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Abstract— Microrobots have great potential for microassem-
bly and non-invasive surgery applications. Motivated by studies
proposing MRI-guided drug delivery to tumor cells using mag-
netic micro carriers, this paper studies two major challenges of
this problem: (i) microrobot swarm trajectory generation, and
(ii) swarm aggregation using a global input. We propose an aug-
mented RRT for trajectory generation to reduce environment
interference, and a divide-and-conquer algorithm for swarm
aggregation to improve performance. Simulations demonstrate
the utility of these approaches in comparison to alternate
heuristics. Our trajectory generation and aggregation strategies
are implemented on a swarm of ferromagnetic microparticles in
oil using a 6-coil electromagnetic system with image feedback.

I. INTRODUCTION

Microrobots have great potential to be used in non-
invasive surgery for drug delivery. Traditional drug delivery
circulates the human body indiscriminatingly, which is why
chemotherapy kills healthy and tumor cells alike. To reduce
toxic drug exposure to healthy cells, targeted drug delivery
seeks to steer chemotherapy directly to diseased tissue. Many
methods for drug delivery have been explored, including
beaded delivery formulations, liposomal delivery systems,
encapsulated chemotherapy in nanoparticles, and magnetic
micro-carriers navigated by magnetic fields [1].

Recent works have investigated many strategies to manip-
ulate a swarm of simple robots with limited computation
and communication [2]–[5]. [2] proposed a control strategy
that by introducing herders to drive a swarm of herding
animals to a desired location with repelling potential fields.
Fine et al. reported how to actively design environments to
assist the process of controlling multiple agents using shape
grammars [3]. This method addresses automatic generation
of environments given specific swarm objective and a control
model of agents. [4] showed particle computation methods to
perform permutations between different swarm formations by
aptly adding obstacles in grid workspace. Another example
of exploiting environment is [5], where a state space is
partitioned into discrete transition systems, and gates are
configured to guide a swarm of simple robots to achieve
state transition, and thereby to accomplish high-level tasks.

However, many microrobots have limited capabilities for
sensing and actuating, so external sensors (e.g. magnetic res-
onance imaging (MRI), cameras) and actuators (e.g. external

1 Li Huang and Aaron T. Becker are with the Department of Electrical
and Computer Engineering, University of Houston, Houston, TX 77004,
USA lhuang21@uh.edu

2 Louis Rogowski and Min Jun Kim are with the Department of
Mechanical Engineering, Southern Methodist University, Dallas, TX 75275,
USA

Coils

CameraLED drive

Coils

(a) (b)

Workspace

5 cm
2 mm

(c) (d) (e) (f)

Fig. 1. (a) The six-coil electromagnetic system. (b) A vascular network
tested in experiments. (c)-(f) Video frames from a experiment. The goal
location is marked with a red point. (c) t = 0 min, (d) t = 4 min, (e) t = 19
min, (f) t = 36 min

electric or magnetic fields) must be employed. Experimen-
tally, microrobot swarms such as paramagnetic microparti-
cles [6], Tetrahymena pyri f ormis [7], and magnetotactic
bacteria [8], [9] have attracted growing attention in many
applications of micro-assembly and targeted therapies. These
microrobots usually are physically simple agents, and are
steered by global fields where every robot receives the same
control signal. Many strategies and algorithms have been
developed for navigation and motion control of microrobots
in free space [10]–[12]. [13] demonstrated control of a
single microrobot in a micro-fabricated maze. Scheggi et
al. implemented and compared six path planning algorithms
using magnetic microrobots [14].

Our previous work explored microrobot swarm aggrega-
tion in a planar grid environment [15], where we considered
microrobots with different sizes, capable of overlapping,
moving in discrete steps and directed by the same control
input (global input). We presented element-wise algorithms
that worked iteratively by selecting two disjoint microrobots,
moving the first microrobot until it was manuevered to
the same location as the second, and repeated until all
microrobots were collected to the same location.

This paper addresses aggregating a microrobot swarm in
vascular networks where all mirorobots are steered with
the same input (global input). This is divided into three
challenges: (i) generating swarm trajectories, (ii) realizing



swarm transitions, and (iii) constructing swarm-level strate-
gies to reduce task time complexity. To address (i) and (ii),
we use an obstacle-weighted rapidly-exploring random tree
(OWRRT) for path planning. A divide-and-conquer strategy
is employed to address (iii) for swarm aggregation. Problem
formulation and modeling are elaborated in II. Section III
and IV introduce trajectory generation and algorithms for
aggregation. Section V compares performance with differ-
ent maps, aggregation methods, and swarm populations. A
hardware implementation is described in Section VI.

II. PROBLEM FORMULATION
Given a bounded 2D space G⊂R2, the plane is partitioned

by obstacles into free space (G f ree), obstacle space (Gobs)
and contact space (∂Gobs), where ∂Gobs is the set of bound-
aries of all obstacles. G f ree is continuous, and connected
by paths of width at least w. A population of n simple
microrobots, identified by ri, i ∈ {1, · · · ,n}, are randomly
distributed in free space at time t0, with positions pri

t0 ∈G f ree.
These microrobots are physically simple and have no on-
board computation or communication. Their bodies are small
compared to w, and interaction between agents is ignored.
They are under the control of a global input, that is, all units
move in the same direction at the same speed until they hit
an obstacle. We assume that microrobots in contact with the
wall have zero velocity if the control input has a component
directed into the wall.

The goal is to quickly collect this swarm at a gathering
point qg (Fig. 2). It can be inferred from [15] that there
exists a solution to the problem. First, we focus on trajectory
generation for each microrobot, and then present control
strategies for swarm aggregation.
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Fig. 2. In simulation, blue polygons represent obstacles, and white
channels are free space. We place a red dot at the goal location. The dashed
arc represents the region that corresponds to F(n, t) < σ . (a) Simulated
aggregation process after 1 step, (b) 200 steps, (c) 500 steps, and (d) 800
steps.

We define a distance metric d : R× R 7→ R≥0 which
denotes the cost to reach p j from pi via an accessible path in
G f ree. A microrobot is modeled by a discrete-time dynamic
system, with a control input vector ut :

pri
t+1 = pri

t +δ ·ut , (1)

where pri
t ∈ R2 represents the position of robot ri at time t,

‖ut‖�w, and δ is a scale factor that depends on ut and pri
t .

If ut steers the robot from pri
t into any obstacle, ri stops at

the obstacle boundary px.

δ =

{
1, if the path is collision-free
‖pri

t −px‖2, otherwise.
(2)

Let a cost function F(n, t) at time t be the average distance
of all robots to the gathering point qg:

F(n, t) =
1
n

n

∑
i=1

d〈pri
t ,qg〉. (3)

We interpret the trajectory generation problem as determin-
ing the single-source shortest paths in a weighted graph
using distance metric d. The aggregation problem finds a
deterministic policy to decrease the cost function, such that
as t→ ∞,F(n, t)< σ , for some small σ ∈ R+.

III. SWARM PATH PLANNING

We introduce an obstacle-weighted rapidly-exploring ran-
dom tree (OWRRT) planner to explore the environment, and
discover collision-free routes to the goal location qg.

Sampling-based motion planning algorithms have shown
great success in exploring collision-free paths for many
scenarios. Probabilistic roadmaps (PRMs) [16] and rapidly-
exploring random trees (RRTs) [17] are two popular plan-
ners. These planners generate random configurations in free
space, connect them to create a graph of feasible paths, and
link start and goal locations. In this paper, we focus on multi-
shot 2D path planning with RRT and its extensions. Many
attempts have shown success in improving the performance
of RRTs near obstacles, such as narrow passage and tight
region problems using a retraction strategy [18] [19].

Applying an RRT-based path to a microrobot swarm using
a global input can lead to problems: moving one particular
agent may cause all the others to drift away from their initial
locations since all agents receive the same control signal.
These locations may not be near any existing configurations
on the tree (T). Hence our RRT planner should have the
following feature: for any robot ri in G f ree, we have

‖pri −qv‖2 ≤ ε, (4)

for some ε > 0, where qv is the nearest vertex in T. We
grow a tree in an unbiased manner, such that sampling
configurations are distributed uniformly. We also require
sufficient configurations to guarantee Eqn. 4.
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Fig. 3. Microrobot aggregation along different trajectories. One swarm
(green circles) follows a black solid trajectory near the medial axes, and
they keep moving together. Another swarm, represented by red triangles,
follows the shortest path to the goal, which traps some microrobots at the
corner and slows the aggregation process

Another issue with microrobot swarms is the environment
interference. For example, in Fig. 3 a gray dashed line
(trajectory 1) is the shortest path to the goal location, and a
black solid line (trajectory 2) represents a near-medial-axis



Variables, and functions used in Alg. 1 and 2
V — the set of vertices (configurations) of T.

Vobs — the set of sampling nodes on the boundary of obstacles.

V ∗ — the set of configurations near medial axes of G f ree.

π(qv) — the predecessor of the configuration qv in T.

Adj(qv) — the set of adjacent vertices.

path. Although trajectory 1 is shorter than 2, such a path sig-
nificantly slows the aggregation process near obstacles. We
propose an approach which reroutes existing paths towards
medial axes of free space. Compared to retraction-based
planners, this approach replans a new route with existing
configurations in T instead of generating biased sampling of
tree nodes.

Algorithm 1 RRT. Input: configuration space G, goal loca-
tion qg, total number of configurations NumNode. Output:
an RRT T

1: V = {qg},Vobs = /0,T = {V,Vobs}
2: while |V | ≤ NumNode do
3: qrand ← a randomly generated point in G
4: qnear← the nearest neighbor of qrand in V
5: qnew← extend qnear towards qrand for unit length
6: if (qnear,qnew)∩Gobs = /0 then
7: V =V ∪{qnew}
8: π(qnew) = qnear
9: d〈qnew,qg〉= d〈qnew,qnear〉+d〈qnear,qg〉

10: else
11: qobs← (qnear,qnew)∩∂Gobs
12: Vobs =Vobs∪{qobs}
13: return T

The basic RRT planner builds a connected tree rooted
at the goal location, and samples tree nodes randomly in
free space of G to explore the graph. This process (Alg. 1)
proceeds as follows: to grow the tree, we generate a random
point qrand in G f ree, and perform the nearest neighbor query
(lines 3-4). Next, qnear is extended towards qrand with unit
length, and ends with qnew. If the edge (qnear,qnew) is
collision-free, we add the new node to the tree and update
the distance metric (lines 6-9). Since all sampling points are
connected to the tree, a robot can reach the goal location
from any tree nodes simply by following their predecessors
iteratively.

Note that in Alg. 1, lines 10-12 are different from the
original RRT [17]: if there is a collision along the path, we
retract qnew to the boundary of the obstacle qobs. qobs is not
considered as a valid configuration in V , instead, we add it
to Vobs to grow an obstacle-weighted RRT. These obstacle
nodes assist in steering paths away from obstacles.

We illustrate this process in Alg. 2, and compare it with
the original RRT in Fig. 4. The weight of a node qv in T is
calculated as follows,

w(qv) = e−a‖qv−qnear
obs ‖2+b, (5)

(a) (b)

Goal Goal

Fig. 4. (a) RRT (original): yellow dots are configurations of T, and red dots
are abandoned extensions within the blue obstacle. Trajectory generation
relies on the shortest paths to the goal. (b) Obstacle-weighted RRT: green
dots are near-medial-axis configurations ∈ V ∗, yellow dots in the shadow
are elements in V affected by obstacles, and red dots inside the obstacle are
retracted to the boundary (black dots) and added into Vobs. New paths tend
to avoid near-obstacle regions, and approach near-medial-axis space.

Algorithm 2 Obstacle-weighted RRT. Input: the RRT T of
Alg. 1. Output: an obstacle-weighted RRT: Tobs

1: V ∗ = {qg},Tobs = {V,Vobs,V ∗}
2: for all qv ∈V do
3: if w(qv)< ζ then
4: V ∗ =V ∗∪{qv}
5: for all q∗v ∈V ∗ do
6: d〈q∗v ,qg〉= ∞

7: for all q∗u ∈ Adj(q∗v)∩V ∗ do
8: if d〈q∗v ,qg〉> d〈q∗v ,q∗u〉+w(q∗u)+d〈q∗u,qg〉 then
9: π(q∗v) = q∗u

10: d〈q∗v ,qg〉= d〈q∗v ,q∗u〉+w(q∗u)+d〈q∗u,qg〉
11: for all qv ∈V do
12: if π(qv) /∈V ∗ then
13: q∗near← the nearest neighbor of qv in V ∗

14: π(qv) = q∗near
15: return Tobs

where a,b ∈ R+, and qnear
obs is the nearest neighbor of qv in

Vobs. Therefore, weight decreases with distance from nearby
obstacles. Hence, if we identify a gradient descent path to
the goal with minimum-weight nodes, the new path tends to
proceed near medial axes of free space. A near-medial-axis
set of configurations is constructed as:

V ∗ = {qv ∈V |w(qv)< ζ}, (6)

for some ζ ∈ R+. The trajectory generation (lines 7-16) is
shown in Fig. 4(b). We trim the tree to remove edges not
connecting to vertices in V ∗, and perform adjacent neighbors
query to regrow the tree towards near-medial-axis regions.
Section IV shows that obstacle-weighted RRT decreases
aggregation time.

IV. SWARM AGGREGATION

This section presents a divide-and-conquer aggregation
method with heuristic strategies to improve performance. The
motivation behind microrobot swarm aggregation is efficient
control strategies for drug delivery in vascular networks.
However, a global input with a highly under-actuated swarm
system makes it difficult constructing an optimal controller.
Pioneering research has proposed different strategies for



the aggregation/gathering problem, but most are element-
wise algorithms, that is, performing the task in terms of
individuals. Our goal is to propose a swarm-level strategy
to carry out swarm aggregation, and reduce time complexity
compared to element-wise methods.

A. Heuristic Aggregation

A benchmark heuristic for aggregation is to move one
microrobot to the goal, and then move the next agent. Repeat
this till all robots gather near the goal location. In this paper,
the benchmark heuristic moves the farthest microrobot to the
goal.

We present the heuristic aggregation in Alg. 3. with the
following assumptions: (i) the graph G is connected and
bounded, and (ii) the goal location is inside a closed region
(Def. 1) at a dead end (Def. 2). The second assumption is
inspired by the concept of discrete system transitions in [5],
where gates are constructed to guide transitions from one
region to another. In practice, the closed region indicates
that once microrobots reach this area, it is hard for them
to escape, given global inputs driving robots to qg. This is
reasonable and essential, because chemotherapy molecules
are designed to release from carriers once they reach the
region of tumor cells [1].

Algorithm 3 Heuristic Aggregation. Input: Tobs =
{V,Vobs,V ∗}, initial positions {pri

t0} of all robots ri.
Output: ut

1: while F(n, t)> σ do
2: ri← the farthest robot
3: qri

v ← the nearest vertex ∈V to ri
4: ut ← move ri towards qg via qri

v

Definition 1. (closed region.) Considering a global input ut
that drives all robots to the goal qg, a closed region is a
positive invariant set M ⊂ G f ree, qg ∈M. Given ut and a
robot ri, if pri

t0 ∈M at t0, then pri
t ∈M for all t > t0. M is

bounded, so ∀ pri ∈M,∃ c > 0, such that

d〈pri ,qg〉< cσ , (7)

Definition 2. (dead end.) A dead end is a set D⊂M,qg ∈D.
D has the following properties:

1) ∀pri ∈D, d〈pri ,qg〉< σ ;
2) given that all robots {ri} ∈ G f ree aggregate inside M

and a global input ut moves robots towards D, if pri ∈
D at t0, then pri ∈D for all t > t0.

B. Divide-and-Conquer Aggregation

This method recursively aggregates microrobots into a
smaller region that contains the goal. A proper definition
of “region” reduces aggregation time. If we drive each
microrobot all the way to the goal location, the algorithm
is transformed into the heuristic aggregation.

The divide-and-conquer technique has two stages. We
begin by splitting the aggregation problem into subproblems

Variables and functions used in Alg. 4
Clustering(VJ , ‘distance’) — partition elements of VJ into junction
clusters with the Euclidean distance metric, and returns the
centroid of each junction {qd

j }.

RegionSeg
(
V ∗,{qd

j }
)

— partition elements of V ∗ into clusters by
junctions, and returns the region ID {R j}. First, assign a unique
region ID R j to the centroid of a junction (qd

j ) and its adjacent
neighbors Adj(qd

j ). Then, assign all descendants of them the
same region ID.

Clustering(S,qd
j , ‘orientation’) — partition elements si ∈ S into

clusters by the orientation of a directed edge (si,qd
j ), and returns

qo
j,k the mean orientation of k-th cluster in R j .

BranchSeg
(
S,{qo

j,k}
)
— assign a branch ID to each element of S

by orientation, where qo
j,k is the orientation of branch B j,k .

in smaller regions. Then we recursively perform discrete
region transitions of microrobot swarms.

The first stage “divide” performs map segmentation of
vascular systems like Fig. 7. In these maps, vessels are
connected by junctions, and most of them are T-junctions.

Definition 3. (Region Ri.) We define a partition of a map
G f ree as non-overlapping regions {Ri}i=1,2,··· ,NR , such that

{Ri ∈ G f ree|
NR⋃
i=1

Ri = G f ree,Ri∩R j = /0,∀i 6= j}.

As shown in Fig. 5(a), we can separate junction nodes
(green dots) from other nodes in straight vessels (orange
dots) by their spatial distributions. Considering the set {qv∪
ad j(qv)}, i. e. a configuration and its adjacent neighbors
in Cartesian coordinates, the shape ratio is defined as the
eigenvalue associated with the principal component of the
set divided by the other eigenvalue. If the shape ratio is
less than a threshold, such configuration is regarded as
a junction node; otherwise, a vessel node. These junction
nodes can determine boundaries between regions. In our
implementation, we take the maximal width of local channels
as the range of adjacent neighbors. With these definitions,
we perform map segmentation using results from obstacle-
weighted RRT. This process is presented in Alg. 4, and
illustrated in Fig. 5:

1) use near-medial-axis configurations q∗v ∈V ∗ to identify
junction nodes (lines 1-4);

2) partition the set of junction nodes (VJ) using Euclidean
distance (line 5), and yield NR junction clusters;

3) split free space into NR regions corresponding to the
NR junction clusters (line 6);

4) partition each region into branches {B j,k}k=1,2,··· by
their orientations (lines 7-10), where B j,k is the k-th
branch in R j.

With map segmentation, we are able to process the second
stage “conquer”. This process is presented in Alg. 5 and
illustrated in Fig. 6. A global planner moves a swarm of
microrobots from region R j to R j.next , where region R j
and R j.next share an edge, d〈qd

j.next ,qg〉< d〈qd
j ,qg〉. A local

planner assigns priorities to microrobots at different branches
of region R j, and steers them to the closer region R j.next .
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Fig. 5. Map segmentation illustration for Alg. 4. The goal (red dot) is
located at (99,5). (a) represents step 1 and 2, where yellow points are nodes
in V ∗, and green points are junction nodes in VJ . (b) and (c) show step
3, where regions are marked as different colors. (d) illustrates step 4 in a
region, where branches are marked as different colors.

Algorithm 4 Map Segmentation. Input: The obstacle-
weighted RRT Tobs = {V,Vobs,V ∗}. Output: Map segmen-
tation: M = {VJ ,{R j},{B j,k}}

1: VJ = {qg}
2: for all q∗v ⊂V ∗ do
3: if q∗v is a junction node then
4: VJ =VJ ∪{q∗v}
5: {qd

j} j=1,2,··· ,NR ←Clustering(VJ ,‘distance’)
6: {R j} j=1,2,··· ,NR ← RegionSeg(V ∗,{qd

j})
7: for ( j = 1; j = j+1; j ≤ NR) do
8: S←{q∗v ∈V ∗∩R j}
9: {qo

j,k}k=1,2,···←Clustering(S,qd
j , ‘orientation’)

10: {B j,k}k=1,2,···← BranchSeg(S,{qo
j,k})

This divide-and-conquer algorithm consists of three while
loops: (i) identify the farthest region R j where microrobots
exist (Fig. 6(a)), and d〈qd

j ,qg〉 describes the cost from the
j-th junction centroid to goal; (ii) pick a branch with the
highest priority, i.e., with more robots closer to the junction
centroid qd

j (Fig. 6(b)); (iii) identify the closest robot ri to
qd

j , and drive it to the nearest vertex qri
v ∈V , and then move

it towards some vertex in R j.next (Fig. 6(b) and (c)). After
moving all robots in R j to R j.next , we complete a discrete
region transition for a swarm.

Algorithm 5 Divide-and-conquer Aggregation. Input: Tobs =
{V,Vobs,V ∗}, M = {VJ ,{R j},{B j,k}}, initial positions {pri

t0}
of all robots {ri}. Output: ut

1: while F(n, t)> σ do
2: R j← the region with the highest priority
3: while there exists any robot in R j do
4: B j,k← the branch with the highest priority
5: while there exist any robot in B j,k do
6: ri← the closest robot to qd

j
7: qri

v ← the nearest vertex ∈V to ri
8: ut ← move ri towards R j.next via qri

v

To analyze time complexity of the divide-and-conquer
recurrence, we need the following assumptions: (i) the map
is connected and bounded, (ii) “closed region” and “dead
end” definitions, and (iii) aggregation time is proportional
to map area and population. Let G denote a map with
Area(G) =m, Population(G) = n, Density(G) = ρ = n/m. If

(a) (b) (c)

Fig. 6. In simulation, black circles are microrobots, and regions are marked
by colored outline. (a) Robots exist in the purple region Ri and the orange
region R j . R j is the farthest region from the goal (red dot). (b) and (c) The
branch filled with orange has higher priority. R j.next is marked as green.
A control input drives a robot (hollow circle) to R j.next . Repeat this until
transport the whole swarm from R j to R j.next .

T (mn) is the running time for map G, level 0 of recurrence
is:

T (mn) = T (ξ mn)+ f
(
(1−ξ )ρm · (1−ξ )m

)
, (8)

where f ((1− ξ )2ρm2) denotes the aggregation time in the
farthest region (R j) where microrobots exist, with (1−ξ )ρm
the population, (1− ξ )m the area, and ξ a discount factor
(0 < ξ < 1). After we move out all robots of R j, the
aggregation map shrinks.

We assume that the aggregation map shrinks by a constant
area (1−ξ )m each time, then level i has the form

T
(
(1− i(1−ξ ))mn

)
= T

(
(1− (i+1)(1−ξ ))mn

)
+ f
(
(1−ξ )2

ρm2). (9)

Hence, we have

T (mn) = kρm2
1/(1−ξ )

∑
i=0

(1−ξ )2 = kρm2(1−ξ )(2−ξ ) (10)

As ξ increases (0 < ξ < 1), T (mn) decreases. This means
that the more we reduce the map size each time, the
less efficient divide-and-conquer aggregation becomes. As
ξ → 0, we actually have the heuristic aggregation instead.
This is equivalent to decreasing the map size from m to
1 (ξ = 1

m ) with one recurrence. For Eqn. 10, as ξ → 1
m ,

T (mn)→ O(m2); as ξ → 1− k∗
m , for some k∗ ∈ R+, k∗ �

m, T (mn)→ T (m). Hence, the divide-and-conquer strategy
makes it possible to reduce time complexity from T (m2) to
T (m). The finer we can split the map, the smaller k∗ is.

(a) (b) (c)

Fig. 7. Blue polygons represent obstacles, and white channels are free
space. We place a red dot at each goal location. These maps increase in
size and complexity: (a) T-junction map with a junction and region, (b) a
vascular network with 10 junctions and regions, and (c) a larger vascular
network with 31 junctions and regions.
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Fig. 8. Simulated particle aggregation in maps (a,b,c) . The violin plot shows the probability density of the simulation data and the black line indicates
the mean value. We performed 30 simulations for each combination of methods and swarm populations.

V. SIMULATION

We report the simulation results to evaluate our path plan-
ning approaches, RRT and OWRRT, compare the divide-and-
conquer aggregation (DCA) with the heuristic aggregation
(HRA), and study the impact of map and swarm population.

Path planning and aggregation are carried out in three
simulated maps (Fig. 7), including a T-junction map,
and two vascular networks. The obstacles are marked as
blue polygons, and free space is white. To initialize, we
place n microrobots randomly in free space, where n ∈
{21,22,23, · · · ,210}, and each microrobot is represented by
a point with no area. Given a global input ut at time t, all
microrobots will move towards the assigned direction for
one discrete step of unit length (Eqn. 1 and 2). The goal is
to gather microrobots to the goal location. In practice, we
define the task is accomplished if the average position of
the swarm is near the goal, or F(n, t) < σ (dashed circle
in Fig. 7). We count the total number of steps to approx-
imate the running time for swarm aggregation in a map.
In each map, ten different microrobot populations are used.
For each population, we perform 30 simulations for three
combinations of aggregation algorithms and path planning
methods respectively: DCA+OWRRT, HRA+OWRRT, and
HRA+RRT. The results of simulations are compared using
violin plots in Fig. 8.

We evaluate the performance of these algorithms by their
average running time (number of steps) and data distri-
butions. DCA+OWRRT outperforms any other combina-
tions in all these simulation when the swarm population
is large enough (n ≥ 23). The average aggregation time of
DCA+OWRRT does not grow as fast as others, and it tends
to approach an upper bound asymptotically in each vascular
network. Also, this combination shows reliability and effi-
ciency with different environments and swarm populations.
For each independent trial, the aggregation time has small
standard deviation. Neither HRA+OWRRT nor HRA+RRT
can compete with DCA+OWRRT in average aggregation
time when the swarm size is greater than 23. The average
running time of HRA+OWRRT and HRA+RRT increases
with logn in most cases with large standard deviation, and
the worst case can be extremely inefficient.

VI. EXPERIMENT

A. Electromagnetic Platform

We use a custom-made electromagnetic platform which
consists of three orthogonal pairs of coils with separation
distance equivalent to the outer diameter of a coil (Fig.
1a). The coils (18 AWG, Custom Coils, Inc) are powered
by six SyRen10-25 motor drivers with Tekpower HY3020E
DC power supply. An Arduino Mega 2560 provides PWM
signal to control motor drivers, and images are acquired using
an IEEE 1394 camera (50 fps) with the region of interest
approximate 20 mm2. Each image has 379×366 pixels, and
each pixel represents an area of 40 µm2 of the workspace.
We process microrobot detection and tracking in MATLAB
using blob analysis and Kalman filters, and send control input
ut (i.e., the orientation of the magnetic field) to the Arduino
Mega via USB serial port communication. In experiments,
the electromagnetic platform (with iron cores) can provide
over 300 Gauss magnetic fields along any direction in the
20 mm3 workspace center.

B. Experiment Setup

The vascular network we used to validate path planning
and aggregation algorithms is shown in Fig. 1b and Fig.
7b. This maze is made of two layers of acrylic cut using a
Universal Laser Cutter, one layer as the base, and the other as
the polygonal obstacles. The frame is a 20×20 mm2 square,
and the channel width is 2 mm. In each experiment, the
maze is filled with a mixture of microrobots and vegetable
oil (0.45 mL) at the same concentration, and placed in
the workspace center. The microrobots are composed of
ferromagnetic particles (30 microns Fe3O4, Alpha Chemi-
cals). These microparticles aggregate into microrobots that
vary in sizes and shapes, with initial population over 300.
Microrobots align with magnetic fields when the magnitude
is larger than 100 Gauss. We create rotational fields to make
the microrobots roll along the base because magnetic fields
of our platform are not able to move microrobots along the
gradient due to friction. Rolling a uniform field in the vertical
plane at 5 Hz causes microrobots to move at an average
velocity of 80 µm/s, and maximum velocity is over 350
µm/s.



C. Validation of Aggregation Algorithms

The results of the divide-and-conquer aggregation are
compared with those of the benchmark heuristic aggregation
as shown in Fig. 9. The running time is approximated by
number of processed image frames for each experiment (≈
45 fps). The swarm population is estimated by averaging the
number of pixels classified as robots in last 13500 frames (≈
5 min). With similar swarm populations, the average running
time for the benchmark is 93,063 frames (≈ 34.5 min),
and 60,628 frames (≈ 22.5 min) for the divide-and-conquer
algorithm, which reduces by 34.9%. Hence the divide-and-
conquer aggregation outperforms the benchmark.

(2)
(3)

(1)

(4)

(5)

(3)

(4)

(2)

(5)

(1)

Fig. 9. Experiment results: blue diamonds are benchmark data, and red
circles are results for divide-and-conquer aggregation, with an experiment
number next to each marker.

VII. CONCLUSIONS

This paper compared two path-planning methods and two
control strategies applied to the problem of aggregating
microrobot swarms in vascular networks using a global input.
Although RRT creates an obstacle-free path from initial
locations to a goal for a single robot, this path is not
ideal for swarms. We propose an obstacle-weighted RRT
that steers microrobots towards near-medial-axis regions
to reduce environment interference. A divide-and-conquer
strategy is employed to perform swarm-level aggregation
via discrete region transitions. Compared to the benchmark
strategy, the divide-and-conquer aggregation reduces the task
time complexity. Future work should prove the convergence
of our aggregation algorithms, explore a wider variety of
maps, and expand the experiment to 3D space.
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