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Abstract— Micro- and nanorobots can be built in large
numbers, but generating independent control inputs for each
robot is prohibitively difficult. Instead, micro- and nanorobots
are often controlled by a global field. In previous work we
conducted large-scale human-user experiments where humans
played games that steered large swarms of simple robots to
complete tasks such as manipulating blocks. One surprising
result was that humans completed a block-pushing task faster
when provided with only the mean and variance of the
robot swarm than with full-state feedback. Inspired by human
operators, this paper investigates controllers that use only the
mean and variance of a robot swarm. We prove that the mean
position is controllable, and show how an obstacle can make
the variance controllable. We next derive automatic controllers
for these and a hybrid, hysteresis-based switching control to
regulate the first two moments of the robot distribution. Finally,
we employ these controllers as primitives for a block-pushing
task.

I. INTRODUCTION

Micro- and nanorobotics have diverse potential applica-
tions in targeted material delivery, construction, assembly,
and surgery. Constraints on computation prevent autonomous
operation, and direct control over individual units scales
poorly with population size. Instead these systems often
use global control signals broadcast to the entire robot
population. Additionally, it is not always possible to gather
pose information on each robot for feedback control. Robots
might be difficult or impossible to sense individually due to
their size and location. For example, micro-robots are smaller
than the minimum resolution of a clinical MRI-scanner [1].
However, it is often possible to sense global properties of
the group, such as mean position and variance. To make
progress in automatic control with global inputs, this paper
presents swarm manipulation controllers requiring only mean
and variance measurements of the robot’s positions. These
controllers are used as primitives to perform a block-pushing
task illustrated in Fig. 1.

II. RELATED WORK

A. Global-control of micro- and nanorobots

We are particularly motivated by harsh constraints in
micro- and nanorobotic systems. Small robots are often
powered and steered by a global, broadcast control signal.
Examples include scratch-drive microrobots, actuated and
controlled by a DC voltage signal from a substrate [3],
[4]; light-driven nanocars, synthetic molecules actuated by
a specific wavelength of light [5], MagMite microrobots
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Fig. 1. A swarm of robots, all controlled by a uniform force field, can be
effectively controlled by a hybrid controller that knows only the first and
second moments of the robot distribution. Here a swarm of simple robots
(blue discs) pushes a black block toward the goal. See video attachment [2].

with different resonant frequencies controlled by a global
magnetic field [6]; and magnetically controlled nanoscale
helical screws [7], [8]. Large numbers of robots can be
constructed, but the user interaction required to individually
control each robot scales linearly with robot population.
Instead, user interaction is often constrained to modifying
a global input: while one robot is controlled, the rest are
ignored. Making progress in targeted therapy and swarm
manipulation requires the coordinated control of large robot
populations.

B. Human user studies with large swarms

There is currently no comprehensive understanding of user
interfaces for controlling multi-robot systems with massive
populations [9]. Our previous work with over a hundred hard-
ware robots and thousands of simulated robots [10] demon-
strated that direct human control of large swarms is possible.
Unfortunately, the logistical challenges of repeated experi-
ments with over one hundred robots prevented large-scale
tests. To gather better data, we designed SwarmControl.net,
a large-scale online game to test how humans interact with
large swarms [11]. Our goal was to test several scenarios
involving large-scale human-swarm interaction, and to do so
with a statistically-significant sample size. These experiments
showed that numerous simple robots responding to global

http://www.swarmcontrol.net/show_results


control inputs are directly controllable by a human operator
without special training, and that the visual feedback of the
swarm state should be very simple in order to increase task
performance. All code [12], and experimental results were
posted online. The current paper presents motion primitives
and an automatic controller that solves one of the games
from SwarmControl.net.

C. Block-pushing and Compliant Manipulation

Unlike caging manipulation, where robots form a rigid
arrangement around an object [13], [14], our swarm of robots
is unable to grasp the blocks they push, and so our manip-
ulation strategies are similar to nonprehensile manipulation
techniques, e.g. [15], where forces must be applied along the
center of mass of the moveable object. A key difference is
that our robots are compliant and tend to flow around the
object, making this similar to fluidic trapping [16], [17].

Our n-robot system with 2 control inputs and 4n states
is inherently under-actuated, and superficially bears resem-
blance to compliant, under-actuated manipulators [18], [19].
Like these manipulators, the swarm conforms to the object
to be manipulated. However our swarm lacks the restoring
force provided by flexures in [18] and the silicone in [19].
Our swarm tends to disperse itself, so we require artificial
forces, such as the variance control primitives in Section III-
D, to regroup the swarm.

III. THEORY

A. Models

Consider holonomic robots that move in the 2D plane.
We want to control position and velocity of the robots. First,
assume a noiseless system containing one robot with mass
m. Our inputs are global forces [ux, uy]. We define our state
vector x(t) as the x position, x velocity, y position and y
velocity. The state-space representation in standard form is:

ẋ(t) = Ax(t) +Bu(t) (1)
y(t) = Cx(t) +Du(t)

and our state space representation as:
ẋ1
ẋ2
ẋ3
ẋ4

 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



x1
x2
x3
x4

+


0 0
1
m 0
0 0
0 1

m

 [ux, uy] (2)

We want to find the number of states that we can control,
which is given by the rank of the controllability matrix

C = [B,AB,A2B, ..., An−1B]. (3)

Here C =


0 0
1
m 0
0 0
0 1

m

∣∣∣∣∣∣∣∣
1
m 0
0 0
0 1

m
0 0

∣∣∣∣∣∣∣∣
0 0
0 0
0 0
0 0

∣∣∣∣∣∣∣∣
0 0
0 0
0 0
0 0

 , (4)

and thus all four states are controllable.

B. Independent control with multiple robots is impossible

A single robot is fully controllable, but what happens with
n robots? For holonomic robots, movement in the x and y
coordinates are independent, so for notational convenience
without loss of generality we will focus only on movement
in the x axis. Given n robots to be controlled in the x axis,
there are 2n states: n positions and n velocities. Our state-
space representation is:

ẋ1,1
ẋ2.1

...
ẋ1,n
ẋ2,n

 =


0 1 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1
0 0 . . . 0 0




x1,1
x2,1

...
x1,n
x2,n

+


0
1
...
0
1

ux (5)

However, just as with one robot, we can only control two
states because C has rank two:

C =


0
1
...
0
1

∣∣∣∣∣∣∣∣∣∣∣

1
0
...
1
0

∣∣∣∣∣∣∣∣∣∣∣

0
0
...
0
0

∣∣∣∣∣∣∣∣∣∣∣

0
0
...
0
0

∣∣∣∣∣∣∣∣∣∣∣
, . . .

 (6)

C. Controlling Mean Position

This means any number of robots controlled by a global
command have just two controllable states in each axis.
We can not control the position of all the robots, but what
states are controllable? To answer this question we create the
following reduced order system that represents the average
x position and x velocity of the n robots:

[
˙̄x1
˙̄x2

]
=

1

n

[
0 1 . . . 0 1
0 0 . . . 0 0

]

x1,1
x2,1

...
x1,n
x2,n



+
1

n

[
0 0 . . . 0 0
0 1 . . . 0 1

]


0
1
...
0
1

ux (7)

Thus: [
˙̄x1
˙̄x2

]
=

[
0 1
0 0

] [
x̄1
x̄2

]
+

[
0
1

]
ux (8)

We again analyze C:

C =

[
0
1

∣∣∣∣ 10
]

(9)

This matrix has rank two, and thus the average position and
average velocity are controllable.

Due to symmetry, only the mean position and mean ve-
locity are controllable. However, there are several techniques
for breaking symmetry, for example by allowing independent
noise sources [20], or by using obstacles [10].

https://github.com/crertel/swarmmanipulate.git
http://www.swarmcontrol.net/show_results
http://www.swarmcontrol.net/task/varying_visualization


D. Controlling the variance of many robots

The variance, σ2
x, σ

2
y , of the swarm’s position is computed:

x(x) =
1

n

n∑
i=1

x1,i, σ2
x(x) =

1

n

n∑
i=1

(x1,i − x)2,

y(x) =
1

n

n∑
i=1

x3,i, σ2
y(x) =

1

n

n∑
i=1

(x3,i − y)2. (10)

Controlling the variance requires being able to increase
and decrease the variance. We will list a sufficient condition
for each. Both conditions are readily found at the micro and
nanoscale. Real systems, especially at the micro scale, are
affected by unmodelled dynamics. These unmodelled dynam-
ics are dominated by Brownian noise. To model this (1) must
be modified as follows:

ẋ(t) = Ax(t) +Bu(t) +Wε(t) (11)
y(t) = Cx(t) +Du(t)

where Wε(t) is a random perturbation produced by Brow-
nian noise. Given a large free workspace, a Brownian noise
process increases the variance linearly with time.

σ̇2
x(x(t),u(t) = 0) = Wε (12)

If robots with radius r are in a bounded environment with
sides of length [`x, `y], the unforced variance asymptotically
grows to the variance of a uniform distribution,

[σ2
x, σ

2
y] =

1

12
[(`x − 2r)2, (`y − 2r)2]. (13)

A flat obstacle can be used to decrease variance. Pushing
a group of dispersed robots against a flat obstacle will de-
crease their variance until the minimum-variance (maximum
density) packing is reached. For large n, Graham and Sloan
showed that the minimum-variance packing σ2

optimal(n, r)

for n circles with radius r is ≈
√
3
π (nr)2 ≈ 0.55(nr)2 [21].

We will prove the origin is globally asymptotically stabi-
lizable by using a control-Lyapunov function [22]. A suitable
Lyapunov function is squared variance error:

V (t,x) =
1

2
(σ2(x)− σ2

goal)
2

V̇ (t,x) = (σ2(x)− σ2
goal)σ̇

2(x) (14)

We note here that V (t,x) is positive definite and radially
unbounded, and V (t,x) ≡ 0 only at σ2(x) = σ2

goal. To
make V̇ (t,x) negative semi-definite, we choose

u(t) =

{
move to wall if σ2(x) > σ2

goal

move from wall if σ2(x) ≤ σ2
goal.

(15)

For such a u(t),

σ̇2(x) =

{
negative if σ2(x) > max(σ2

goal, σ
2
optimal(n, r))

Wε if σ2(x) ≤ σ2
goal,

(16)

and thus V̇ (t,x) is negative definite and the variance is
globally asymptotically stabilizable.

σ2 < σ2
min

σ2 > σ2
max

Fig. 2. Two states for controlling the mean and variance of a robot swarm.

E. Controlling both mean and variance of many robots

The mean and variance of the swarm cannot be controlled
simultaneously, however if the dispersion due to Brownian
motion is much less than the maximum controlled speed, we
can adopt a hybrid, hysteresis-based controller to regulate
the mean and variance shown in Alg. 1. Such a controller
normally controls the mean position according to (18), but
switches to minimizing variance if the variance exceeds
some σ2

max. The variance is lowered to less than σ2
min, and

the system returns to controlling the mean position. This
is a standard technique for dealing with control objectives
that evolve at different rates [23], [24], and the hysteresis
avoids rapid switching between control modes. The process
is illustrated in Fig. 2.

Algorithm 1 Hybrid mean and variance control
Require: Knowledge of swarm mean [x̄, ȳ], variance

[σ2
x, σ

2
y], the locations of the rectangular boundary

{xmin, xmax, ymin, ymax}, and the target mean position
[xtarget, ytarget].

1: flagx ← false, flagy ← false
2: xgoal ← xtarget, ygoal ← ytarget
3: loop
4: if σ2

x > σ2
max then

5: xgoal ← xmin
6: flagx ← true
7: else if flagx and σ2

x < σ2
min

8: xgoal ← xtarget
9: flagx ← false

10: end if
11: if σ2

y > σ2
max then

12: ygoal ← ymin
13: flagy ← true
14: else if flagy and σ2

y < σ2
min

15: ygoal ← ytarget
16: flagy ← false
17: end if
18: Apply (18) to move toward [xgoal, ygoal]
19: end loop

A key challenge is to select proper values for σ2
min and

σ2
max. The optimal packing variance is σ2

optimal(n, r) =
√
3
π nr

2. The random packings generated by pushing our
robots into corners are suboptimal, so we choose the conser-
vative values shown in Fig. 3:

σ2
min = 2.5r + σ2

optimal(n, r)

σ2
max = 15r + σ2

optimal(n, r). (17)
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Fig. 3. The switching conditions for variance control are set as a function
of n, and designed to be larger than the optimal packing density. The above
plot uses robot radius r = 1/10.
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Fig. 4. Tuning proportional (Kp, top) and derivative (Kd, bottom) gain
values in (18) improves performance with n = 100 robots.

IV. SIMULATION

Our simulations use a Javascript port of Box2D, a popular
2D physics engine with support for rigid-body dynamics and
fixed-time step simulation [26]. All experiments ran on a
Chrome web browser on a 2.6 GHz Macbook. All code is
available at [27].

A. Controlling the mean position

We control mean position with a PD controller that uses
the mean position and mean velocity. Our control input is
the global force applied to each robot:

ux = Kp(xgoal − x̄) +Kd(0− v̄x)

uy = Kp(ygoal − ȳ) +Kd(0− v̄y) (18)

here Kp is the proportional gain, and Kd is the derivative
gain. We performed a parameter sweep to identify the best
values. Representative experiments are shown in Fig. 4. 100
robots were used and the maximum speed was 3 meters per
second. As shown in Fig. 4, we can achieve an overshoot of
1% and a rise time of 1.52 s with Kp = 4, and Kd = 1.
Fig. 5 shows an example of controlling mean position by
making it trace the word “SWARM”.

Fig. 5. A frame from video attachment showing mean position control on a
swarm of 200 robots. The mean position of the swarm traces “SWARM” [2].
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Fig. 6. Increased noise results in more responsive variance control because
stronger Brownian noise causes a faster increase of variance.

B. Controlling the variance

For variance control we use the control law discussed
in Section III-D. Moving away from the wall and waiting
is sufficient to increase variance because Brownian noise
naturally disperses the swarm in such a way that the variance
increases linearly [25]. If faster dispersion is needed, the
swarm can be pushed through obstacles such as a diffraction
grating or Pachinko board [10].

The variance control law to regulate the variance to σ2
ref

has three gains:

ux = Kp(xgoal(σ
2
ref )− x̄)−Kdv̄x +Ki(σ

2
ref − σ2

x)

uy = Kp(ygoal(σ
2
ref )− ȳ)−Kdv̄y +Ki(σ

2
ref − σ2

y).
(19)

In a slight abuse of notation we call the gain scaling
the variance error Ki because the variance, if unregulated,
integrates over time. Eq. (19) assumes the nearest wall is to
the left of the robot at x = 0, and chooses a reference goal
position that in steady-state would have the correct variance
according to (13):

xgoal(σ
2
ref ) = r +

√
3σ2

ref (20)

If another wall is closer, the signs of [Kp,Ki] are inverted,
and the location xgoal is translated. Results are shown in
Fig. 6, with Kp,i,d = [4, 1, 1].

C. Hybrid Control of mean and variance

Fig. 7 shows a simulation run of the hybrid controller in
Alg. 1 with 100 robots in a square workspace containing no
internal obstacles. Fig. 8 shows the experiment of running
the hybrid controller.

http://box2d.org/
https://github.com/aabecker/SwarmControlSandbox/blob/master/exampleControllers/BlockPushingIROS2015.html
https://github.com/aabecker/SwarmControlSandbox/blob/master/exampleControllers/BlockPushingIROS2015.html
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Fig. 7. Simulation result with 100 robots under hybrid control Alg. 1,
which controls both the mean position (top) and variance (bottom). For ease
of analysis, only x position and variance are shown.

Fig. 8. A frame from video, using Alg. 1 to control variance and mean
position of a swarm of 200 robots [2].

V. BLOCK-PUSHING RESULTS

This section analyzes a block-pushing task attempted by
both our hybrid, hysteresis-based controller and by human
users.

A. Human-Controlled Block-Pushing

In previous work over 1000 human users completed an
online version of this task using varying levels of feedback.
The original experiment explored manipulation with varying
amounts of sensing information: full-state sensing showed
the position of all robots; convex-hull drew a convex hull
around the outermost robots; mean displayed the average
position of the population; and mean + variance added a
confidence ellipse. Fig. 9 shows screenshots of the same
robot swarm with each type of visual feedback. Full-state
requires 2n data points for n robots. Convex-hull requires
at worst 2n, but usually a smaller number. Mean requires
two, and variance three, data points. Mean and mean +
variance are convenient even with millions of robots. We
hypothesized a steady decay in performance as the amount
of visual feedback decreased.

To our surprise, the results indicated the opposite: players
with just the mean completed the task faster than those with
full-state feedback. As Fig. 10 shows, the levels of feedback
arranged by increasing completion time are [mean, mean +

variance, full-state, convex-hull]. Interviews with beta-testers
suggests that tracking 100 robots was overwhelming—
similar to schooling phenomenons that confuse predators—
while working with just the mean + variance was like using a
“spongy” manipulator. Convex-hull feedback was confusing
and irritating because a single robot left behind an obstacle
would distort the entire hull, obscuring the information about
the majority of the swarm.

B. Automated Block-Pushing

Fig. 11 shows snapshots during an execution of this
algorithm. To solve this block-pushing task, we discretized
the environment. On this discretized grid we used breadth-
first search to determine M, the shortest distance from any
grid cell to the goal, and generated a gradient map ∇M
toward the goal as shown in Fig. 12. The block’s center of
mass is at b and has radius rb. Three constants are needed,
where k1 > k2 > 1 and 1 > k2 > 0. All experiments
used [k1, k2, k3] = [2.5, 1.5, 0.1]. The robots were directed
to assemble behind the block at b − k2rb∇M(b), then
move to b − k3rb∇M(b) to push the block toward the
goal location. We use the hybrid hysteresis-based controller
in Alg. 1 to track the desired position, while maintaining
sufficient robot density to move a block by switching to
minimize variance whenever variance exceeds a set limit.
The minimize variance control law (19) is slightly modified
to choose the nearest corner further from the goal than b with
an obstacle-free straight-line path to b. The control algorithm
for block-pushing is listed in Alg. 2. Experimental results are
summarized in Fig. 13. Although larger populations of robots
can apply more force, minimizing the variance requires more
time with larger populations and dominates task completion
time.

Full-state Convex-hull Mean + var Mean

Fig. 9. Screenshots from a block-pushing task with human users. This
experiment challenged players to quickly steer 100 robots (blue discs) to
push an object (green hexagon) into a goal region.
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Fig. 10. Completion-time results for the four levels of visual feedback
shown in Fig. 9.



T = 5 s T = 12 s T = 20 s T = 25 s T = 33 s

Fig. 11. Snapshots showing the block-pushing experiment with 200 robots under automatic control. See the video attachment for an animation [2].

Algorithm 2 Block-pushing controller for a robotic swarm.
Require: Knowledge of swarm mean [x̄, ȳ], variance

[σ2
x, σ

2
y], moveable block’s center of mass b, map of the

environment, and the locations of all convex corners C
Require: Robot distribution is unimodal
Require: Obstacle-free, straight-line path from swarm to

moveable block
1: Compute M, the distance to goal, with breadth-first

search
2: Compute the gradient, ∇M
3: C← sort(C) according to −M
4: while b is not in goal region do
5: σ2 ← max (σx, σy)
6: if σ2 > σ2

max then
7: while σ2 > σ2

min do
8: ci ← the nearest corner in C to [x̄, ȳ]
9: [xgoal, ygoal]← ci

10: if M(b) >M(ci) then
11: [xgoal, ygoal]← ci−1
12: Apply (18) to move toward [xgoal, ygoal]
13: end if
14: end while
15: else
16: if distance(b, [xgoal, ygoal]) > k1rb then
17: rp ← k2rb . guarded move
18: else
19: rp ← k3rb . pushing move
20: end if
21: [xgoal, ygoal]← b− rp∇M(b)
22: end if
23: Apply (18) to move toward [xgoal, ygoal]
24: end while

Fig. 12. The BFS algorithm finds the shortest path for the moveable block
(left), which is used to compute gradient vectors (right).
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Fig. 13. Completion-time results using the automatic controller from
Alg. 2 for different numbers of robots. Each bar is labelled with the number
of trials.

Algorithm 2 is an imperfect solution and has a failure
mode if the robot swarm becomes multi-modal with modes
separated by an obstacle, as shown in Fig. 14. In this case,
moving toward a corner will never reduce the variance below
σ2
min.
The first challenge is to identify when the distribution has

become multi-modal. Measuring just the mean and variance
is insufficient to determine if a distribution is no longer
unimodal, but if the swarm is being directed to a corner, and
the variance does not reduce below σ2

min, the swarm has
become separated. In this case, we must either manipulate
with a partial swarm, or run a gathering algorithm. For the
‘S’-shaped workspace in this study, an open-loop input that
commands the swarm to move in succession {LEFT, DOWN,
RIGHT, DOWN} will move the swarm to the bottom right
corner. This is not true for all obstacle fields. In a ‘T’-shaped
workspace, it is not possible to find an open-loop input that
will move the entire swarm to the bottom of the ‘T’.

Using only the mean and variance may be overly re-
strictive. Many heuristics using high-order moments have
been developed to test if a distribution is multimodal [28].
Often the sensor data itself, though it may not resolve
individual robots, will indicate multi-modality. For instance
CCD images reveal clusters of bacteria, and MRI scans show
agglomerations of particles [29]. This data can be fitted
with k-means or expectation maximization algorithms, and
manipulation could be performed with the nearest swarm of

http://youtu.be/tCej-9e6-4o
http://youtu.be/tCej-9e6-4o


Fig. 14. Algorithm 2 fails when some robots are separated by the maze
and the swarm can not achieve σ2 < σ2

min. These failures occured during
14% of trials.

sufficient size.

VI. CONCLUSION AND FUTURE WORK

Inspired by large-scale human experiments with swarms
of robots under global control, this paper investigated con-
trollers that use only the mean and variance of a robot
swarm. We proved that the mean position is controllable, and
provided conditions under which variance is controllable. We
derived automatic controllers for each and a hysteresis-based
switching control that controls the mean and variance of a
robot swarm. We employed these controllers as primitives
for a block-pushing task.

Future work should implement these controllers on a
robot swarm and decrease completion time by avoiding
counter-productive contact with the block while the swarm
is lowering its variance. We have also assumed the swarm is
unimodal and has a straight-line path to the moveable block.
Relaxing these assumptions requires solving the gathering
problem. The gathering problem for a swarm with uniform
inputs is largely unexplored, and must be examined proba-
bilistically for nontrivial environments.
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