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Abstract— Actuators that are powered, imaged, and con-
trolled by Magnetic Resonance (MR) scanners offer the poten-
tial of inexpensively providing wireless control of MR-guided
robots. Similar to traditional electric motors, the MR scanner
acts as the stator and generates propulsive torques on an
actuator rotor containing one or more ferrous particles. The
MR scanner can control three orthogonal gradient fields. Prior
work demonstrated control of a single actuator rotor. This
paper proposes and demonstrates independent, simultaneous
control of n rotors. The controller relies on inhomogeneity
between rotors, such as ensuring no rotor axes are parallel.
This paper provides easily-implemented velocity and position
controllers with global asymptotic convergence, and optimiza-
tion techniques for implementation. Code for simulations and
control laws is available online.

I. INTRODUCTION

Robotics offers important contributions to image-guided,
minimally invasive surgery. Among imaging techniques,
MRI has several advantages. MRI provides high resolution
soft-tissue imaging and does not use ionizing radiation.

MR image-guided procedures, however, pose several chal-
lenges for robotics [1]–[5]. First, all ferrous materials create
imaging artifacts. Ferrous materials must be isolated from
the imaging region of interest. Moreover, the magnetic fields
used in an MRI induce forces on any ferrous materials in the
robot and turn these materials into strong magnetic dipoles
that exert forces on each other. MRI gradients induce current
in any conducting materials, which can generate dangerous
amounts of heat and also exert forces.

Despite these challenges, there are a number of recent
innovations demonstrating tetherless and inexpensive actu-
ation imaged, powered, and controlled using MRI. Martel
et al. demonstrated in vivo motion control of a mm-scale
particle in the carotid artery of swine [3]. Vartholomeos et
al. designed a single-DOF MRI-powered actuator for use as
a tetherless biopsy robot [4]. This was extended to closed-
loop control of a single rotor in [5]. Since such results require
only scanner software and inexpensive actuator components,
dissemination of MRI-based robotic technology has the po-
tential to be rapid and inexpensive.

While this prior work has demonstrated control of a
single particle or a single rotor, many clinical applications
require multiple DOF. This is a challenge because the three
orthogonal magnetic gradients of MRI scanners are applied
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Fig. 1. This paper proves that n non-parallel rotors can be independently
actuated by the same magnetic gradient field. The torque from these rotors
could power multi-DOF robotic actuators running untethered inside an MRI
bore such as (b), a biopsy robot inspired by [6] that can insert a needle and
tilt the needle to a two DOF compound angle.

over the entire scanner bore, so the resulting control problem
is underactuated. Techniques from nonlinear control theory
must be used to demonstrate controllability and to derive
control laws.

The contribution of this paper is to develop control tech-
niques enabling independent control of large numbers of
rotors. Section II describes an MRI actuator model and a
multi-rotor control law. Section III examines multi-actuator
system optimization. Section IV applies these principles to
design a 3 DOF biopsy robot (Fig. 1), and Section V ends
with concluding remarks.

II. MULTI-ROTOR CONTROL

A ferrous particle in the strong static field of an MRI be-
comes magnetized, and its magnetization magnitude asymp-
totically approaches the saturation magnetization Ms per unit
volume of the material. The MRI gradient coils produce a
magnetic field Bg(t). This field exerts on the ferrous particle
the force

F(t) = v (Ms · ∇)Bg(t). (1)

Here v is the magnetic volume of the material. The mag-
netic field Bg(t) is designed to produce three independent
gradients:

[Fx, Fy, Fz]
ᵀ
(t) = vMsz

[
∂Bgz
∂x

,
∂Bgz
∂y

,
∂Bgz
∂z

]ᵀ
(t) (2)

Here it has been reasonably assumed that Msz �Msx,Msy .
These gradients apply three independent forces on any fer-
romagnetic spheres inside the MRI. This paper investigates
rotors that constrain the ith ferromagnetic sphere to rotate
about an axis ai with a moment arm of length ri, as shown
in Fig. 2. The rotor’s configuration is fully described by

http://www. mathworks.com/matlabcentral/fileexchange/45331
http://www. mathworks.com/matlabcentral/fileexchange/45331
http://nsf.gov/awardsearch/showAward?AWD_ID=1208509
http://wyss.harvard.edu/


𝐩𝑖
𝐅

𝐅 ∙ 𝐩𝑖

𝑟𝑖

𝜃𝑖 ,  𝜃𝑖

𝐚𝑖

fiducial
marker

ferrous 
sphere

gear

Fig. 2. MRI-powered, single-DOF rotor with gear for power transmission.

its angular position and velocity [θi, θ̇i]
ᵀ. The configuration

space of all n rotors is R2×n, and the dynamic equations are

Jiθ̈i(t) = −biθ̇i(t)− τfi − τ`i + riF · pi(t) (3)

Here Ji is the moment of inertia, bi the coefficient of viscous
friction, τfi the summation of all non-viscous friction terms
seen by the input, and τ`i the load torque. The rotor torque is
the magnetic force projected to a vector tangent to the ferrous
sphere’s positive direction of motion, riF · pi(t) Actuator
torque is maximized when F(t) = gMVMsz sgn(pi(t)),
where gM is the maximum gradient.

There are two standard actuator control tasks: position
and velocity control. The position control problem is to find
inputs F(t) such that for any θ(0) and θgoal,

lim
t→∞

n∑
i=1

∥∥∥∥[θi(t)θ̇i(t)

]
−
[
θgoal,i

0

]∥∥∥∥
2

= 0. (4)

This section starts with the simpler velocity control problem

lim
t→∞

n∑
i=1

∥∥∥θ̇i(t)− ωi∥∥∥
2

= 0, (5)

where ωi ∈ R is the desired angular velocity of each rotor.
After solving the velocity control problem in Sec. II-B,
Section II-C uses an outer control loop to stabilize position.

A. Open-Loop Multi-Actuator Control

Before considering closed-loop control, it is worthwhile
to determine what can be achieved in open-loop and to
examine related performance limitations. In this context, one
method to independently control multiple rotors uses the
magnetic field gradients to make the rotors revolve around
orthogonal axes. For notational simplicity, assume the rotors
rotate about the world x, y, z axes. With n ≤ 3 orthogonal
rotors, open-loop control signals can rotate some rotors at
constant velocities, and move the remaining rotors to steady-
state positions. For instance, the control law

∇Bg(t) = gM [cos(t), sin(t), 0]
ᵀ (6)

rotates the z-axis rotor in the positive direction at 1 rad/s
and places the x and y rotors in steady-state positions.

To simultaneously rotate up to three orthogonal rotors, the
gradient can be rotated at angular frequency ω around the

vector φ =
[φx, φy, φz]

ᵀ√
φ2x + φ2y + φ2z

, where φi ∈ {−1, 0, 1} is the
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Fig. 3. The open-loop control law (7) for three orthogonal axes has 27
possible outputs corresponding with: only one rotor spinning (green), two
rotors spinning (blue), all three spinning (red), or none spinning. At right
are projections onto the three coordinate axes. See video attachment for
experimental verification.

desired rotation of the ith axis. This gives the control law

∇Bg(t) = gMRφ,ωt · φ⊥. (7)

Here φ⊥ is a vector perpendicular to φ and Rφ,ωt is the
rotation matrix that rotates the angle ωt about the axis φ.
Control law (7) with three orthogonal rotors has 27 possible
outputs. Figure 3 shows three representative control inputs.
The 2D projections show how rotating the magnetic field
around different φ vectors rotates one, two, or three rotors
simultaneously.

As demonstrated in these examples, open-loop control
has several limitations. For example, rotor velocities are
coupled and position control is not possible. In addition,
the approach is limited to at most three rotors since their
axes must be orthogonal. Furthermore, as shown in the video
attachment, cyclic slipping of the rotor due to applied load
or perturbations is possible. Closed-loop control, described
in the following subsection, can eliminate these limitations.

B. Closed-Loop Multi-Actuator Velocity Control

To enable robust, multi-axis control, a closed-loop con-
troller can be designed using a control-Lyapunov func-
tion [7]. The control law selects the three magnetic gradients
that decrease the sum of squared velocity error. There are
configurations where no combination of velocity gradients
will decrease this error, but it is always possible to apply
a non-zero gradient without increasing the sum squared
error. Any non-zero gradient will move the rotors to a
new configuration where the error can be decreased. This
technique is inspired by work on controlling many mobile
robots with a uniform control signal [8]. For ease of analysis,
simplified rotor dynamics will be used:

θ̈i(t) =
ri
Ji

F(t) · pi(t). (8)

In all simulations the full dynamic model (3) is used.
Given n non-parallel rotors and desired angular velocities

ωi, a suitable Lyapunov function can be defined as the sum
squared velocity error:

V (θ, θ̇, t) =
1

2

n∑
i=1

(
ωi − θ̇i(t)

)2
(9)
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(b) control inputs, 4 rotor control
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(c) positions, 24 rotor control
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(d) positions, 4 rotor control, no load
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(e) control inputs, 4 rotor control, no load
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Fig. 4. Simulated position control of multiple non-parallel rotors.

V̇ (θ, θ̇, t) =

n∑
i=1

(
ωi − θ̇i(t)

)
θ̈i(t)

= F(t) ·
n∑
i=1

(
ωi − θ̇i(t)

) ri
Ji

pi(t) (10)

Note that V (θ, θ̇, t) is positive definite, zero only at the target
velocity, and radially unbounded. The following controller
makes V̇ (θ, θ̇, t) negative semi-definite:

F(t) = −gMviMsz

(
n∑
i=1

(
ωi − θ̇i(t)

) ri
Ji

pi(t)

)
(11)

For such an F(t),

V̇ (θ, θ̇, t) = −gMviMsz

(
n∑
i=1

(
ωi − θ̇i(t)

) ri
Ji

pi(t)

)2

.

Notice that V̇ (θ, θ̇, t) ≤ 0, but there exists a subspace of
[θ, θ̇]ᵀ where V̇ (θ, θ̇, t) = 0. Because this derivative is neg-
ative semi-definite, the system is stable, but not necessarily
asymptotically stable. To prove asymptotic stability requires
proving that the invariant set contains only the rotors moving
at the desired angular velocity.

Control law (11) is modified as follows:

f = sgn

(
−

n∑
i=1

(
ωi − θ̇i(t)

) ri
Ji

pi(t)

)

F(t) = gMviMsz

{
[1, 1, 1]ᵀ if f = 0 and θ̇ 6= ω

f else
(12)

The signum function sgn(·) returns the sign of the argument,
or 0 if the argument is zero. This ensures that the only
invariant state is the target velocity θ̇ = ω. At all other
configurations where V̇ (θ, θ̇, t) = 0, the control law (12)
generates a nonzero acceleration θ̈i(t) without increasing
V (θ, θ̇, t), and thus some rotors will change velocities.

C. Closed-Loop Multi-Actuator Position Control

Position control is possible by implementing a feedback
loop around (12) with a time-varying ω(t). Given a desired
position vector θgoal, a PID controller can be implemented
to determine ω(t) based on the position error vector, e:

e(t) = θgoal − θ(t)

ω(t) = Kpe(t) +Ki

∫ t

0

e(τ) +Kd
d

dt
e(t). (13)

Note that θgoal and θi(t) are real numbers and are not
wrapped to [−π, π]. The three gain parameters may be set
to achieve application-specific requirements. In simulations,
[Kp,Ki,Kd] = [10, 0, 0] and e(t) is saturated to ±50.

Control policy (13) scales to large numbers of rotors.
For example, Fig. 4 shows simultaneous convergence to
prescribed angular positions for 4, 24, and 50 rotors. All
show asymptotic convergence, but convergence time in-
creases with the number of rotors. With no load there is
asymptotic convergence, but a non-zero load oscillates about
θgoal because not all final configurations can be statically
held by a constant gradient field. The simulated dynamic
parameters used in (3) are below:

rsphere = 6mm τfi = 7× 10−5Nm
msphere = 7.7g bi = 1× 10−7Nms/rad

ri = 18mm Ji = 2mspherer
2
i kgm2

The load torques τ`i are set ±1×10−5Nm with a random half
set negative and the rest positive. These MATLAB simulations
are available online [9].

III. MULTI-ACTUATOR DESIGN CONSTRAINTS

The preceding section demonstrated how closed-loop con-
trol can independently control multiple rotors. Given this
capability, there are constraints that must be respected when
designing an MRI powered and controlled multi-actuator
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Fig. 5. One ferrous sphere in a 3T magnetic field exerts a force F on
an identical sphere. The contour lines show F · n12, the force component
radially outward from the sphere at (0, 0) compared to the maximum force
provided by the gradient coils gM . This force is attractive (red) along the z-
axis and repulsive (blue) perpendicular to z. The magnetic field is symmetric
about the z-axis. If two spheres move within the dark red region, they cannot
be separated using the gradient field.

system. These involve (1) arranging the rotors to minimize
interaction forces, (2) MRI imaging-based tracking of each
rotor, (3) geometrically arranging the rotor axes to maximize
torque, and (4) calculating the stall torque as a function of
the number of actuators. Each of these is described below.

A. Actuator Interaction Forces
Any ferrous material placed in the magnetic field of an MR

scanner becomes a strong magnetic dipole. With multiple
MR-powered motors, these dipoles exert forces on each
other. Dipole forces overpower MRI gradient forces if rotors
are closer than a threshold distance.

The magnetic field at position r2 generated by a spherical
magnet at position r1 with magnetization m1 is [10]

Br1(r2) =
µ0

4π

3n12(n12 ·m1)−m1

|r2 − r1|3
, (14)

with n12 = (r2− r1)/|r2− r1|. This is the magnetic field of
a dipole. The force applied to a dipole at r1 with magnetic
moment m1 by another dipole at r2 with magnetic moment
m2 is approximated by

F12 ≈
3µ0

4π

1

|r2 − r1|4
[
5n12

(
(m1 · n12) (m2 · n12)

)
−n12 (m2 ·m1)−m1 (m2 · n12)−m2 (m1 · n12)] .

Figure 5 shows contour plots for the magnetic force
exerted by two identical spheres on each other. The contour
lines are drawn at F12 · n12 = gM · {−1,− 1

10 , 0,
1
10 , 1}.

Rotors with spheres closer than the gM contour lines will
become stuck because they experience a force greater than
what the gradient can exert. The maximum force is along
the z-axis, and the critical distance when the attractive
force becomes greater than the maximum gradient force

is 4

√
2Msµ0r3sphere

gM
. This interaction decays quickly and at

distance ≈ 5.4r
3/4
sphere is 10% of the maximum gradient. The

required distance, d, to ensure dipole-dipole forces are less
than some percentage of the maximum gradient is given by

d ≥ 4

√
2 100
percentageMszµ0r3sphere

gM
. (15)

Fig. 6. MRI Fast Spin Echo sequence for tracking three orthogonal rotors.

B. Simultaneous Tracking of Multiple Rotors

An MR scanner can provide both power and feed-
back sensing for closed-loop motor control. Though ferrous
spheres cannot be imaged with an MR scanner, a sphere can
be used to selectively discriminate the resonance frequency
of a fiducial marker placed a set distance from the sphere.

This method was used in [5] to track a single rotor.
Attaching the fiducial marker to the same axle as the ferrous
sphere, with an axial offset as shown in Fig 2, allows use of a
single, configuration-independent RF-frequency to image the
marker. To image a marker, the offset resonance frequency
of the excitation Radio Frequency (RF) pulse is

∆f(d) =
γBz(d)

2π
(16)

Here, ∆f [Hz] is the RF offset, γ
2π is the gyromagnetic

ratio where γ is 42.57MHz/T, and Bz(d) is the magnitude
in Tesla of the magnetic field induced by the ferrous sphere
at distance d from the marker. Real-time 2D tracking of
the rotor is accomplished by first acquiring two orthogonal
projections, and then using a peak detection algorithm to
locate the marker.

Localizing several rotors is difficult because their projec-
tions can overlap. One method to avoid overlapping signals
uses unique distances between marker and ferrous sphere
on each rotor. By appropriate choice of offset resonance
frequency and its bandwidth, only one rotor at a time is
visible on any acquired projection. However, this method
requires an additional tracking sequence for each rotor.

A faster alternative is to design the rotors and projections
so the paths of the markers do not intersect in any projection.
In this way, n rotors can be simultaneously tracked with a
single acquisition sequence, followed by detecting n non-
intersecting peaks on each projection. This approach is
illustrated in Fig. 6, showing three orthogonal projections
for tracking three orthogonal rotors. This tracking sequence
requires 25ms, enabling real-time positioning of the rotors.
For this method to work, each marker must be disjoint in
at least two non-parallel projections, and these projections
must not be parallel with the axis of rotation. Reconstructed
rotor positions from an experiment with three parallel rotors
are depicted in Fig. 7.
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C. Optimal Geometric Arrangement of n Rotors

Controllability depends on both the geometric arrangement
and the physical properties of the rotors, e.g. θi(0), ri, vi.
Because the physical properties are chosen to meet torque
requirements, this section focuses on maximizing controlla-
bility via arranging the rotor axes of rotation.

Controller (12) exploits inhomogeneity between motor
rotors. Inhomogeneity is maximized geometrically when the
axes’ orientations are well spaced, that is all axes are as
far from being parallel as possible. Section III-D shows that
well-spaced axes maximize output torque. Fortuitously, if the
rotors are arranged on the surface of a hemisphere, well-
spaced axes are also maximally separated. This minimizes
the dipole-dipole forces described in Sec. III-A.

This problem is a variant of the Thomson problem [11]
which determines the minimum energy configuration for n
electrons confined to the surface of a sphere. In this variant,
to each of the n electrons located at ai ∈ R3, ||ai||2= 1, an
additional electron at −ai is bound, and the system is solved
to minimize the total energy. As in the original Thomson
problem, minimal energy configurations can be rigorously
identified in only a handful of cases. Instead, as in [12], this
paper uses numerical optimization methods to find locally
optimal solutions.

The optimization problem is

minimize
a1,a2,...,an

∑
i 6=j

1

‖ai − aj‖22
+

1

‖ai + aj‖22
subject to ai ∈ R3, ‖ai‖2 = 1, 1 ≤ i ≤ n. (17)

Both the objective function and the constraints are non-
convex, but (17) can be reformulated as an unconstrained
problem by changing to a spherical coordinate system pa-
rameterized by azimuth λ and elevation φ:

x = cos(φ) sin(λ), y = cos(φ) cos(λ), z = sin(φ).

The original problem had 3n variables and n constraints.
Using spherical coordinates results in 2n variables and no
constraints. Using the shorthand cθ = cos(θ), sθ = sin(θ),
the objective function (17) can be recomputed as

f =

n∑
j=1

j∑
i=1

1

2
(
1− cφicφjcλi−λj − sφisφj

)+

1

2
(
1 + cφicφjcλi−λj + sφisφj

) , (18)

n=4 n=5 n=6 n=24
Fig. 8. Numerical optimization of rotor axis spacing for different numbers
of axes, n. The rotation axes are defined by lines from each blue vertex
through the origin to the corresponding red vertex. Arrangements from left
to right: cube, pentagonal antiprism, icosahedron, and irregular.

and the gradient calculated as

∂f

∂φi
=

cφi
cλi−λj

sφi
− cφi

sφi

2
(
1− cφicφjcλi−λj − sφisφj

)2 +

cφi
cλi−λj

sφi
− cφi

sφi

2
(
1 + cφi

cφj
cλi−λj

+ sφi
sφj

)2
∂f

∂λi
=

cφicφjsλi−λj

2
(
1− cφicφjcλi−λj − sφisλj

)2 +

cφi
cφj

sλi−λj

2
(
1 + cφi

cφj
cλi−λj

+ sφi
sλj

)2 . (19)

MATLAB code implementing gradient descent on (18)
using (19) to find locally optimal solutions is available at
[13]. Example output is shown in Fig. 8.

D. Stall Torque versus Number of Actuators

Two effects must be considered when computing stall
torque. The first is related to the directionality of the
maximum gradient that can be produced by a scanner.
The magnetic gradients in the three coordinate directions
are produced by three separate coils and amplifiers. The
maximum gradient that can be applied in each direction
depends on the maximum current that each coil is designed
to handle. The practical implication is that the maximum
gradient that can be generated is not directed along one of the
three principal coordinate axes, but occurs off-axis when the
three gradient coils are all producing their maximum values.
The result is that, for any given rotor axis, the maximum
torque varies cyclically with rotation angle.

The second effect arises because control effort must be
divided among many rotors. This section analyzes the av-
erage torque produced with 1, 2, 3, or n rotors and how
geometrically arranging the rotor axes modifies this torque.

a) Single rotor: Consider one rotor aligned along the
MRI x-axis. The state is [θx, θ̇x]ᵀ. Actuating the Fy and
Fz gradient fields imparts a torque on this rotor. This
analysis compares the stopped torque, the torque applied to
a stationary rotor, assuming without loss of generality that
the velocity error is +1. After setting the maximum gradient,
rotor length, saturation magnetization, and inertia to 1, the
stopped torque under control law (11) as a function of θx is

τx = sgn (cθx) cθx + sgn (sθx) sθx . (20)

Integrating (20) over θx produces an average torque of
4
π ≈ 1.27 Nm. Equation (20) is plotted in Fig. 9. The three
MRI gradients can be independently maximized. This can
be exploited by picking a rotor axis such that each gradient
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n for three different axes placement strategies. The sum torque increases
sublinearly with n. The scale is normalized so 1 is the maximum torque a
single gradient could impart on one rotor. Mean and±one standard deviation
are plotted. The optimized placement strategy has the highest average torque.

contributes torque. A rotor spinning around the axis [1,1,0]
or [1,1,1] generates larger average torques than [1,0,0].

b) Two rotors: For multiple rotors, the average torque
is calculated by dividing the sum stopped torque of all the
rotors by the number of rotors. With two orthogonal rotors
oriented along the MRI x and y axes, each rotor torque
averages 2+π

π2 ≈ 1.04Nm.
c) Three rotors: With three orthogonal rotors oriented

along the MRI x, y, and z axes, the torques produced are

τx = sgn(cθx − sθy )cθx + sgn(sθx − cθz )sθx
τy = sgn(cθy − sθz )cθy + sgn(sθy − cθx)sθy (21)
τz = sgn(cθz − sθx)cθz + sgn(sθz − cθy )sθz

τ̄3 =
1

3

1

(2π)2

∫ 2π

0

∫ 2π

0

∫ 2π

0

τx + τy + τz dθx dθy dθz.

Each rotor averages a stopped torque of τ̄3 = 8
π2 ≈ 0.81.

d) n rotors: With n rotors, the average stopped torque
is calculated by integrating over each angle θi and dividing
by n:

τ̄n =
1

n

1

(2π)n

∫ 2π

0

. . .

∫ 2π

0︸ ︷︷ ︸
n

n∑
i=1

τi dθ1 . . . dθn (22)

This integral is difficult to evaluate, so Monte Carlo
simulations are used to estimate the integral. Every data point
in Fig. 10 is the result of 106 simulations. Three methods
for orienting rotors are compared:
• Optimized: using the numerical optimization from Sec-

tion III-C generates the largest average stopped torque.

• Random: in spherical coordinates, the azimuth and
orientation of the rotor axis are set uniformly randomly
in [0,1]. This setup produces lower average torque and
erratic variance values.

• All z-axis: sets all rotor axis to [0,0,1]. This arrange-
ment has no inhomogeneity. However, the system is
controllable as long as the rotors have different initial
orientations: θi(0) 6= θj(0) ∀i, j ∈ [1, n]. This method
results in the lowest average torque.

IV. CASE STUDY: A THREE-AXIS BIOPSY ROBOT

To study the preceding topics in the context of a practical
example system, a three-axis biopsy robot powered by DC
motors is considered [6]. Figure 1 is a schematic of the
proposed system. The system has a fixed base that is attached
to the patient. Two actuators, θx and θy , control orthogonal
axes of a nested spherical yoke. A carriage rides along
the intersection of this yoke. Mounted on this carriage is
a third actuator, θneedle, that can insert a needle through a
pivot point at the center of the base. The original design
allows θx and θy to rotate between [−π/6, π/6], and inserts
θneedle from [0,100]mm, resulting in a spherical quadrilat-
eral workspace with volume (θneedle)

3π/9. The base has
diameter 100m, and the nested yokes have radii 50mm.

a) Maximizing Torque: The rotors attached to the
spherical yokes are subject to a torque due to gravity, τmass,
and a needle-depth dependent torque, τneedle, as well as the
frictional torques in (3).

τmass = mg` sin(θi) [Nmm]

τneedle = θneedle
60

100
[Nmm] (23)

The lumped mass g of the carriage and needle actuator
is 0.1kg and the yoke radius `=50mm [6]. The frictional
losses in the gear train are represented by ηe ∈ [0, 1], a
dimensionless parameter for motor efficiency.

The two yoke actuators require 100Nmm of torque and
the needle actuator requires 50Nmm of torque. Assuming a
conservative ηe = 0.5, with a gear reduction ratio G, the
motor torque is

τmotor = ητηeGri
4

3
πr3sphereMszgM . (24)

Here ητ is the average torque per rotor for n = 3 rotors,
which was evaluated as ≈0.81 in Section III-D. Using a rotor
radius of ri=20mm and a sphere radius rsphere=6mm, the
yoke actuators require a gear reduction of Gxy=250, and the
needle actuator requires Gn=125.

b) Minimize Actuator Interaction Forces: The ferrous
spheres must be separated to minimize dipole-dipole forces,
as described in Section III-A. According to (15), to limit
dipole-dipole forces to less than 10% of maximum gradient
forces with 6mm radius ferrous spheres requires at least
116mm spacing. Several candidate designs are shown in
Fig. 11. Orienting the needle actuator along the [-1,-1,0] axis
resulted in the smallest form factor, with an axial offset of
75mm on each rotor.



θneedle

θx

θy

︸ ︷︷ ︸axial offset

θneedle

θx

θy

Fig. 11. Candidate designs and dipole-interaction. Spheres represent
minimum separation constraint. The design at right violates the constraint.
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Fig. 12. All three rotors can be localized with two orthogonal line scans.
These line scans can be selected such that the ellipses parameterized by θi
are disjoint for all configurations [θx, θy ].

c) Simultaneous Rotor Tracking: For fast real-time
control, the rotors must be arranged to minimize the number
of line scans needed to localize the markers, as described in
Section III-B. If the markers are placed 25mm axially inward
from the ferrous spheres, then the position of each rotor can
be detected with just two line scans, as shown in Fig. 12. The
projections along p1=[-1,2,2] and p2=[2,-1,2] are orthogonal,
and result in ellipses for all values of [θx, θy] ∈ [−π/6, π/6].
Moreover, the projections for the three rotors are disjoint in
both p1 and p2.

d) Simulation: The biopsy robot design was simu-
lated with an input sequence comprised of four step-input
commands: 1) move the carriage to full extent [θx, θy] =
[−π/6, π/6], 2.) insert the needle 100 mm, 3.) retract the
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Fig. 13. Simulation with a three-rotor biopsy robot: moving the carriage
to full extent [θx, θy ] = [−π/6, π/6], inserting the needle 100 mm, then
retracting the needle and finally returning to [θx, θy ] = [0, 0].

needle 4.) return to [θx, θy] = [0, 0]. Fig. 13 shows the
sum squared error and position traces during these four
movements. The system response for all steps is smooth.

V. CONCLUSION

MRI-based multi-rotor control poses both control-theoretic
challenges and practical implementation issues. To address
these, this paper has provided an optimization scheme for
rotor placement and derived a globally asymptotically stabi-
lizing controller for n actuators. Both a velocity controller
(12) and a position controller (13) were implemented. MAT-
LAB implementations of these controllers are available at [9].

These controllers exploit inhomogeneities in rotor axis ori-
entation. Constructing motors with axes that are not parallel
requires careful balancing of the rotor shafts. However, it
is not necessary for the rotors to be non-parallel. Ongoing
research indicates that the proposed control law can also
stabilize parallel rotor shafts using other inhomogeneities,
e.g. ri, θi(0), vi. If all axles are parallel to the gravity vector,
gravity no longer interferes with rotor movement. This makes
counterweights unnecessary, and allows using extremely low-
friction jewel bearings since axles are not under radial load.
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