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Abstract— We propose an approach to mapping tissue and
vascular systems without the use of contrast agents, based on
moving and measuring magnetic particles. To this end, we
consider a swarm of particles in a 1D or 2D grid that can be
tracked and controlled by an external agent. Control inputs
are applied uniformly so that each particle experiences the
same applied forces. We present algorithms for three tasks: (1)
Mapping, i.e., building a representation of the free and obstacle
regions of the workspace; (2) Subset Coverage, i.e., ensuring that
at least one particle reaches each of a set of desired locations;
and (3) Coverage, i.e., ensuring that every free region on the
map is visited by at least one particle. These tasks relate to a
large body of previous work from robot navigation, both from
theory and practice, which is based on individual control.

We provide theoretical insights that have potential relevance
for fast MRI scans with magnetically controlled contrast media.
In particular, we develop a fundamentally new approach for
searching for an object at an unknown distance D, where
the search is subject to two different and independent cost
parameters for moving and for measuring. We show that
regardless of the relative cost of these two operations, there
is a simple O(logD/log logD)-competitive strategy, which is
the best possible. Also, we provide practically useful and com-
putationally efficient strategies for higher-dimensional settings.
These algorithms extend to any number of particles and show
that additional particles tend to reduce the mean and the
standard deviation of the time required for each task.

I. INTRODUCTION

In MR imaging, some tissues have poor contrast, which
means that the boundaries between tissue types cannot be
determined. To discover tissue boundaries, particulate so-
lutions of a contrast agent are used to illuminate regions
of interest [1]. Drawbacks include that the contrast agent
diffuses quickly and must be injected repeatedly during long
scans. Additionally, many contrast agents such as gadolinium
chelates are toxic, and prolonged exposure causes medi-
cal complications [2]. This paper explores using steerable
magnetic microparticles to map a region. These particles
can be steered by the global magnetic gradient of an MRI
and visualised by the MRI [3], even when the tissues they
move through have poor contrast. As a current example for
micro- and nano-particles that can be manufactured in large
numbers, see [4]–[10].

The particles considered in this paper move synchronously
under the influence of a uniform input. They move by the
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Fig. 1. Mapping a 2D environment with 500 free cells using n = 4 (top
row) and n = 300 (bottom row) particles, all controlled by an external
global force. After 82 moves, or global left-right-up-down commands, the
300 particles have mapped the free cells, while the 4 particles require a
total of 2394 moves to fully map the free cells. For reference, red circles
are particles, and gray cells are unknown, black cells are obstacles, and blue
cells are frontiers.

same vector when the force is activated, unless they get
stopped by an obstacle or another stopped particle. Using
MRI scans, it is possible to detect the location of particles,
so the key idea is to deduce the presence of obstructing tissue
by differences between the expected motion vectors and the
measured location of particles.

In previous work [11] we provided an algorithm that
guarantees the collection of particles. In this work we explore
the field of mapping, coverage, and subset coverage using
globally controlled particles. This paper focuses on discrete
2D workspaces. Fig. 1 represents the complete mapping
of a workspace using a large number of particles. At the
initial step, all particles (red circles) are in free cells (white
squares) and are surrounded by the unknown frontier cells
(blue squares). The goal is to map the unknown space (grey).
By commanding the particles to take one step in a particular
direction, we can categorize the frontier cells in this direction
as either obstacle (black squares) or free (white squares). If
the particle was able to move, that frontier cell is labeled as
free, and new frontier cells are added to adjacent areas that
have not been mapped. If the particle was unable to move,
that frontier cell is labeled as obstacle. The goal is to explore



all frontier cells, thereby discovering all connected free cells
and the obstacles that surround them.

The paper is arranged as follows. After a review of recent
related work in Sec. II, we introduce the algorithms to
perform mapping, coverage, and subset coverage and also
discuss the complexity of mapping in Sec. III. In Sec. IV
we discuss the performance of the algorithms on parameters
which determine efficiency based on different environments,
particle distribution and completion speed. We conclude this
paper by summarizing the results and discussing directions
for further research in Sec. V.

II. RELATED WORK

Coverage using one robot is a canonical robotics problem
[12]. It has been studied in-depth for many applications
including lawn mowing, harvesting, floor cleaning, 3D print-
ing, robotic painting, and others. Coverage means that the
robot has passed within one robot radius of every location
in the workspace. Coverage with a swarm of robots is
a key ability for a range of applications because swarms
have higher fault tolerance and reduced completion time.
Correspondingly, it has been studied from a control-theoretic
perspective in both centralized and decentralized approaches.
For examples of each, see [13] and [14].

Traditional multi-robot methods focus on extending single
robot coverage techniques to multi-robot systems. Solving
coverage for synchronous multi-robots using online coverage
techniques such as the boustrophedon technique of subdivid-
ing the 2D space into cells as in [15] focuses on moving the
robot teams in unison until they identify obstacles in their
path. Once that happens, the team divides into smaller teams
that continue the search in the smaller cells. The method is
similar to ours in the sense that robots try to move in the
same direction as long as possible, but in our problem of
interest the particles always move in the same direction and
do not subdivide the space. The frontier cells exploration in
[16] is a greedy policy that selects target locations to explore
using local information from each robot, not a shared global
map.

Fundamental problems of robot navigation in an unknown
environment have also received a large amount of attention
from the theoretical side. The classic prototype is the linear-
search problem, which was first proposed by Bellman [17]
and, independently, by Beck [18]: An (immobile) object
is located on the real line at an unknown distance D and
in an unknown direction. Because the time necessary for
locating the object may be arbitrarily high (as the object
may be hidden far from the origin), a useful measure for the
performance of a search strategy is the competitive ratio:
This is the supremum of the ratio between the time the
searcher actually travels and the time she would have taken
if she had known the hiding place. The competitive ratio is a
standard notion in the context of online algorithms; see [19]
for a comprehensive overview. For the linear-search problem,
the optimal competitive ratio is 9, as was first shown by
Beck and Newman [20] and generalized by Gal [21], [22]:
The search should alternate between going to the right and

to the left, at each iteration doubling her step size. This
can be extended to other scenarios: For the case in which
changing direction during the course of the search incurs
an additional cost of d, Demaine et al. [23] showed that an
optimal strategy can locate an object with total cost 9D+2d,
which is optimal. Of particular relevance for the content of
this paper is Fekete et al. [24], [25] for online searching by an
autonomous robot in an unknown environment, where both
moving and measuring incur individual costs, and Fekete et
al. [26] for an (offline) setting that studies the closely related
bicriteria version of covering with travel cost. For another
recent work on mapping and coverage by a robot swarm
with limited information and capabilities, see [27].

However, all these approaches assume a level of intelli-
gence and autonomy in individual robots that exceeds the
capabilities of many systems, including current micro- and
nano-robots. Current micro- and nano-robots, such as those
in [4], [28], [29] cannot have onboard computation. Thus,
we will be referring to them as particles. For these reasons,
this paper focuses on centralized techniques that apply the
same control input to each member of a particle swarm. A
work that maps a single feature in a continuous workspace
[30] is of particular interest. In the work a particle swarm
is manipulated by uniform inputs. All particles move in the
same direction, but, if a robot encounters the feature, it stops
moving and reports the time at which it stopped. An optimal
control, gradient descent technique is used to estimate the
location and shape of the feature. In contrast to [30], this
paper maps arbitrary discrete patterns using particles with
no onboard computation that can be steered and are fully
observable.

III. THEORY

This section examines the problem of mapping with uni-
form inputs in 1 and 2 dimensions. For ease of exposition this
section represents workspaces as discretised regions. Future
work should extend this to continuous regions.

A. Mapping in 1D

We begin with the single particle case, then proceed to the
n particle case.

1) 1D mapping with 1 particle: A particle is initialized
uniformly randomly in a linear free-space m units wide. To
map this region the particle needs to choose one direction,
move until it hits a boundary, and then switch direction and
move until it reaches the other boundary.

Without loss of generality, assume the particle always
starts going left, and label the free-space from 1 to m left
to right. If the initial position is 1, the particle tries to
move 1 unit to the left, but is stopped by the boundary. The
particle then moves m − 1 moves to the right. The final
mth move right results in a collision with the right wall, and
thus mapping requires m + 1 moves. This is the minimum
number of moves. The worst case is if the particle starts at
m, requiring 2m moves: m moves to the left and m moves
to the right.
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Fig. 2. Exploring a 1D environment of size m with n particles of unit
size. Here m = 20 and n = 6. p = 4, p = 19 and gmax = 7

The expected number of moves for one particle to cover
a 1D area of length m is

1

m

m∑
i=1

(i + m) =
3m + 1

2
(1)

2) 1D mapping with n particles: For n > 1 the average
expected number of moves is calculated as follows. Let p
be the list of positions of n unit size particles uniformly
distributed from [1,m]. As shown in Fig. 2, the number of
moves to discover the left and right boundaries is bounded
by the maximum and minimum particles p = min(p), p =
max(p), requiring moving left p, followed by a move of
m− (p− p) + 1 right. When n = m, the algorithm requires
2 moves, one left, one right. The minimum time with n ∈
[2,m−1] occurs with p at 1 and p at m, requiring 3 moves,
1 left followed by 2 moves to the right.

The maximum 2(m−n+1) occurs when the particles are
arranged from m − n to m, requiring m − n + 1 moves to
the left, followed by m− n + 1 moves to the right.

This is drawing without replacement n times from the set
[1,m]. The minimum is distributed between 1 and m − n,
the maximum is distributed between n and m.

The expected number of moves to reach both boundaries
for n particles in 1D is

1

(m
n)

∑m−n+1
p=1

∑m
p=p+n−1 (p−p−1

n−2 )(2p+m−p+1)− (m−n+1)

(m
n)

=
3(1 + m)

1 + n
− (m− n + 1)(

m
n

) (2)

This reduces to Eqn. (1) when n = 1. To fully map the
area from 1 to m requires that every position from 1 to m
be visited by at least one particle. This time is dominated
by the maximum gap g. The total number of moves is then
2p + m− p + 1 + max

(
g −

(
p + m− p

)
, 0
)
.

Since these particles are unit size, there are m − n
spaces, and these can be located before, between, or after
the n particles in n + 1 locations giving

(
m−n
n+1

)
possible

configurations. The largest gap can be calculated exactly
using a recurrence equation [31], but a tight bound when

m > n log n is m−n
n+1 + Θ

(√
(m−n) log(n+1)

n+1

)
[32].

3) 1D mapping with scan and move costs: Often scanning
(imaging) and moving the particles costs time and energy.
When controlling particles with MRI as in [33], the MRI
machine iterates between imaging and applying gradient
forces to move the particles. This section examines 1D
mapping when scanning the workspace and moving the
particles a unit distance have associated costs. The objective
is to minimize a linear combination of costs for moving and

measuring; however, the precise respective coefficients may
be subject to change, or even unknown in advance turning
this into a bicriteria problem, in which both parameters need
to be within a bounded ratio of those in an optimal solution.
For simpler notation, we write (a, b) for a schedule that
involves a unit steps and b scans.

For a more detailed analysis, assume that the left boundary
is located D units to the left of the leftmost particle. (This
analysis can be applied in both directions.) The theoret-
ically optimal, yet elusive, solution requires scanning the
workspace to map particle locations, moving D + 1 units
to the left, then scanning to detect that the leftmost particle
has only moved D units and thus has encountered the wall,
for a total cost of (D + 1, 2) for the schedule.

We can achieve a schedule with D + 1 steps by scanning
after each step, for a total cost of (D+ 1, D+ 2); while this
is optimal with respect to steps, the involved scan cost is
large compared to the optimum. At the expense of increasing
the number of steps we can reduce the number of scans by
successively doubling the number of steps between scans,
i.e., performing the ith scan after 2i steps, resulting in total
cost at most (2D+ 2, log2 D); replacing the base of 2 by an
arbitrary constant k, we get (k × (D + 1), logk D). This is
within a constant of the optimal. On the other hand, moving
a sufficiently large number M of steps (known to satisfy
M ≥ D) before performing the second scan yields (M, 2),
which is optimal with respect to scan cost, but bad in terms
of the cost for motion.

Balancing the competitive factor for both parameters
can be achieved as follows: perform the ith scan at po-
sition ii. This yields a simultaneous competitive factor of
O(logD/log logD) for both parameters.

Theorem 1: The hyperexponential search sequence ii

yields a best possible simultaneous competitive factor of
O(logD/log logD) for both parameters of the bicriteria
search problem.

Proof: Let us first consider the number of scans. If
the boundary is properly detected in step j + 1, the particle
must have encountered it between steps j and j + 1, i.e.
jj ≤ D < (j + 1)j+1. Now we can employ the Lambert W
function, which is the inverse function of f(x) = xex; note
that

log x = W (log x) · eW (log x),

so
log log x = (logW (log x) + W (log x)),

and therefore

W (log x) ∈ Θ(log log x).

This implies that j ≤ logD/W (logD) (the inverse of jj),
hence Θ(logD/log logD) + 1 scans have been made, while
the optimum are 2 scans.

The moved distance is (j + 1)j+1, while the optimum is
D ≥ jj . Hence, we get the ratio

(j + 1)(j+1)

jj
= (j + 1)

(j + 1)j

jj
, (3)



where 0 ≤ (j+1)j

jj ≤ e for j > 0.
Because j ≤ logD/W (logD), we obtain

(j + 1)(j+1)

jj
≤ e

log n

W (log n)
+ e (4)

for j > 0. Clearly, this is again in within a factor of
Θ(logD/log logD) of the optimum.

To see that this balanced factor is best possible, observe

that
(

logD
log logD

)( log D
log log D )

∈ Θ(D), with the base correspond-
ing to the ratio between step lengths and the exponent to the
number of scans. Therefore, using significantly fewer than
logD/log logD scans would require increasing the base,
yielding a worse competitive factor for the step length; on
the other hand, decreasing the base in order to decrease
the competitive factor for the step length would require
increasing the exponent, yielding a worse competitive factor
for the scan cost.

B. Mapping in 2D

1) 2D mapping with 1 particle: The shortest path for
mapping with 1 particle is a version of depth-first search that
halts when all frontier cells have been explored. As long as
the all the free cells are connected, depth-first-search (DFS)
is the optimal solution to mapping. Even if the environment is
known in advance, the problem is NP-hard as can be shown
by a trivial reduction to Hamiltonian paths in grid graphs
[34]. One can easily show that a simple DFS guarantees a
competitive ratio of 2: the depth-first tree has m−1 edges and
each edge is traversed at most twice. Any path that covers m
cells needs to traverse least m−1 edges, and hence the depth-
first-search is at most twice as long as an optimal coverage
path.

For showing that no algorithm can perform better one
needs only a simple 1-dimensional graph that goes to the left
and to the right. If the algorithm chooses to go arbitrarily to
one side, we can make it do a long walk of length m and
then return it just for a single cell on the other side (2m+ 1
vs. 2 + m). If the algorithm decides to switch the direction
after some time after arbitrary zig-zags (of increasing cost)
of cost z (center to one side to other side) we decide that
there is a single cell on both sides. The algorithm now needs
to go one additional time from one side to the other and back
(cost > z) while the optimum cost would have been ≤ z+3.
If the algorithm switches from the second form to the first,
the first argument still applies.

Most previous work on grid graph exploration focused
on exploration tours, i.e., after exploration one has to go
back to the start position. If the environment is known in
advance, this equals the traveling salesman problem and a
polynomial-time approximation scheme is known [35]. If
the environment is unknown, as it is in our case, the best
achievable competitive ratio is 2 in general grid graphs
(achieved by depth first search) and 7/6 for simple grid
graphs (4/3 achieved by smartDFS [36]).

2) 2D mapping with n particles: Another problem with
this type of mapping is identifying which move sequence
guarantees the shortest path in the worst case.

We describe three algorithms of increasing complexity for
2D mapping. If we implement a random move algorithm as
described in RANDOMMOVES, at each step the particles all
move in the same randomly selected direction until there
are no frontier cells left on the map. MoveType is a vector
that holds the four possible move types. The map M is a
matrix the size of the work space. Each cell of M holds
one of five values that denote: Particle, Frontier, Unknown,
Freespace and Obstacle. At each step FRONTIER returns the
locations of frontier cells in M and r has the list of particle
locations. The move is implemented to update the map M
and the particle locations r by calling MOVE&UPDATE.
RANDOMMOVES requires minimal computation and is prob-
abilistically complete, so eventually the swarm maps the free
cells [37]. However, this method of mapping is inefficient,
resulting in long mapping times, especially with small num-
bers of particles in large, torturous maps with many turns.

Algorithm 1 RANDOMMOVES(M, r)
1: MoveType= {l, r, u, d}
2: while |FRONTIER(M)|> 0 do
3: move ← RANDOM(MoveType)
4: {M, r} ←MOVE&UPDATE(move,M, r)
5: end while

A better way to map the world is to deliberately move
particles toward frontier cells. We could choose one particle
as the elect particle and perform motion planning using this
particle. In ELECTPARTICLE, one of the particles is selected
as elect. As long as the number of frontiers to be visited is
at least one, the algorithm proceeds by generating a mvSq
from the current position of the elect particle to the nearest
frontier cell. The mvSq is generated by a breadth-first-search
(BFS) shortest path algorithm which requires the map M,
source elect, and the cells FRONTIER(M). A representative
mvSq is 〈u, r, d, d, r, u, . . .〉. The list of moves in mvSq
are implemented by iteratively calling the MOVE&UPDATE
function for the length of mvSq.

ELECTPARTICLE will explore the target frontier cell by
the end of mvSq. However, often with large-population
swarms the whole mvSq need not be implemented. Every
time MOVE&UPDATE is called, the nearest frontier is up-
dated and mvSq is also updated because as the particles
start to move, the target frontier cell might be explored by a
non-elect particle.

CLOSESTFRONTIER exploits this fact by computing a BFS
shortest path from all particles to all frontier cells.

In each loop of CLOSESTFRONTIER, all the moves in
mvSq are implemented to explore the target frontier cell
since it is the shortest possible route to a frontier cell. At
time 0, there will be at most 4n equally valid destinations
that can be visited since cells to the side of each particle not
neighboring another particle are frontier cells. Each mvSq
guarantees classification of one frontier cell into obstacle or



Algorithm 2 ELECTPARTICLE(M, r)
1: elect ← RANDOM(r)
2: while |FRONTIER(M)|> 0 do
3: mvSq ← BFS(M,elect,FRONTIER(M))
4: for iter := 1 to |mvSq| step 1 do
5: {M,elect} ←MOVE&UPDATE(mvSq,M,elect)
6: end for
7: end while

(a) (b) 
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Fig. 3. CLOSESTFRONTIER is not optimal in all cases. CLOSESTFRON-
TIER, which is greedy, could go right first and then cover the square with a
single particle which takes Ω(n2) moves while the optimal solution, which
visits the square in parallel using all n particles, only needs O(n) moves.

free space. When a frontier cell is explored it is labeled either
free or obstacle. There can be a net gain of at most two
frontier cells per particle that encounters a free cell or no
new frontier cells if the frontier cell contained an obstacle.

The simulation results in Section IV show that both map
complexity and distribution affect the number of moves
taken to map the work space. RANDOMMOVE uses no
information from the data except for checking completion.
ELECTPARTICLE uses the location and distance data from
one particle to map the work space. CLOSESTFRONTIER
improves the performance of mapping by using all the data.

Algorithm 3 CLOSESTFRONTIER(M, r)
1: while |FRONTIER(M)|> 0 do
2: mvSq ← BFS(M, r,FRONTIER(M))
3: for iter := 1 to |mvSq| step 1 do
4: {M, r} ←MOVE&UPDATE(mvSq,M, r)
5: end for
6: end while

While CLOSESTFRONTIER is usually the more reason-
able approach in practice than DFS with a single particle,
we are only able to show a trivial weaker bound on the
corresponding moves. CLOSESTFRONTIER is not optimal. It
can need Ω(n2) moves while an optimal strategy only needs
O(n). An example can be seen in Fig. 3. In some scenarios
CLOSESTFRONTIER can perform worse than DFS with a
single particle, e.g., in Fig. 4.

Theorem 2: CLOSESTFRONTIER needs at most O(m2)
moves where m is the number of cells.

Proof: The distance between a particle and the closest
frontier cell can be at most the number of all already
visited cells. Hence, the distance for visiting the ith cell is
bounded by i. The overall number of moves is bounded by∑

i=1,...,m i = 0.5 ·m · (m + 1).
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Fig. 4. CLOSESTFRONTIER can be worse than DFS in some cases as
well. In this example, using CLOSESTFRONTIER is 1.5× worse than DFS
using only particle 2.

Theorem 3: CLOSESTFRONTIER has a computational
complexity in O(m2).

Proof: For an environment with m cells, there are at
most m iterations. Since the edges in the grid graph are
not weighted and each cell only has at most four neighbors,
the shortest path from a particle to the frontier cell can be
calculated in O(m) time by a simple breadth first search.

Finally, completion time is also a function of the map
geometry. Mapping requires exploring all the free spaces and
the boundary of the free spaces. The number of map cells
that need to be explored is the Area + Perimeter − n. This
is minimized by a circular region and maximized by a linear
region. For example, a linear region has m + (2m + 2)− n
cells to explore, while a square region has m + (4

√
m)− n

cells to explore.

IV. SIMULATION

A. 1D mapping

1D simulations were conducted in Mathematica, with code
available at [38]. Fig. 5 shows the distributions for the
minimum and maximum initial particle locations p and p,
the maximum gap g, and the spread between the minimum
and maximum p − p for 1,000,000 Monte Carlo trials. The
expected gap between the first particle and the boundary p
is 90.94. The expected gap between the last particle and the
boundary p is 90.98. The expected maximum gap is g is
273.9.

Fig. 6 shows that full coverage requires approximately
twice the time required to explore the left and right bound-
aries when m = 1000 and n = 100.

B. 2D mapping

2D simulations were conducted in Matlab, with code
available at [39]. All simulations used maps with 5000 free
cells. Each simulation trial was repeated 100 times. The
number of particles ranged from 100 to 5000 by increments
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Fig. 5. With a connected, 1D freespace m = 1000 and n = 10 particles,
the distributions for the gap before the first p and after the last p gaps are
symmetric. The maximum gap g ≈ 250.
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Fig. 6. Full coverage in 1D with m = 1000 and n = 10 particles requires
60.7 moves on average, while reaching the boundaries requires only 29.8.

of 100. In each run except Fig. 11 the particles were placed
uniformly randomly throughout the workspace.

The comparison plot Fig. 7 between the mapping of four
2D maps H-tree, complex, empty rectangle and linear and a
1D map using the CLOSESTFRONTIER algorithm, shows that
the H-tree map requires the most moves because it has the
highest number of turns. In Fig. 7 there is an observable
difference in moves between the linear and rectangular
workspaces. One reason is because the perimeter of the linear
map is much larger than the rectangular map. The number of
cells to explore is 3m + 2 = 15, 002 for the linear map, but
only m+2(50+100) = 5, 300 for the rectangular map. Only
when the number of particles is around 2/3 of the number
of free spaces is there an overlap between the moves taken
to map the rectangular space and the linear space.

The difference between algorithms is highlighted in Fig. 8,
which shows the number of frontier cells as a function of
the number of moves commanded. All tests used n = 1000

H-tree Map                           Complex Map                Empty Rectangle                   Linear Map
m=5000 m=5000 m=5000m=5000

Fig. 7. Comparison of mapping using the CLOSESTFRONTIER algorithm
on 2D maps of four types and 1D mapping on a linear map. Each map has
5000 free cells.
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Fig. 8. Performing mapping on the complex 2D map with n = 1000
particles. RANDOMMOVES requires 1683 moves, ELECTPARTICLE requires
578 moves and CLOSESTFRONTIER requires 215 moves on average

particles. ELECTPARTICLE requires on average twice as
many moves as CLOSESTFRONTIER and RANDOMMOVES
requires ten times as many moves as CLOSESTFRONTIER.
The deviations for the CLOSESTFRONTIER are also much
less than the other two as seen from Fig. 8 and Fig. 9.

Fig. 9 compares the performance of RANDOMMOVE,
ELECTPARTICLE, and CLOSESTFRONTIER on the complex
2D map. For all algorithms the mean completion time and
standard deviation of the completion time decreased with
increasing numbers of particles. RANDOMMOVES performs
worst, with the largest number of required moves and the
largest standard deviation of required moves. RANDOM-
MOVES is slightly better than ELECTPARTICLE for large
numbers of particles, but both algorithms are beat by CLOS-
ESTFRONTIER, which has the minimum number of required



Fig. 9. Comparison of three algorithms - RANDOMMOVES, ELECTPAR-
TICLE and CLOSESTFRONTIER for mapping the 2D Complex Map of 5000
free spaces.
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Fig. 10. Comparison of three related problems: mapping, coverage, and
subset coverage on the complex 2D map.

moves and the smallest standard deviation. The maximum
number of moves required using the CLOSESTFRONTIER
algorithm was for k = 100 with an average of ≈1816 moves
and standard deviation of 160 moves. This reduces to four
moves with 0 standard deviation when n = 5000 (the total
number of free spaces).

Fig. 10 compares mapping, coverage, and subset coverage
on the complex 2D map. All trials used CLOSESTFRONTIER.
Coverage is performed with a known map, but with all free
cells initialized to be frontier cells. Similarly, subset coverage
has a known map, but 10% of the empty cells are labeled
as frontier cells. Subset coverage is easier than coverage and
coverage is easier than mapping.

The final simulation test, shown in Fig. 11, compares the
effect of different initial particle distributions in the complex
2D map. Region fill places all n particles at a minimum
Manhattan distance from a randomly selected location on
the map. Flood fill places one particle at a randomly selected
location in the free space, and places the remaining particles
according to a breadth-first expansion inside the free space.
Uniform distribution places the particles uniformly randomly.

Fig. 11. Comparison with different distributions: flood fill, region fill, and
uniform distribution for mapping on the complex 2D map. The results for
flood fill and region fill overlap.

Region fill and flood fill have similar performance, while
uniform distribution requires many fewer moves. This is
because dispersing particles using only uniform inputs is
difficult, and a uniform distribution starts with the particles
dispersed, which allows it to map much faster.

V. CONCLUSION AND FUTURE WORK

This paper presented techniques for controlling particle
swarms in 1D and 2D grids. These particles can be tracked
and controlled by an external agent, but control inputs are
applied uniformly so that each particle experiences the same
applied forces.

We provided theoretical and practical insights with poten-
tial relevance for fast MRI scans with magnetically controlled
contrast media. In particular, we developed an approach
for searching for an object at an unknown distance D,
where the search is subject to two different and independent
cost parameters for moving and for measuring. We showed
that regardless of the relative cost of these two operations,
there is a simple O(logD/log logD)-competitive strategy.
Extending the 1D bicriterion to an arbitrary freespace poly-
omino is not straightforward, as a two-dimensional scenario
has to deal with more intricate topological and geometric
difficulties. This leaves the analytic treatment as a future
challenge. This paper also presented benchmark algorithms
for 2D mapping and coverage problems. These results form
a baseline for future work, which should focus on improving
performance. Extensions to 3D and continuous spaces are es-
pecially relevant to the motivating problem of MR-scanning
in living tissue.
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