

actually present in the given polyomino P , at some point,

there has to be a probe of size 1 × 1 to the right of this

pixel. This probe can either be a rigid obstacle or a cam; if

it is a rigid obstacle, for some point in time where the probe

is present, there must not be any other obstacle restricting

the movement of P to the right. In particular, we can only

check one pixel on the right boundary of a tooth at each

point in time. Therefore to use o(wh) moves to error-check

P , we have to use a cam for at least one pixel on the right

boundary of a tooth. However, it is impossible to do this in

general, because there are errors that can trap any cam of

size 1× 1; see Fig. 9.

VI. TRADEOFFS

A. sorting vs. error-detection

Sorting polyominos by type becomes unfeasible because

the number of polyominos as a function of the number

of tiles n grows rapidly. The asymptotic growth of the

number of polyominos was estimated by The complexity of

error detection for an n tile polyomino is a function of the

perimeter, which grows at ?

The problem can be simplified if we assume polyominos

are generated by assembly steps that combine two polyomi-

nos

B. Pipelining

VII. EXPERIMENTAL DEMONSTRATION

We demonstrated tilt sorting and error detection at the milli

scale using a customized setup which generates a uniform

magnetic field to keep the parts aligned in the commanded

direction and gravity is used to manipulate the parts.

a) Experimental Platform: The customized electro-

magnetic system in Fig. 10 has two pairs of coils (18

AWG, 1200 turns, Custom Coils, Inc) arranged orthogonally

and powered by four SyRen10-25 motor drivers. Tekpower

HY3020E is used as DC power supply. The system can

generate up to 101 Gauss uniform fields on the horizontal

plane of the workspace center. The coil current was con-

trolled using Arduino Mega 2560. Each workspace used to

demonstrate tilt sorting and error detection is designed in

AutoCAD and then cut using a Universal Laser Cutter. Two



Input

out 1 out 2 errors

Stage 1 Stage 2

u
p

p
er

 b
a

rr
ie

r

lo
w

er
 b

a
rr

ie
r

u
p

p
er

 b
a

rr
ie

r

lo
w

er
 b

a
rr

ie
r

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Plug 1 Plug 2

bottom drivers

sh
ea

r 
li

n
e

sh
ea

r 
li

n
e

d
ri

v
er

s 
1

d
ri

v
er

s 
2

springs

Fig. 7. Example of our construction that classifies polyominos based on their right envelope. Using the control sequence ������� moves the red
polyomino P (bottom left) out of an exit at the top depending on its right envelope. Afterwards, the sequence ���� resets the cams in the workspace to
their initial state. The right envelope of P matches the second stage and is moved to the corresponding exit (top center); the first stage is matched by a
6× 3-rectangle, matching polyominos leave through the first exit (top left). Any polyominos with other envelopes leave through the last exit (top right).

︸ ︷︷ ︸

2h

︸︷︷︸

2h

︸︷︷︸

2h

︸︷︷︸

1

︸ ︷︷ ︸

4h+ 2

︸
︷
︷
︸1

︸︷︷︸

8h+ 4

Fig. 8. Dimensions of interlocking cams used in our construction; each
stage contains one of these cams for each column of the polyomino.

layers of transparent acrylic are glued together to make a

workspace. One layer of 2 mm thickness is used as the base

and another 5.5 mm thick layer makes the obstacle boundary.

To perform an experiment, the workspace was placed in

the center of the magnetic platform and observed with a

IEEE 1394 camera, captured at 60 fps . The parts used for

the experiments are comprised of nickel-plated neodymium

Fig. 9. A comb with 2 teeth of width 5 (left) and an erroneous polyomino
(right) containing a trap (light gray). To check for missing pixels in o(wh)
moves, a cam would have to be moved into the trap by a � control. If the
next control is not � (in which case the error is not detected), but either
� or �, the cam is trapped. Once a cam is trapped in the polyomino, no
control sequence can transfer the workspace into a state without trapped
cams.

cube-shaped magnets (supermagnetman.com C0010).

b) Static Workspace Experiments: To show sorting for

static workspaces, we designed two workspaces at two scales.

The first system used a workspace of XX mm width and



Coils

CameraLED drive

Coils

Workspace

5 cm

Inlet

1x1

2x1

1x2

3x1

1x3

‘L’

10 mm

Fig. 10. (left) Magnetic manipulation system used to demonstration
polyomino sorting and error detection. (right) XX mm × XX mm workspace
used to sort all polyominoes with 1, 2, or 3 tiles.

N S N S N S

N SN S

N SN S

N S

N

Fig. 11. Schematic of the eight polyominoes used to demonstrate sorting
and their alignment in a uniform magnetic field.

XX mm length and sorted polyominoes composed of 2.88

mm3 neodymium cube magnets. The second, smaller system

used a workspace of 20 mm width and 39.5 mm length

and sorted polyominoes made of 1 mm3 neodymium cube

magnets. An approximate uniform field of 30 Gauss was

employed to keep the parts aligned, and the workspace was

tilted in the direction sequence {�,�, �,�}. For each part a

direction input was applied until it touched the layout wall.

Fig. 11 shows the eight polyominoes which were sorted in

these experiments. To make a part, one magnetic cube was

attached to one or more demagnetized cube(s) and the cubes

were demagnetized using a blow torch. The workspace in

Fig. 12 shows the four different polyomino shapes in their

respective bins.

c) Dynamic Workspace Experiments: The workspace

used for dynamic workspace experiments is XX mm ×
XX mm. In this experiment a cross-shaped moving cam

is used to detect the inner shape of two polyominoes. One

polyomino has one pixel deep dent while the other has two

pixel deep dent. The cam and the workspace is designed so

10 mm

inlet

start

Fig. 12. Frames from video demonstration of sorting polyominoes using
the static workspace for 1 mm tiles.

Fig. 13. A dynamic workspace with one sliding cam, designed to sort
polyominoes of the type shown in 2 using the sequence 〈d, r, u, l〉. TODO:
label the inlet, the collectors, etc.

Fig. 14. Frames from video demonstration of the dynamic workspace.
The image is from Matlab simulation and it’ll be replaced after we have
experimental results for it. TODO: label the inlet, the collectors, add scale
bar

that the polyomino with a one-pixel dent is stored in a bin

and the other polyomino is rejected. The direction sequence

for the parts and the cam is {�,�, �,�}. Each of the two

polyominoes contains two magnetic cubes one in the top row

and the other in the bottom, attached to the demagnetized

cubes. Fig. 13 shows the polyomino with one pixel dent

inside a bin and the other polyomino exiting the workspace.

See video attachment for experimental demonstrations.

VIII. CONCLUSIONS

Open questions: How hard is it to decide whether we

can do sorting/error correction using static or dynamic

workspaces? Are there any polyominos for which dy-

namic workspaces cannot do sorting/error detection? Can

we always build a pixel probe for any reachable pixel?

Can we improve the situation for static workspaces

with pipelining? What happens if we allow movement

in 8 directions instead of 4 (problematic because of

speed/collision)?

REFERENCES

[1] Sheryl Manzoor, Samuel Sheckman, Jarrett Lonsford, Hoyeon Kim,
Min Jun Kim, and Aaron T. Becker. Parallel self-assembly of poly-
ominoes under uniform control inputs. IEEE Robotics and Automation

Letters, 2(4):2040–2047, 2017.
[2] Aaron T Becker, Sándor P Fekete, Phillip Keldenich, Dominik Krupke,

Christian Rieck, Christian Scheffer, and Arne Schmidt. Tilt Assembly:
Algorithms for Micro-Factories that Build Objects with Uniform Ex-
ternal Forces. In The 28th International Symposium on Algorithms and

Computation (ISAAC), 2017. To appear.
[3] Michael A Peshkin. Planning robotic manipulation strategies for sliding

objects. 1986.



[4] Srinivas Akella, W Huang, Kevin M Lynch, and Matthew T Mason.
Sensorless parts feeding with a one joint robot. Algorithms for Robotic

Motion and Manipulation, pages 229–237, 1996.
[5] Y. Zhang, X. Chen, H. Qi, and D. Balkcom. Rearranging agents in

a small space using global controls. In 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 3576–
3582, Sept 2017.


	INTRODUCTION
	RELATED WORK
	MODEL
	STATIC WORKSPACES
	DYNAMIC WORKSPACES
	TRADEOFFS
	sorting vs. error-detection
	Pipelining

	Experimental demonstration
	CONCLUSIONS
	References

