
Particle Computation: Device Fan-out and Binary Memory

Hamed Mohtasham Shad, Rose Morris-Wright, Erik D. Demaine, Sándor P. Fekete, Aaron T. Becker

Abstract— We present fundamental progress on the computa-
tional universality of swarms of micro- or nano-scale robots in
complex environments, controlled not by individual navigation,
but by a uniform global, external force. Consider a 2D grid
world, in which all obstacles and robots are unit squares,
and for each actuation, robots move maximally until they
collide with an obstacle or another robot. In previous work,
we demonstrated components of particle computation in this
world, designing obstacle configurations that implement AND
and OR logic gates: by using dual-rail logic, we designed NOT,
NOR, NAND, XOR, XNOR logic gates. However, we were unable
to design a FAN-OUT gate, which is necessary for simulating
the full range of complex interactions that are present in
arbitrary digital circuits. In this work we resolve this problem
by proving unit-sized robots cannot generate a FAN-OUT gate.
On the positive side, we resolve the missing component with
the help of 2×1 robots, which can create fan-out gates that
produce multiple copies of the inputs. Using these gates we are
able to establish the full range of computational universality
as presented by complex digital circuits. As an example we
connect our logic elements to produce a 3-bit counter. We also
demonstrate how to implement a data storage element.

I. INTRODUCTION

One of the exciting new directions of robotics is the
design and development of micro- and nanorobot systems,
with the goal of letting a massive swarm of robots perform
complex operations in a complicated environment. Due to
scaling issues, individual control of the involved robots be-
comes physically impossible: while energy storage capacity
drops with the third power of robot size, medium resistance
decreases much slower. As a consequence, current micro-
and nanorobot systems with many robots are steered and
directed by an external force that acts as a common control
signal [1]–[7]. These common control signals include global
magnetic or electric fields, chemical gradients, and turning
a light source on and off.

Clearly, having only one global signal that uniformly
affects all robots at once poses a strong restriction on the
ability of the swarm to perform complex operations. The only
hope for breaking symmetry is to use interactions between
the robot swarm and obstacles in the environment. The
key challenge is to establish if interactions with obstacles
are sufficient to perform complex operations, ideally by
analyzing the complexity of possible logical operations. In
previous work [8]–[10], we were able to demonstrate how

H. Mohtasham mohtasham@gmail.com, R. Morris-Wright
rmorriswright@gmail.com, E. Demaine is with the Computer
Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA
02139, USA, edemaine@mit.edu, S. Fekete is with the Dept. of
Computer Science, TU Braunschweig, Mühlenpfordtstr. 23, 38106
Braunschweig, Germany, s.fekete@tu-bs.de, A. Becker is with the
Dept. of Electrical and Computer Engineering, University of Houston,
Houston, TX 70004, USA atbecker@uh.edu.

Fig. 1. Gravity-fed hardware implementation of particle computation. The
reconfigurable prototype is setup as a FAN-OUT gate using a 2×1 robot
(white). This paper proves that such a gate is impossible using only 1×1
robots. See the demonstrations in the video attachment http://youtu.
be/EJSv8ny31r8.

a subset of logical functions can be implemented; however,
devising a fan-out gate (and thus the ability to replicate and
copy information) appeared to be prohibitively challenging.
In this paper, we resolve this crucial question by showing
that only using unit-sized robots is insufficient for achieving
computational universality. Remarkably, adding a limited
number of domino-shaped objects is sufficient to let a com-
mon control signal, mobile particles, and unit-sized obstacles
simulate a computer. While this does not imply that large-
scale computational tasks should be run on these particle
computers instead of current electronic devices, it establishes
that future nano-scale systems are able to perform arbitrarily
complex operations as part of the physical system, instead
of having to go through external computational devices.

A. Model

This paper builds on the techniques for controlling many
simple robots with uniform control inputs presented in [8]–
[10], using the following rules:

1) A planar grid workspace W is filled with a number of
unit-square robots (each occupying one cell of the grid)
and some fixed unit-square blocks. Each unit square
in the workspace is either free, which a robot may
occupy or obstacle which a robot may not occupy.
Each square in the grid can be referenced by its
Cartesian coordinates x = (x, y).

2) All robots are commanded in unison: the valid com-
mands are “Go Up” (u), “Go Right” (r), “Go Down”
(d), or “Go Left” (l).

3) The robots all move in the commanded direction until
they hit an obstacle or a stationary robot. A command

mohtasham@gmail.com
rmorriswright@gmail.com
edemaine@mit.edu
s.fekete@tu-bs.de
http://youtu.be/EJSv8ny31r8
http://youtu.be/EJSv8ny31r8
http://youtu.be/EJSv8ny31r8
http://youtu.be/EJSv8ny31r8
http://youtu.be/EJSv8ny31r8

A
B

S

C

Fig. 2. The half adder shown above requires two copies of A and B.

sequence m consists of an ordered sequence of moves
mk, where each mk ∈ {u, d, r, l} A representative
command sequence is 〈u, r, d, l, d, r, u, . . .〉. We as-
sume the area of W is finite and issue each command
long enough for the robots to reach their maximum
extent.

B. Dual-Rail Logic and FAN-OUT Gates

As shown in [8], AND and OR can be implemented with
unit-size particles. However, particle logic is conservative—
particles are neither created nor destroyed—and we were
unable to implement a NOT gate. To implement NOT gates
and other logic we used dual-rail logic, where two lines for
each input are supplied to explicitly represent the variable
and its complement [10]. Here we show that dual-rail logic
is necessary, as single-rail logic is insufficient to produce a
NOT gate.

The fan out of a logic gate output is the number of gate
inputs it can feed or connect to. With particle logic, as
demonstrated in [9], each logic gate output could fan out to
only one gate. This is sufficient for sum of products and prod-
uct of sums operations in CPLDs (complex programmable
logic devices), but insufficient for more flexible architectures.
Consider the half-adder shown in Fig. 2. The inputs A and
B are needed to compute both the SUM and the CARRY bits,
so the fanout of A and B is two. In this paper we prove the
insufficiency of unit-sized particles for the implementation of
fan-out gates, and design a fan-out gate using 2×1 particles.

C. Contributions

After a brief overview of related work, the contributions
of this paper are as follows:

1) We prove the necessity of dual-rail logic for Boolean
logic (Section III).

2) We prove the insufficiency of unit-size particles for
gate fan-out (Section III).

3) We design FAN-OUT gates (Section IV-B).
4) We design memory latches (Section IV-C).
5) We present architecture for device integration, design a

common clock sequence, and present a binary counter
(Section IV-D).

6) We present the design and implementation of a large-
scale particle computation prototype (Section V).

II. RELATED WORK

Our efforts have similarities with mechanical computers,
computers constructed from mechanical, not electrical com-
ponents. For a fascinating nontechnical review, see [11].
These devices have a rich history, from the Pascaline, an

adding machine invented in 1642 by a nineteen-year old
Blaise Pascal; Herman Hollerith’s punch-card tabulator in
1890; to the mechanical devices of IBM culminating in
the 1940s. These devices used precision gears, pulleys, or
electric motors to carry out calculations. Though our GRID-
WORLD implementations are rather basic, we require none
of these precision elements—merely unit-size obstacles, and
sliding particles sized 2×1 and 1×1 for achieving computa-
tional universality.

A. Collision-Based Computing

Collision-based computing has been defined as “com-
putation in a structureless medium populated with mobile
objects”. For a survey of this area, see the excellent collec-
tion [12]. Early examples include the billiard-ball computer
proposed by Fredkin and Toffoli using only spherical balls
and a frictionless environment composed of elastic collisions
with other balls and with angled walls [13]. Another popular
example is Conway’s Game of Life, a cellular automaton
governed by four simple rules [14]. Cells live or die based
on the number of neighbors. These rules have been examined
in depth and used to design a Turing-complete computer
[15]. Game of life scenarios and billiard-ball computers are
fascinating, but lack a physical implementation. In this paper
we present a collision-based system for computation and
provide a physical implementation.

B. Sliding-Block Puzzles

Sliding-block puzzles use rectangular tiles that are con-
strained to move in a 2D workspace. The objective is to
move one or more tiles to desired locations. They have a
long history. Hearn [16] and Demaine [17] showed tiles can
be arranged to create logic gates, and used this technique
to prove PSPACE complexity for a variety of sliding-block
puzzles. Hearn expressed the idea of building computers
from the sliding blocks—many of the logic gates could be
connected together, and the user could propagate a signal
from one gate to the next by sliding intermediate tiles. This
requires the user to know precisely which sequence of gates
to enable/disable. In contrast to such a hands-on approach,
with our architecture we can build circuits, store parameters
in memory, and then actuate the entire system in parallel
using a global control signal.

C. Other Related Work on Programmable Matter

Clearly there is a wide range of interesting scenarios
for developing approaches to programmable matter. One
such model is the abstract Tile-Assembly Model (aTAM)
by Winfree [18]–[20], which has sparked a wide range of
theoretical and practical research. In this model, unit-sized
pixels (“tiles”) interact and bond with the help of differently
labeled edges, eventually composing complex assemblies.
Even though the operations and final objectives in this model
are quite different from our particle computation with global
inputs (e.g., key features of the aTAM are that tiles can
have a wide range of different edge types, and that they
keep sticking together after bonding), there is a remarkable

geometric parallelism to a key result of our present paper:
While it is widely believed that at the most basic level of
interaction (called temperature 1), computational universality
cannot be achieved [21]–[23] in the aTAM with only unit-
sized pixels, very recent work [24] shows that computational
universality can be achieved as soon as even slightly bigger
tiles are used. This resembles the results of our paper, which
shows that unit-size particles are insufficient for universal
computation, while employing bigger particles suffices.

III. THEORY

First we provide terminology to define how robots interact
with each other.

a) Definition of hit: During move mk, robot a hits
robot b if a is prevented from reaching location x = (x, y)
because robot b occupies this location. Robot b’s location at
the end of mk will be x and robot a’s location at the end of
mk can be calculated as follows:

(x− 1, y) if mk = r
(x+ 1, y) if mk = l
(x, y − 1) if mk = u
(x, y + 1) if mk = d

b) Definition of path: As robot r travels from s to g, it
passes through a sequence of locations {s, . . . , g}. We call
this sequence of locations r’s path.

Lemma 1: Given a workspace W , a command sequence
m, and a robot r traveling along a path beginning at location
s, this path can only be changed by introducing a new robot
that r hits, or by removing one of the robots that r hit before.

Proof: By definition, the path is the sequence of loca-
tions occupied by the robot. The path is entirely determined
by four factors: the starting location of the robot, the com-
mand sequence, obstacles in the workspace, and encounters
with other robots already occupying free locations. If no hits
with other robots are added or subtracted, then robot r will
start in the same place, receive the same command sequence
and encounter the same obstacles, so robot r’s path will
remain unchanged. Note that r’s path is still unchanged if it
is hit by another robot. According to our definition of a hit,
if robot q hits r, then r’s path is unchanged, while if robot
r hits q then r’s path is changed.

Now we show that adding more unit-sized robots cannot
prevent a location from being occupied at the end of the
command sequence.

Theorem 2: If given a workspace W and a command
sequence m that moves a robot from a start location s to a
goal location g, adding additional robots anywhere in W at
any stage of the command sequence cannot prevent g from
being occupied at the conclusion of sequence m.

Proof: Consider the effect of adding robot b to
workspace W . If a never hits b, then by Lemma 1, a’s
path remains the same. Therefore, at the conclusion of m,
a occupies g.

Now suppose a hits b. By the definition of a hit, b prevents
a from reaching some location x because b already occupies
this location. After the hit, the command sequence will

continue and so robot b will continue on a’s original path,
following the same instructions and therefore ending up in
the same location, g unless b hits yet another robot. By
induction, we can clearly see that such additional robots will
have the same effect. If b hits any other robot, this robot will
continue on the original path. Thus by adding more robots,
it is impossible to prevent some robot from occupying g at
the conclusion of m.

Corollary 3: A NOT gate without dual-rail inputs cannot
be constructed.

Proof: By contradiction. A particle logic NOT gate
without dual-rail inputs has one input at s, one output at g, an
arbitrary, possibly zero, number of asserted inputs which are
all initially occupied, and an arbitrary, possibly zero, number
of waste outputs.

In order for the NOT gate conditions to be satisfied, given
a command sequence m:

1) if s is initially unoccupied, g must be occupied at the
conclusion of m

2) if s is initially occupied, g must be unoccupied at the
conclusion of m

By Theorem 2, if s initially unoccupied results in g being
occupied by some robot r at the conclusion of m, then the
addition of a robot q at s cannot prevent g from being filled,
resulting in a contradiction.

This shows that dual-rail logic is necessary for the forma-
tion of NOT gates.

Additionally, we show that 1 × 1 robots are insufficient
to produce fan-out gates. To this end, we must examine
the possibilities both when we add additional robots to the
scenario, as well as when we remove robots.

Theorem 4: If given a workspace W and a command
sequence m that moves two robots, r1 and r2, initially at s1
and s2, to respective goal locations g1 and g2, then removing
one robot results in either g1 or g2 being occupied at the
conclusion of m.

Proof: Without loss of generality, robot r1 is removed.
First suppose r2 never hits r1. Then the removal of r1 will

not affect the path of r2. Robot r2 has the same number of
hits that it had before the removal of r1 and so by Lemma 1,
r2 will follow the same path and occupy g2 at the conclusion.

Alternatively, suppose r2 hit r1 when r1 was occupying
location x. Because r1 is removed, it no longer occupies x
during this move; because it was stopped in the common
direction when being hit by r2, robot r2 gets stopped by
this obstacle at location x, previously occupied by r1. r2
now proceeds along the path previously traveled by r1.
Effectively, r2 has replaced r1 and follows the path until it
reaches g1. Successive hits between r2 and r1 in the original
scenario are resolved in the same manner.

Corollary 5: A conservative dual-logic FAN-OUT gate
cannot be constructed using only 1×1 robots.

Proof: We assume such a FAN-OUT gate exists and
reach a contradiction. Consider a FAN-OUT gate W , dual-
rail input locations sa, sa, and dual-rail output locations
{ga1

, ga2
, ga1

, ga2
}. Because particle logic is conservative

there must also be one additional input location sr and robot

Inputs Outputs
A A 1 A A A A
0 1 1 0 0 1 1
1 0 1 1 1 0 0

TABLE I
FAN-OUT OPERATION. THIS CANNOT BE IMPLEMENTED WITH 1×1

PARTICLES AND OBSTACLES. OUR TECHNIQUE USES 2×1 PARTICLES.

r. A FAN-OUT gate implements the truth table shown in Table
I. Given an arbitrary command sequence m:

1) if sa and sr are initially occupied and sa vacant, at
the conclusion of m then ga1

and ga2
are occupied

and the locations ga1
and ga2

are vacant.
2) if sa is initially vacant and sa and sr are occupied, at

the conclusion of m then ga1
and ga2

are vacant and
the locations ga1 and ga2 are occupied.

We will now assume that condition 1, above, is the original
scenario and add and subtract robots, applying theorems 2
and 4, to show that it is impossible to meet condition 2.

Assume condition 1. Robots a and r start at sa and sr
respectively and at the conclusion of m, the locations ga1
and ga2 are occupied. Now remove robot a. According to
Thm. 4, either ga1 or ga2 must be occupied at the conclusion
of m. Suppose without loss of generality that ga1 is filled.
By Thm. 2, adding an additional robot at location sa cannot
prevent ga1

from being filled. However, to meet condition 2,
ga1

must be vacant, thus no such gate is possible.

IV. DEVICE AND GATE DESIGN

This section describes how the clock signal, logic gates,
and wiring were designed.

A. Choosing a clock signal

The clock sequence is the ordered set of moves that are
simultaneously applied to every particle in our workspace.
We call this the clock sequence because, as in digital
computers, this sequence is universally applied and keeps
all logic synchronized.

A clock sequence determines the basic functionality of
each gate. To simplify implementation in the spirit of
Reduced Instruction Set Computing (RISC), which uses a
simplified set of instructions that run at the same rate, we
want to use the same clock cycle for each gate and for all
wiring. Our early work used a standard sequence 〈d, l, d, r〉.
This sequence can be used to make AND, OR, XOR, and
any of their inverses. This sequence can also be used for
wiring to connect arbitrary inputs and outputs, as long as the
outputs are below the inputs. Unfortunately, 〈d, l, d, r〉 cannot
move any particles upwards. To connect outputs as inputs
to higher-level logic requires an additional reset sequence
that contains a 〈u〉 command. Therefore, including all four
directions is a necessary condition for a valid clock sequence.
The shortest sequence has four commands, each appearing
once. We choose the sequence, 〈d, l, u, r〉, and by designing

A 1 A A 1 A

A A A A A A A A
〈d〉 A = 0 A = 1

〈d, l〉 A = 0 A = 1

〈d, l, d, r〉 A = 0 A = 1
A A A A A A A A

Fig. 3. A single input, two-output FAN-OUT gate. This gate requires a
dual-rail input, a supply particle, and a 2× 1 slider. The clockwise control
sequence 〈d, l, u, r〉 duplicates the dual-rail input.

examples prove that this sequence is sufficient for logic gates,
FAN-OUT gates, and wiring.

This clock sequence has the attractive property of be-
ing a clockwise (CW) rotation through the possible input
sequences. One could imagine our particle logic circuit
mounted on a wheel rotating about an axis parallel to the
ground. If the particles were moved by the pull of gravity,
each counter-clockwise revolution would advance the circuit
by one clock cycle.

B. A FAN-OUT Gate

A FAN-OUT gate with two outputs implements the truth
table in Table I. This cannot be implemented with 1×1
particles and obstacles, by corollary 5. Our technique uses
2×1 particles. A single-input, two-output FAN-OUT gate is
shown in Fig 3. This gate requires a dual-rail input, a supply
particle, and a 2× 1 slider. The clockwise control sequence
〈d, l, u, r〉 duplicates the dual-rail input.

The FAN-OUT gate can drive multiple outputs. In Fig. 4
a single input drives four outputs. This gate requires a dual-
rail input, three supply particles, and a 2 × 1 slider. The
clockwise control sequence 〈d, l, u, r〉 quadruples the dual-
rail input. In general, an n-output FAN-OUT gate with control
sequence 〈d, l, u, r〉 requires a dual-rail input, n− 1 supply
particles, and one 2 × 1 slider. It requires an area of size
4(n+ 1)× 2(n+ 1).

C. Data Storage

A general-purpose computer must be able to store data.
A 2× 1 particle enables us to construct a read/writable data
storage for one bit. A single-bit data storage latch is shown
in Fig. 5 and implements the truth table in Table II. By
combining an n-out FAN-OUT gate shown in Fig 4 with n

〈d, l〉 A = 0 A = 1

1 1 1 A A 1 1 1 A A

A A A A A A A A A A A A A A A A

〈d, l, u, r〉A = 0 A = 1

1 1 1 A A 1 1 1 A A

A A A A A A A A A A A A A A A A

Fig. 4. The FAN-OUT gate can drive multiple outputs. Here a single
input drives four outputs. This gate requires a dual-rail input, three supply
particles, and a 2 × 1 slider. The clockwise control sequence 〈d, l, u, r〉
quadruples the dual-rail input.

Q R S C Q QR W1 W2 QR

0 1 0 0 0 0 0 0 1
0 0 1 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
1 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1
1 0 0 1 0 0 1 1 0

TABLE II
A SINGLE-BIT DATA STORAGE LATCH WITH STATE Q.

data storage devices, we can implement an n-bit memory.
To maintain conservative properties of the computer, i.e., the
same number of robots enter and leave each gate, single-bit
data storage latches must be used in pairs to record the state
and its inverse.

D. A Binary Counter

Using the FAN-OUT gate from Section IV-B we can
generate arbitrary Boolean logic. The half-adder from Fig. 2
requires a single FAN-OUT gate, one AND and one XOR gate.

We illustrate how several gates can be combined by
constructing a binary counter, shown in Fig. 6. Six logic
gates are used to implement a 3-bit counter. A block diagram
of the device is shown in Fig. 7. The counter requires three
FAN-OUT gates, two adders, and one carry. Six 1×1 particles
and three 2×1 particles are used. The counter has three levels
of gates 〈d, l, d, r〉 and requires three interconnection moves
〈d, l, d, r〉, for a total of 24 moves per cycle.

E. Scaling Issues

Particle computation requires multiple clock cycles,
workspace area for gates and interconnections, and many
particles. In this section we analyze how these scale with
the size of the counter, using Fig. 7 as a reference.

a) gates: an n-bit counter requires 3(n − 1) gates: n
FAN-OUT gates, n−1 summers (XOR) gates, and n−2 carry
(AND) gates.

b) particles: we require n 1×1 particles, one for each
bit and n 2×1 particles, one for each FAN-OUT gate.

c) propagation delay: the counter requires n stages of
logic, and n corresponding wiring stages. Each stage requires
a complete clock cycle 〈d, l, u, r〉 for a total of 8n moves.

These requirements are comparable to a ripple-carry adder:
the delay for n bits is n delays and requires 5(n−1)+2 gates.
Numerous other schemes exist to speed up the computation;
however, using discrete gates allows us to use standard
methods for translating a Boolean expression into gate-level
logic. If speed was critical, instead of using discrete gates,
we could engineer the workspace to directly compute the
desired logic.

F. Optimal Wiring Schemes

With our current CW clock cycle, we cannot have outputs
from the same column as inputs—outputs must be either one
to the right, or three to the left. Choosing one of these results
in horizontal shifts at each stage and thus requires spreading
out the logic gates. A better wiring scheme cycles through
three layers that each shift right by one, followed by one
layer that shifts left by three. We also want the wiring to be
tight left-to-right. If our height is also limited, wire buses,
shown in Fig. 6 provide a compact solution.

V. EXPERIMENT

A large-scale prototype was built as a physical imple-
mentation of particle computation with global inputs, shown
in Fig. 1. The design is inspired by the gravity-fed logic
maze TiltTM http://www.thinkfun.com/tilt. Fig-
ure 9 shows a functioning single-input, four-output FAN-
OUT gate. The left column replicates an A input, and the
right column an A, both represented by a red 1×1 particle.
The gate requires three 1×1 supply particles, shown in blue.
The slider is white and the obstacles are yellow. The video
attachment demonstrates how the gates are constructed and
shows each variant in operation.

The experimental setup consists of Plexiglas square
boards, which can be assembled together to form a bigger
board. Each board has 12 vertical and 12 horizontal slots
that constitute a checkered board. Each slot is 5mm in width
and 4mm in depth. The distance between adjacent slots
is 20mm. Different configurations can be achieved using
19mm×19mm obstacles, which can be fitted in any slot
junction. A clearance of 0.5mm on each side of the obstacle
ensures that moving parts can slide past. There are two
types of moving parts; 1×1 and 1×2 sliders. 1×1 sliders are
19.5mm diameter steel cylinders. Beneath this top cylinder
is a cylindrical peg with a diameter of 4mm that guides
the slider through the slot. 1×2 sliders are 20mm×40mm
rectangular steel parts with a rectangular guide at the bottom.

The board can rotate along two perpendicular axes and
these rotations generate the four valid commands. Both types
of sliders start moving at 12.5◦. Experimental data on success
rate as a function of tipping angle are shown in Fig. 8. We
chose a rotation of 20◦ for each command to ensure that
sliders slide reliably.

http://www.thinkfun.com/tilt

<d>

<d,l>

Q = true Q = false

<d,l,u,r,d>
Q = true Q = true Q = true Q = false Q = false Q = false

Q 𝑅 W2 Q𝑅 W1 W2 Q 𝑅

Fig. 5. A flip-flop memory. This device has three inputs, Read, Set, Clear, a state variable (shown in blue), and a 2 × 1 slider. Depending on which
input is active, the clockwise control sequence 〈d, l, u, r〉 will read, set, or clear the memory.

Fig. 6. A three-bit counter implemented with particles. The counter re-
quires three FAN-OUT gates, two summers, and one carry. Six 1×1 particles
and three 2×1 particles are used. The counter has three levels of gates
actuated by CW sequence 〈d, l, u, r〉 and requires three interconnection
sequences 〈d, l, u, r〉, for a total of 24 moves. See video attachment for
animation.

VI. CONCLUSION

In this paper we (1) proved the insufficiency of unit-size
particles for gate fan-out; (2) established the necessity of
dual-rail logic for Boolean logic; (3) designed FAN-OUT
gates and memory latches by employing slightly different
particles; (4) presented an architecture for device integration,
a common clock sequence, and a binary counter, and (5)
implemented a large-scale prototype of particle computation.

This work, along with [8]–[10], introduces a new model
for mechanical computation. Interesting applications will aim
at nanoscale and microfluidics work.

Fig. 7. Gate-level diagram for an n-bit counter. The counter requires
n− 1 XOR gates, n− 2 AND gates, and 1 NOT gate.rotationangle*(degree) 12 13 14 15 20 12 13 14 15 20

failures*per*50*tests 10 1 3 0 0 6 8 0 0 0
success*rate*(percent) 80 98 94 100 100 88 84 100 100 100

1x1*slider 1x2*slider

75*

80*

85*

90*

95*

100*

105*

11* 13* 15* 17* 19* 21*

Su
cc
es
s*r
at
e*
(p
er
ce
nt
)*

Angle*of*rota@on*(degree)*

Successful*commands*per*50*
tests*with*1x1*slider*

75*

80*

85*

90*

95*

100*

105*

11* 13* 15* 17* 19* 21*

Su
cc
es
s*r
at
e*
(p
er
ce
nt
)*

Angle*of*rota@on*(degree)*

Successful*commands*per*50*
tests*with*2x1*slider*

Fig. 8. Experimental data on slider reliability as a function of tip angle.

start

↓

←

↑

→

end

A = 1 A = 0

Fig. 9. Implementation of a single-input, four-output FAN-OUT gate. See
video attachment at http://youtu.be/EJSv8ny31r8.

REFERENCES

[1] B. R. Donald, C. G. Levey, I. Paprotny, and D. Rus, “Planning
and control for microassembly of structures composed of stress-
engineered MEMS microrobots,” The International Journal of
Robotics Research, vol. 32, no. 2, pp. 218–246, 2013. [Online].
Available: http://ijr.sagepub.com/content/32/2/218.abstract

[2] P.-T. Chiang, J. Mielke, J. Godoy, J. M. Guerrero, L. B. Alemany,
C. J. Villagómez, A. Saywell, L. Grill, and J. M. Tour, “Toward a
light-driven motorized nanocar: Synthesis and initial imaging of single
molecules,” ACS Nano, vol. 6, no. 1, pp. 592–597, Feb. 2011.

[3] H.-W. Tung, D. R. Frutiger, S. Panè, and B. J. Nelson, “Polymer-
based wireless resonant magnetic microrobots,” in IEEE International
Conference on Robotics and Automation, May 2012, pp. 715–720.

[4] E. Diller, J. Giltinan, and M. Sitti, “Independent control of multiple
magnetic microrobots in three dimensions,” The International Journal
of Robotics Research, vol. 32, no. 5, pp. 614–631, 2013. [Online].
Available: http://ijr.sagepub.com/content/32/5/614.abstract

[5] W. Jing, N. Pagano, and D. Cappelleri, “A tumbling magnetic mi-
crorobot with flexible operating modes,” in Robotics and Automation
(ICRA), 2013 IEEE International Conference on, May 2013, pp. 5514–
5519.

[6] Y. Ou, D. H. Kim, P. Kim, M. J. Kim, and A. A. Julius, “Motion
control of magnetized tetrahymena pyriformis cells by magnetic field
with model predictive control,” Int. J. Rob. Res., vol. 32, no. 1, pp.
129–139, Jan. 2013.

[7] D. de Lanauze, O. Felfoul, J.-P. Turcot, M. Mohammadi, and S. Martel,
“Three-dimensional remote aggregation and steering of magnetotactic
bacteria microrobots for drug delivery applications,” The International
Journal of Robotics Research, 11 2013. [Online]. Available:
http://ijr.sagepub.com/content/early/2013/11/11/0278364913500543

[8] A. Becker, E. Demaine, S. Fekete, G. Habibi, and J. McLurkin,
“Reconfiguring massive particle swarms with limited, global control,”
in International Symposium on Algorithms and Experiments for Sensor
Systems, Wireless Networks and Distributed Robotics (ALGOSEN-
SORS), Sep. 2013.

[9] A. Becker, E. Demaine, S. Fekete, and J. McLurkin, “Particle com-
putation: Designing worlds to control robot swarms with only global
signals,” in IEEE International Conference on Robotics and Automa-
tion (ICRA). Hong Kong: IEEE, May 2014, pp. 6751–6756.

[10] A. Becker, E. D. Demaine, S. P. Fekete, G. Habibi, and J. McLurkin,
“Reconfiguring massive particle swarms with limited, global control,”
in Algorithms for Sensor Systems, ser. Lecture Notes in Computer
Science, P. Flocchini, J. Gao, E. Kranakis, and F. Meyer auf der
Heide, Eds. Springer Berlin Heidelberg, 2014, pp. 51–66. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-45346-5 5

[11] S. McCourtney, ENIAC, the triumphs and tragedies of the world’s first
computer. United States of America: Walker Publishing, 1999.

[12] A. Adamatzky and J. Durand-Lose, “Collision-based computing,” in
Handbook of Natural Computing, G. Rozenberg, T. Bäck, and J. Kok,
Eds. Springer Berlin Heidelberg, 2012, pp. 1949–1978. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-92910-9 58

[13] E. Fredkin and T. Toffoli, “Conservative logic,” International Journal
of Theoretical Physics, vol. 21, no. 3-4, pp. 219–253, 1982. [Online].
Available: http://dx.doi.org/10.1007/BF01857727

[14] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for
your Mathematical Plays, 2nd edition. A. K. Peters Ltd., 2001–2004.

[15] A. Adamatzky and P. Rendell, Turing Universality of the Game
of Life. Springer London, 2002, pp. 513–539. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4471-0129-1 18

[16] R. A. Hearn, “The complexity of sliding-block puzzles and plank
puzzles,” Tribute to a Mathemagician, pp. 173–183, 2005.

[17] E. D. Demaine and R. A. Hearn, Games of No Chance 3.
Mathematical Sciences Research Institute Publications, Cambridge
University Press, 2009, vol. 56, ch. Playing Games with Algorithms:
Algorithmic Combinatorial Game Theory, pp. 3–56. [Online].
Available: http://arXiv.org/abs/cs.CC/0106019

[18] E. Winfree, “Algorithmic self-assembly of DNA,” Ph.D. dissertation,
California Institute of Technology, June 1998.

[19] E. Winfree, F. Liu, L. Wenzler, and N. Seeman, “Design and self-
assembly of two-dimensional DNA crystals,” Nature, vol. 394, pp.
539–544, 1998.

[20] T. LaBean, E. Winfree, and J. Reif, “Experimental progress in com-
putation by self-assembly of DNA tilings,” DNA Based Computers,
vol. 5, pp. 123–140, 1999.

[21] D. Doty, M. J. Patitz, and S. M. Summers, “Limitations of self-
assembly at temperature 1,” in Proceedings of The Fifteenth Inter-
national Meeting on DNA Computing and Molecular Programming
(Fayetteville, Arkansas, USA, June 8-11, 2009), 2009, pp. 283–294.

[22] J. Maňuch, L. Stacho, and C. Stoll, “Two lower bounds for self-
assemblies at temperature 1,” Journal of Computational Biology,
vol. 17, no. 6, pp. 841–852, 2010.

[23] P.-E. Meunier, M. J. Patitz, S. M. Summers, G. Theyssier, A. Winslow,
and D. Woods, “Intrinsic universality in tile self-assembly requires co-
operation,” in Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA 2014), (Portland, OR, USA, January 5-7, 2014),
2014, pp. 752–771.

[24] S. P. Fekete, J. Hendricks, M. J. Patitz, T. A. Rogers, and R. T.
Schweller, “Universal computation with arbitrary polyomino tiles in
non-cooperative self-assembly,” in Proceedings of the 26th ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2015, to appear.

http://youtu.be/EJSv8ny31r8
http://ijr.sagepub.com/content/32/2/218.abstract
http://ijr.sagepub.com/content/32/5/614.abstract
http://ijr.sagepub.com/content/early/2013/11/11/0278364913500543
http://dx.doi.org/10.1007/978-3-642-45346-5_5
http://dx.doi.org/10.1007/978-3-540-92910-9_58
http://dx.doi.org/10.1007/BF01857727
http://dx.doi.org/10.1007/978-1-4471-0129-1_18
http://arXiv.org/abs/cs.CC/0106019

	Introduction
	Model
	Dual-Rail Logic and fan-out Gates
	Contributions

	Related Work
	Collision-Based Computing
	Sliding-Block Puzzles
	Other Related Work on Programmable Matter

	Theory
	Device and gate design
	Choosing a clock signal
	A fan-out Gate
	Data Storage
	A Binary Counter
	Scaling Issues
	Optimal Wiring Schemes

	Experiment
	Conclusion
	References

