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Abstract—Multi-robot manipulation allows for scalable envi-
ronmental interaction, which is critical for multi-robot systems
to have an impact on our world. A successful manipulation
model requires cost-effective robots, robust hardware, and
proper system feedback and control. This paper details key
sensing and manipulator capabilities of the r-one robot. The
r-one robot is an advanced, open source, low-cost platform
for multi-robot manipulation and sensing that meets all
of these requirements. The parts cost is around $250 per
robot. The r-one has a rich sensor suite, including a flexible
IR communication/localization/obstacle detection system, high-
precision quadrature encoders, gyroscope, accelerometer, inte-
grated bump sensor, and light sensors. Two years of working
with these robots inspired the development of an external ma-
nipulator that gives the robots the ability to interact with their
environment. This paper presents an overview of the r-one,
the r-one manipulator, and basic manipulation experiments to
illustrate the efficacy our design. The advanced design, low
cost, and small size can support university research with large
populations of robots and multi-robot curriculum in computer
science, electrical engineering, and mechanical engineering. We
conclude with remarks on the future implementation of the
manipulators and expected work to follow.

I. INTRODUCTION AND RELATED WORK

Multi-robot systems have great potential for many prac-
tical applications. Exploration, mapping, search and rescue,
surveillance, manipulation, and construction are all applica-
tions where multi-robot systems can have a large impact.
In particular, large populations (100—10,000) can produce
breakthrough solutions for multi-robot manipulation, with
the ability to transport large numbers of objects of varying
size. In this paper, we describe our approach to sensing and
actuation for multi-robot manipulation. We identify three
key components: a localization sensor to determine the pose
of neighboring robots, a tactile sensor to sense impacts and
exogenous forces, and a manipulator (gripper) to exert force
on the object or other robots. These components need to
be available at a low-cost, so that researchers can evaluate
multi-robot manipulation with large populations of robots.

Figure 1 shows our multi-robot platform and manipulator.
The platform is based on the r-one robot (Fig. 1a) [1]. The
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(a) The r-one robot (b) Manipulator attachment

Fig. 1: (a) The r-one robot is an advanced, low-cost, open-source
platform designed for research, education, and outreach. (b) The r-
one robot with a gripper designed for multi-robot manipulation. See
experiments in video attachment http://youtu.be/FHlSOYLSe2E.

design satisfies three requirements: 1. Advanced Design:
The basic sensor suite is comprehensive, complete, and use-
ful for many multi-robot manipulation tasks. In particular,
specific multi-robot features—inter-robot communication,
neighbor localization, and collision detection—are built-in.
2. Low Cost: Low cost is required for research to scale
to large populations. 3. Usability: Efficient development
requires that basic operations, like programming, charging,
and data collection, be automated with a hands-free, cen-
tralized user interface.

The r-one has a parts cost of around $250 per robot, and
requires around twenty minutes to assemble. The base robot
has many sensors; including an accelerometer, gyro, wheel
encoders, light sensors, bump sensors, and an infrared inter-
robot communication and localization system. The central-
ized user interface features a radio, an infrared beacon for
ground-truth localization, and an autonomous docking and
charging system. The robot can be programmed in C/C++ or
run an embedded Python interpreter to make programming
more accessible to younger, less experienced students [1]. In
addition, a custom hands-free bootloader simplifies updating
and reprogramming large numbers of robots. The design is
mature: we have had excellent success over the past three
years in undergraduate, graduate, and high school courses,
as well as outreach activities and demos. Figure 1b shows a
r-one with a gripper. Each gripper costs approximately $70.
The design allows robots to grab objects and other robots
from any direction. The design lends itself to algorithmic
simplicity because the entire assembly is free to rotate
around the r-one’s chassis.
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Khepera III K-Team • • • • • 2000 -
Create iRobot • • • 220 -

Scribbler Parallax • • • 198 -
Finch Finch • • • • 99 -

robomote USC • • • • compass sensor - 150
3pi Pololu IR line sensor(x5) 99 -

CostBots Berkeley • • NEST sensor boards - 200
Mindstorms LEGO • • • • • 249 -

kilobot Harvard • • • • - 14
e-puck EPFL • • • • • • 979 -

e-puck + IR EPFL • • • • • • • • 1388 -
r-one Rice • • • • • • • • • • • •1 • remote programming in development - 250

TABLE I: A comparison of available low-cost robots suitable for multi-robot research.

A. Existing Platforms

There are many existing robot platforms designed for
research and education, shown in Table I. Educational and
hobby platforms such as the Pololu 3pi [2], Scribbler [3],
robomote [4], and costbots [5] are inexpensive, but they
lack basic sensors, such as wheel encoders. LEGO Mind-
storms [6] is the leader in educational robotics, but as the
system places a heavy emphasis on building the robot, there
is often little time left for programming the robot. The
iRobot Create [2] is a popular platform for medium-sized
robots, but the size, cost, and limited sensor suite require
a large test area and many add-on components for multi-
robot work. Most of these platforms utilize either C, which
is too difficult for younger students, or graphical program-
ming languages, like the LEGO Bricks used on the NXT,
which limit the software complexity. None of the available
platforms have hardware for multi-robot communication and
localization.

The Khepera robot [7] and EPFL e-puck [8] are research
platforms, have a larger sensor suite, and are a practical size
for indoor experiments. However, their cost makes fielding
large populations difficult. The e-puck requires an optional
inter-robot communication turret to localize neighbors. None
of the existing platforms are uniquely identifiable from a
global localization system.

The r-one’s main contribution to the multi-robotics com-
munity is an integrated, low-cost platform with a rich sensor
suite, including inter-robot communication and localization,
scalable user interface for efficient operation with large
populations, and support for C/C++ for research and Python
for education. While the processing power is adequate for
many applications, it is too limited for others, notably
vision and SLAM. An expansion connector enables access
to computer or cell phone processing power if needed.

II. HARDWARE DESIGN

The main components of the robot are two printed circuit
boards (PCBs) and three plastic parts that compose the chas-

sis and the two-piece bump skirt. The additional hardware
are components available from Digikey and Pololu Robotics.
The exploded CAD diagram is shown in Fig. 2a. The robot
is 11 cm in diameter, 4.2 cm tall, and weighs 308 grams.

The total parts cost $247. The electrical/mechanical com-
ponents are $130, PCB fabrication is $40, and PCB as-
sembly is $60. The final mechanical assembly is simple,
and takes about 20 minutes per robot. Total system current
ranges from 140 mA to 650 mA, with 510 mA typical. With
a 3.7 V 2000 mAh lithium-polymer battery, the robot runs
for four hours. The battery can be charged from the USB
port or from a docking connecter.

The sensor suite consists of a 3-axis gyro, 3-axis
accelerometer, four visible-light photoresistors, and two
quadrature encoders. Communication is handled by eight
IR transmitters, eight IR receivers, a 2.4 GHz radio with 2
Mbps data rate, and a USB port. To interact with the user,
the robot has a VLSI1053 audio chip for MIDI playback,
three push buttons, and three arrays of five LEDs—each in
red, green, and blue.

The robot is controlled by a Texas Instruments Stellaris
LM3S8962 microcontroller. The CPU core is an ARM
Cortex-M3 running at 50 MHz with 256 KB of flash
memory and 64 KB of SRAM. The 2.4 GHz radio on the
robot is used for inter-robot communication and for the
scalable UI. Inter-robot localization is provided by the IR
communication system described in Section II-C.

A. Chassis and Encoders

The exploded diagram in Figure 2a shows the main robot
components. The chassis is composed of three injection-
molded plastic parts. We used acetal homopolymer with
Teflon (Delrin 500 AF), which is fairly inexpensive, strong,
and very low friction. The motors and encoders mount
directly to the bottom circuit board, as shown in Figure 2b.
These low-cost quadrature encoders are a novel design, and
they use an optical interruption sensor to detect gaps in
an encoder wheel attached to the rear motor shaft. The
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Fig. 2: (a) Exploded CAD view of the robot assembly. The
robot is composed of two circuit boards and a plastic chassis.
(b) The motors and encoders mount directly to the circuit board.
Each quadrature encoder costs $0.75 and has a resolution of
0.0625 mm/tick. (c) Top view of the bump skirt. The light blue
circles are posts from the chassis. The flexure springs are molded
into the skirt and have a serpentine path to reduce their effective
spring constant. (d) Bump sensor experiment data. We tested angles
from 0° to 90° over 12 trials. The sensor has an average error of
8.1°.

encoder wheels are made from plastic on a laser cutter,
and manufacturing tolerances limit the design to four slots,
producing a 0.0625 mm/tick linear resolution at the wheel.
The 32 mm wheels coupled with a 100:1 gearbox give the
robots a maximum speed of 300 mm/sec, and the system
is controllable down to 2 mm/sec.

B. Bump Sensor

The bump sensor encircles the entire perimeter of the
robot. The sensor parts are shown in Figure 2a: the bottom
circuit board and the plastic bump skirt directly above it.
The bump skirt uses four integrated flexure springs shown
in Figure 2c to center it when it is not contacting an
obstacle. Deflections are detected with eight optoreflective
sensors mounted facing up on the bottom circuit board. The
multiple sensors provide the direction of the impact with an
average error of 8.1°(Fig. 2d). We have used the sensor for
obstacle avoidance, angle of impact estimation, subsequent
“reflection” back into the environment, and, currently, for
multi-robot manipulation.

C. Inter-Robot Communication and Localization

Multi-robot manipulation requires the robots to measure
the pose of neighbors in order to control their physical
configuration. There are many approaches to measuring the
relative position of a neighbor robot, including vision-based
systems [9], [10], and infrared light [11]–[14]. Because of
our size and cost goals, the r-one robot uses an infrared (IR)
communication system to localize their neighbors.

The IR communication system is composed of eight IR
transmitters and eight IR receivers. These sixteen devices al-
ternate around the perimeter of the robot, spaced 22.5° apart,
starting with the first transmitter facing 0°, shown in Fig-
ure 3a. The chassis is designed so that transmitter emission
patterns cross at the half-power point, which produce a fairly
uniform radial emission pattern when the eight transmitters
transmit in unison. Calculations from the emitter’s data sheet
predict a power variation of 4%, which is consistent with our
qualitative observations. The receivers are standard Sharp
IR remote control devices, with 38khz modulation and a
maximum bit rate of 1250bps. Because the communication
bandwidth is limited, the maximum communication range is
short in order to limit the number of neighbors, and therefore
messages, that are received by each robot.

The user creates “neighbor data” structures to store public
data and share the data with neighboring robots, and the
operating system combines this data and broadcasts one
unified packet. The first datum in a message is always the
transmitting robot’s ID. We use the CCIT-16 polynomial
for error detection and additional heuristics to filter out
neighbors with weak communication links. Since IR band-
width is limited, longer messages are broadcast via radio.
The two separate transmissions are merged into a unified
message by the receiving robot, using the IR message to
determine if the radio message is from a neighboring robot.
The software API abstracts away from the marshalling,
transmission, reception, and decoding of the data.

Each robot transmits its neighbor message at periodic
intervals, but with a random offset, similar to the ALOHA
protocol [15]. This simple TDMA scheme limits our effec-
tive channel capacity to 50% of the available bandwidth but
does not require a centralized scheduler, making it a practical
design. The bandwidth limitations place restrictions on robot
density, but increasing communication bandwidth would
require signifigantly more expensive receivers, undermining
our low-cost goal.

The eight IR receivers allow a robot to measure the
bearing of a neighboring robot when a message is received.
Refer to Figure 3a for definitions of bearing and orientation.
The chassis is designed to limit the detection sector of each
receiver to 68°, and these sectors overlap to form 16 distinct
regions that each cover ≈22.5°, as shown in Figure 3b. By
noting which receiver(s) get a message from a neighbor, the
robot can calculate the bearing of the transmitting robot with
a resolution of ≈22.5°. The error distribution for bearing
calculation is shown in Figure 3c.
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Fig. 3: (a) We define bearing and orientation as relative measurements between neighboring robots and heading as the direction a
robot faces from an external reference frame. In this example, robot a is transmitting a message to robot b. The grey sectors illustrate
the emission patterns from T4 and T5 of robot a, which are received on R1 and R2 on robot b. This allows robot b to calculate the
relative bearing and orientation of the transmitting robot. See text for details. (b) Top view of each IR receiver’s detection region. Each
receiver detects signals in a 68° arc, which overlap to form 16 distinct sectors. A message from a neighboring robot will be received
on one or two receivers and can be processed to determine the bearing. (c) Bearing measurement error distribution. (d) Orientation
measurement error distribution. (e) Range between robots is measured by transmitting start bits at variable power. The lowest-power bit
that is received is used to estimate the distance to the neighboring robot. The resulting estimate has a linear region from 200-600 mm,
with some sensitivity out to 1200 mm. The maximum range has a sharp cutoff, falling from nearly 100% reception at 1600 mm to to
0% at 1700 mm.

The eight IR transmitters can be enabled individually,
which allows a receiving robot to measure the orientation
of a transmitting robot. A set of “orientation bits” is sent
from each transmitter sequentially, starting from transmitter
0. In the example shown in Figure 3a, the receiving robot
will get the start bit and then nothing as the orientation
bit is transmitted from transmitters 0-4. It then receives the
orientation bits from transmitters 4 and 5 and then nothing
again as the orientation bit is transmitted from transmitters 6
and 7. When complete, the receiver robot accepts orientation
bits 4 and 5, indicating that these transmitters were facing
the receiver when the message was sent. The receiving robot
can now compute the orientation of the transmitting robot.
The sector overlaps and error distribution of the orientation
measurements are almost identical to that of bearing, but
with a π

16 offset, as seen in Figure 3d. Range between robots
is measured by ending each message with a set of “range
bits” that are transmitted at variable power. By measuring
which range bits are received, the robot can estimate range
from 0 mm to 1600 mm with a varying degree of accuracy,
as shown in Figure 3e.

Nearby obstacles will reflect a robot’s own IR messages
back to itself. With eight transmitters and receivers, this can
produce a good sense of nearby obstacles. The bearing to the
obstacle is measured the same way bearing to neighbors is
measured and produces similar accuracy shown in Figure 4a.
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Fig. 4: (a) IR obstacle angular accuracy measured from a pine
board, a common surface that reflects IR light well. The angle to
the obstacle can be measured by noting the receivers that receive
the reflected signal. The system has an average error of 19.4°.
(b) IR communications system can detect obstacles by processing
reflected messages. Range to an obstacle can be estimated by
counting the number of bits in the reflected signal. This experiment
used the same pine board.

The rone estimates range by counting the number of signal
bits the receivers detect (Fig. 4b). Fewer optical signal bits
are detected as distance increases. Since this is a reflected
signal, the detection range will vary with surface albedo,
and thin objects (e.g. chair legs) will not be detected at all.



Fig. 5: Multiple robots with engaged manipulators can translate
and rotate an object.

D. Bootloader

Our hands-free bootloader updates and reprograms all of
the robots simultaneously via radio. The user selects a robot
with the desired program and starts the update cycle. This
robot becomes the “host robot”. All robots compute a 32-
bit CRC (cyclic redundancy check) for each 4-KB segment
of program in flash memory. The host broadcasts its CRC
values and queries each robot individually in ID order. The
queried robot compares the host’s CRCs to its own to find
mismatched segments, and requests updated segments. As
the host replies to the requests, robots not actively queried
that require the same segments eavesdrop on the broadcast
and update their program concurrently. The received packets
are written directly to flash, minimizing the delay between
segments. The protocol has been tested and optimized to
provide an efficient way to distribute new software to a
large number of r-ones. The current implementation of the
bootloader allows filtering robots by ID range, subnetwork,
and hardware revisions. The bootloader is easily extendable
for additional features in the future.

III. MANIPULATION

To increase the applicability of the r-one robots to swarm-
based object manipulation, they must interact with objects
of various size and shape. We have designed a manipulator
(gripper) attachment that is easily installed onto the robots
for this purpose. Our manipulation model is mechanically
and algorithmically simple, scalable for large numbers of
robots, and cost-effective. Basic manipulation experiments
ensure that the gripper design is practical. Going forward,
this manipulator will extend the r-ones capabilities and
allow for greater exploration into multi-robot manipulation
techniques.

A. The Gripper

The r-one gripper is designed for multi-robot manipula-
tion. It can attach to vertical features on objects of various
size and shape independent of the robot’s orientation. The

(a) (b)

Fig. 6: (a) The blue arrows indicate the free-rotation of the design.
The red and yellow arrows show clockwise and counterclockwise
motion of the top gripper (blue dots) via the motion of the servo;
the bottom gripper (green dots) is “fixed” relative to the top gripper,
and the light green line is the servo horn. (b) Current draw from
the servo vs. tangential force applied by the gripper paddles

Fig. 7: A detailed exploded view of the gripper assembly.

manipulator has five main components: a top and bottom
gripper, chassis clips, a bottom stop, and an S-75 sub-micro
servo as seen in Fig. 7. The outer diameter of the assembly
is 19 cm, and the manipulator can grab object features up
to 5 cm wide. The top and bottom grippers are injection
molded from Teflon-infused acetal homopolymer (Delrin
500 AF), and the chassis clips and bottom stop are laser
cut from ABS. Assembly requires only seven screws and
about eight minutes. The estimated cost is $70 per robot for
a set of sixty; $30 for plastic parts and $40 for electronic
components (board and servo).

The gripper is mounted to the bump skirt and uses the
bump sensors to measure the direction of applied radial
forces. In addition, the gripper can sense both the paddles’
position and applied tangential force (“gripping” force) via
servo feedback (Fig. 6b). The maximum gripping force is 4
N. Each robot can pull an object behind them with a peak
force of 24 N before damaging the servo, which is well
above the frictional force available from the tires.
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(c) Angular velocities about an arbitrary point

Fig. 8: Collective transportation experiments.

(a) Translation (b) Pivoting around central robot

Fig. 9: Multi-robot manipulation for object transport. These images
are from an early experiment.

The manipulator has two degrees of freedom: the entire
assembly is free to rotate around the r-one’s chassis, and
the paddles can move relative to one another (Fig. 6a).
This is an omni-directional planar gripper; the robots can
approach objects from nearly any direction, and the paddles
can grab an object from either side. Each chassis clip has
a small rare-earth magnet embedded at one end. Hall-effect
sensors mounted on the board sense the proximity of these
magnets and act as limit stops; that is, when the magnets are
directly above the sensors, the robot will initiate a counter-
rotation to ”unwind” itself, thereby preventing over-rotation.
This allows the wires connecting the top and gripper boards
together to remain relatively in place and unwound.

Free rotation about the chassis (blue arrows in Fig. 6a)
allows modeling an engaged robot as a pin joint, i.e. an
engaged object cannot apply a torque to the robot. Removing
the torque simplifies the mathematical model of object
rotation and translation. A single robot cannot effectively
rotate an object without prior knowledge of the object’s
center of friction, but multiple robots can rotate an object
precisely by exerting forces to create a net torque around any
point. To translate a large object, multiple robots can attach
at different locations around the object and subsequently
align their headings (Fig. 5).

B. Transportation

Our gripper-enhanced robots will soon manipulate objects
in unison. Currently, we use objects that restrain the robots

in order to test their ability to translate and rotate objects
(Fig. 9). The robots spin freely within these objects and
behave as a pin-joint; this is similar to the gripper design, in
which the robots spin freely inside the gripper. These objects
can be translated, rotated, or any combination of the two.
In this paper, we show basic experiments for translation and
rotation. Future work aims to design algorithms to allow
simultaneous translation and rotation to quickly move an
object through obstacle-filled terrain. Our results thus far
have shown the effectiveness of performing translation and
rotation separately.

a) Translation: We assume that the robots are pre-
attached to the object and that each robot can rotate freely
relative to the object. To translate an object along a desired
path, one robot is externally elected as a leader and holds
a constant heading and speed. All of the other carrier
robots follow that leader’s heading and speed by reaching
a consensus through distributed algorithms (Fig 9a) [16].
The robots can rotate freely to the proper heading without
rotating the object and therefore translate in any direction.
Figure 8a shows the nearly identical velocity profiles of each
robot.

b) Rotation about a Pivot Robot: In this method, a
robot is selected as a stationary pivot while the other robots
rotate about that pivot (Fig 9b). Each robot attempts to move
perpendicularly to the moment arm between the robot and
the pivot. Ideally, the pivot does not move and the other
robots rotate the object about the pivot by varying their
velocity based on the calculated distance to the pivot robot.
Robot performance for rotation about a pivot can be seen
in Fig. 8b. Constant angular velocities are harder to achieve
due to pivot robot jitter. Ultimately, there will be no pivot
robot, and robots will calculate the center of mass of the
object and rotate about that point; this algorithm is planned
for future work.

c) Rotation about the Center of Mass: We assign a
point on the object as the center of mass without involving
a pivot robot. This kind of rotation is split into two parts:
(1) estimation of the center of mass of the object and (2)
rotation around an arbitrary point. Once the robots perform
both of these functions independently, they will be integrated



to rotate about the center of mass. We have only tested
rotation about an arbitrary point (Fig. 8c). Center of mass
estimation algorithms are currently under development, and
we will combine the two in the near future.

Going forward, we will develop algorithms for simultane-
ous rotation and translation. This will require more complex
control schemes and will be done using cycloidal motion
paths on the robots. Second, we will integrate the gripper
attachment, as it will enable the robots to attach to objects
in desired locations and manipulate freely.

IV. CONCLUSION

Our robot combines an advanced sensor suite that allows
multi-robot system behavior with a focus on manipulation,
easily allowing rapid development of interesting systems.
We hope the r-one robot and manipulator will grow to be a
popular platform for multi-robot manipulation research. Our
design is cost-effective, simple, and practical, allowing for
many students in high school, undergraduate, and graduate
settings to become involved with multi-robot manipulation.
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