
Particle Computation:
Designing Worlds to Control Robot Swarms with only Global Signals

Aaron Becker Erik D. Demaine Sándor P. Fekete James McLurkin

Abstract— Micro- and nanorobots are often controlled
by global input signals, such as an electromagnetic or grav-
itational field. These fields move each robot maximally until
it hits a stationary obstacle or another stationary robot.
This paper investigates 2D motion-planning complexity for
large swarms of simple mobile robots (such as bacteria,
sensors, or smart building material).

In previous work we proved it is NP-hard to decide
whether a given initial configuration can be transformed
into a desired target configuration; in this paper we prove
a stronger result: the problem of finding an optimal
control sequence is PSPACE-complete. On the positive
side, we show we can build useful systems by designing
obstacles. We present a reconfigurable hardware platform
and demonstrate how to form arbitrary permutations and
build a compact absolute encoder. We then take the same
platform and use dual-rail logic to build a universal logic
gate that concurrently evaluates AND, NAND, NOR and
OR operations. Using many of these gates and appropriate
interconnects we can evaluate any logical expression.

I. INTRODUCTION

Milli-, micro-, and nanorobots are capable of entering
environments too small for their larger cousins. Swarms
of these tiny robots may be ideal for targeted drug deliv-
ery, on-site micro construction, and minimally invasive
surgery. An untethered swarm could reach areas deep
in the body that traditional, robots and tooling cannot.
These swarms are often controlled by an external, global
electromagnetic field [1]–[3]. Motion planning for large
robotic populations actuated by the same field in a
tortuous environment is difficult.

We investigate the following basic problem: Given a
map of an environment, such as the vascular network
shown in Fig. 1, along with initial and goal positions
for each robot, does there exist a sequence of inputs that
will bring each robot to its goal position? In previous
work [4], it was shown that this problem is at least NP-
hard, by reduction to a 3SAT problem. In this paper we
improve the analysis and show the problem is PSPACE-
complete. This complexity result has some benefits: we

Department of Computer Science, Rice University, Houston, TX
77005, aabecker@gmail.com, jm23@rice.edu.

Computer Science and Artificial Intelligence Laboratory, MIT, Cam-
bridge, MA 02139, USA, edemaine@mit.edu.

Dept. of Computer Science, TU Braunschweig, Mühlenpfordtstr. 23,
38106 Braunschweig, Germany, s.fekete@tu-bs.de

.025 mm

65 mm

0.5 mm

Fig. 1. (Left) State of the art in controlling small objects by
force fields: after feeding iron particles to T. pyriformis cells and
magnetizing the particles with a permanent magnet, the cells are
mobile robots that can be turned by changing the orientation of
an external magnetic field [5]. All cells are steered by the same
global field. (Right) A complex vascular network, forming a typical
environment for the parallel control of small robots. Given such a
network along with initial and goal positions of N robots, is it possible
to bring each robot to its goal position using a global control signal?
(Right image credit: Royce Bair/Flikr/Getty Images)

show that we can design artificial environments capable
of computation, and describe configurations of obstacles
that result in useful robotic systems: absolute encoders,
Boolean logic as shown in Fig. 2, and planar displays.

We study this problem on a two-dimensional grid.
We assume that robots cannot be individually controlled,
but are all simultaneously given a message to travel in
a given direction until they collide with an obstacle or
another robot. This assumption corresponds to situations
with limited-state feedback, or for robots that move at
unpredictable speeds. Problems of this type are similar to
sliding-block puzzles with fixed obstacles [6]–[9], except
that all robots receive the same control inputs.

A. Problem Definition

More precisely, we consider the following scenario,
which we call GLOBALCONTROL-MANYROBOTS:

ar
X

iv
:1

40
2.

37
49

v1
 [

cs
.R

O
]

 1
6

Fe
b

20
14

aabecker@gmail.com
jm23@rice.edu
edemaine@mit.edu
s.fekete@tu-bs.de
http://www.mathworks.com/matlabcentral/fileexchange/42890-simulate-control-of-magnetized-tetrahymena-pyriformis-cells
http://www.mathworks.com/matlabcentral/fileexchange/42890-simulate-control-of-magnetized-tetrahymena-pyriformis-cells
http://www.mathworks.com/matlabcentral/fileexchange/42890-simulate-control-of-magnetized-tetrahymena-pyriformis-cells
http://www.mathworks.com/matlabcentral/fileexchange/42890-simulate-control-of-magnetized-tetrahymena-pyriformis-cells
http://www.mathworks.com/matlabcentral/fileexchange/42890-simulate-control-of-magnetized-tetrahymena-pyriformis-cells

A B

1 0XN
O
R

A B

XO
R

XO
R

1 0XN
O
R

B

1 0XN
O
R

XO
R

Fig. 2. Schematic, diagram, and physical implementation of dual-rail
logic gates. Each gate employs the same clock sequence 〈d, l, d, r〉,
the four inputs correspond to A, Ā,B, B̄, and the inputs are [1,1].
The top row is a universal logic gate whose four outputs are AND,
NAND, OR, NOR. With input [1,1] the AND and OR outputs are set
high. The middle row gate outputs the XOR, XNOR of the inputs and
constants 1 and 0. The bottom row is a NOT gate and a connector.
See the attached video at http://youtu.be/mJWl-Pgfos0 for
a hardware demonstration.

1) Initially, the planar square grid is filled with some
unit-square robots (each occupying one cell of the
grid) and some fixed unit-square blocks.

2) All robots are commanded in unison: the valid
commands are “Go Up” (u), “Go Right” (r), “Go
Down” (d), or “Go Left” (l). The robots all move
in the commanded direction until they hit an ob-
stacle or another robot. A representative command
sequence is 〈u, r, d, l, d, r, u, . . .〉. We call these
global commands force-field moves. We assume we
know the maximum dimension of the workspace
and issue each command long enough for the robots
to reach their maximum extent.

3) The goal is to get each robot to its specified
position.

The algorithmic decision problem GLOBALCONTROL-
MANYROBOTS is to decide whether a given config-
uration is solvable. This problem is computationally
difficult: we prove PSPACE-completeness in Section IV.
While this result shows the richness of our model
(despite the limited control over the individual parts),
it also constitutes a major impediment for constructive
algorithmic work.

This makes developing algorithmic tools that enable
global control by uniform commands important. In Sec-
tions III and V, we develop several positive results. The
underlying idea is to construct artificial obstacles (such
as walls) that allow arbitrary rearrangements of a given
two-dimensional robot swarm.

Our paper is organized as follows. After a discussion
of related work in Section II, we describe how to arrange
obstacles to encode matrix permutations in Section III.
This result allows us to create useful devices including
absolute encoders and matrix displays. Arbitrary matrix
permutations also provides the machinery needed for
our result on the problem complexity in Section IV.
In Section V we describe how to implement Boolean
algebra, which is enabled by using dual-rail logic. We
present our hardware implementation for both matrix
permutations and Boolean algebra in Section VI, and
end with concluding remarks in Section VII. All code
is available online [10], [11].

II. RELATED WORK

One recent development is the ability to design,
produce, and control robots at the micro and nanoscale.
These mobile robots allow a wide range of possible
applications, e.g., targeted drug delivery, micro and
nanoscale construction, and Lab-on-a-Chip test devices.
Because (1) the physics of motion at low Reynold’s
number nanoscale environments requires overcoming a
considerable amount of resistance, and (2) capacity to
store energy for computation, communication and mo-
tion control shrinks with the third power of object size,
it is clear that classical approaches based on individual
motion control cannot be applied.

Instead of individual actuation, a global field is used
to control many small agents. An example is using the
global magnetic field from an MRI to guide magneto-
tactic bacteria through a vascular network to deliver
payloads at specific locations [1], and recent work
using electromagnets to steer a magneto-tactic bacterium
through a micro-fabricated maze [2].

1) Large Robot Populations: Due to the efforts of
roboticists, biologists, and chemists (e.g. [12]–[14]), it
is now possible to make and field very large (103–1014)
populations of simple robots. With large populations
come two fundamental challenges: (1) how to perform
state estimation for the robots, and (2) how to control
these robots.

Traditional approaches often assume independent con-
trol signals for each robot, but each additional in-
dependent signal requires bandwidth and engineering.
These bandwidth requirements grow at O(n). Using
independent signals becomes more challenging as the

2

http://youtu.be/mJWl-Pgfos0
http://youtu.be/mJWl-Pgfos0
http://youtu.be/mJWl-Pgfos0
http://www.mathworks.com/matlabcentral/fileexchange/42892
http://www.mathworks.com/matlabcentral/fileexchange/42892

robot size decreases. At the molecular scale, there is
a bounded number of modifications that can be made.
Especially at the micro- and nanoscales it is not practical
to encode autonomy in the robots. Instead, the robots
are controlled and interacted with using global control
signals.

More recently, robots have been constructed with
physical heterogeneity so that they respond differently
to a global, broadcast control signal. Examples include
scratch-drive microrobots, actuated and controlled by
a DC voltage signal from a substrate [15]; magnetic
structures with different cross-sections that could be
independently steered [16]; MagMite micro-robots with
different resonant frequencies and a global magnetic
field [17]; and magnetically controlled nanoscale helical
screws constructed to stop movement at different cutoff
frequencies of a global magnetic field [18].

This paper takes a different approach. We assume
a population of approximately identical planar robots
(which could be small particles) and one global control
signal that contains the direction all robots should move.
In an open environment, this system is not controllable
because the robots move uniformly—implementing any
control signal translates the entire group identically.
However, an obstacle-filled workspace allows us to
break symmetry. We showed that if we can command the
robots to move one unit distance at a time, some goal
configurations have easy solutions [19]. Given a large
free space, we have an algorithm showing that a single
obstacle is sufficient for position control of N robots
(video of position control: http://youtu.be/5p_
XIad5-Cw). However, this result required incremental
position control of the group of robots, i.e. the ability to
advance them a uniform fixed distance. This is a strong
assumption, and one that we relax in this work.

2) Computational Particles: Amorphous computing
[20] studies how computational particles distributed on a
surface can be used to produce computational engines. In
a similar manner, we show how to construct logic gates
to perform computation in our system, when activated
by a global signal.

Another related area of research is Single Instruction
Multiple Data (SIMD) parallel algorithms [21]. In this
model, multiple processors are all fed the same instruc-
tions to execute, but they do so on different data. This
model has some flexibility, for example allowing com-
mand execution selectively only on certain processors
and no operations (NOPs) on the remaining processors.

Our model is actually more extreme: the robots all
respond in effectively the same way to the same instruc-
tion. The only difference is their location, and which
obstacles or robots will thus block them. In some sense,

our model is essentially Single Instruction, Single Data,
Multiple Location.

3) Computational Geometry: Robot Box-Pushing:
Many variations of block-pushing puzzles have been
explored from a computational complexity viewpoint,
with a seminal paper proving NP-hardness by Gordon
Wilfong in 1991 [22]. The general case of motion-
planning when each command moves robots a single
unit in a world composed of even a single robot and
both fixed and moveable squares is in the complexity
class PSPACE-complete [23].

The “move to maximal extent” motion model we
employ is motivated by physical realities where, due to
uncertainties in sensing, control application, and robot
models, precise quantified movements in a specified
direction is not possible, but the input can be applied for
a long period of time and be guaranteed that the robots
will move to their fullest extent. Lewis uses this model
to reduce uncertainty in state estimation [24]. Maximal
extent movement is common in games, including Ric-
ochet Robots [25], Atomix [9], and PushPush [6]. In
these games the robots move to their full extent with
each input, but each robot can be actuated individually.
The complexity of the problem with global inputs to all
robots has remained an open problem.

III. MATRIX PERMUTATIONS

This section investigates a construction problem.
Given the GLOBALCONTROL-MANYROBOTS con-
straints in I-A, what types of control are possible and
economical if we are free to design the environment?

First, we describe an arrangement of obstacles that
implement an arbitrary matrix permutation in four com-
mands. Then we provide efficient algorithms for sorting
matrices, and finish with potential applications.

A. Designing Workspace for a Single Permutation

A matrix is a 2D array of robots (each possibly a
different color). For an ar × ac matrix A and a br × bc
matrix B, of equal total size N , a matrix permutation
assigns each element in A a unique position in B.
Figs. 3 and 4 show constructions that execute matrix
permutations of size N = 15 and 100, respectively. For
simplicity of exposition, we assume henceforth that all
matrices are n× n squares.

Theorem 1: Any matrix permutation can be executed
by a set of obstacles that transforms matrix A into matrix
B in just four moves. For N robots, the arrangement
requires (3N+1)2 space, 4N+1 obstacles, and 10N/v
time, where v is robot speed in units/s.

Proof: Refer to Figure 3 for an example. MATLAB
code implementing this is available at [11]. The move

3

http://youtu.be/5p_XIad5-Cw
http://youtu.be/5p_XIad5-Cw
http://www.mathworks.com/matlabcentral/fileexchange/45538
http://www.mathworks.com/matlabcentral/fileexchange/45538

1

2

3
4

1 2
3

4

Fig. 3. (Top) Matrix permutation for N=15. Black cells are obstacles,
white cells are free, and colored discs are individual robots. The world
has been designed to permute the robots between ‘A’ into ‘b’ every four
steps: 〈u, r, d, l〉. (1) The staggered obstacles on the left spread the
matrix vertically, (2) the scattered obstacles on the right permute each
element, and (3) the staggered obstacles along the bottom reform each
row, which are collected by (4). (bottom) Hardware demonstration of
a reconfigurable, gravity-fed manipulator that can rearrange (permute)
arrays of colored spheres. The demonstration converts ‘A’ to ‘b’, but
can be reprogrammed by switching the black stoppers to enable any ar-
ray permutation. See video at http://youtu.be/mJWl-Pgfos0.

sequence is 〈u, r, d, l〉. We identify the bottom left
workspace square as (0,0), place the bottom-left robot
at (1,1), and label the starting configuration A from 1
to N bottom-to-top, left-to-right. We also assign these
indices to the corresponding entries in B.

(Move 1) for i = 1 to n, place an obstacle at
(i, 1 + n · (i + 1)): We place n obstacles, one for each
column, spaced vertically n units apart, such that moving
u spreads the robot array into a staggered vertical line.
Each robot now has its own row, and are arranged index
1 to N from bottom to top.

(Move 2) for i = 1 to N , let [br, bc] be the row and
column for robot i in B. Place an obstacle at (2(n ·
br +bc)−(n+1), n+2i): We place N obstacles to stop
each robot during the move r. Each robot has its own
row and can be stopped at any column by its obstacle.
We leave an empty column between each obstacle to
prevent collisions during the next move.

(Move 3) for i = 1 to N , place an obstacle at
(n+ 2i− 1, b i−1

n c):. Moving d arranges the robots into
their desired rows. These rows are spread in a staggered
horizontal line.

(Move 4) for i = 1 to n, place an obstacle at
(0, i): Moving l stacks the staggered rows into the
desired permutation, and returns the array to the initial
position.

By reapplying the same permutation enough times, we
can return to the original configuration. The permutation
shown in Fig. 3 returns to the original image in 2
cycles. For a two-color image, we can always construct
a permutation that resets in 2 cycles. We construct an
involution, a function that is its own inverse, using cycles

ææ

æ
æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

0 100 200 300 400 500 600
1

105

1010

1015

1020

1025

Number of Robots HNL

M
ax

C
yc

le
L

en
gt

h

(a) Absolute encoder cycles

1	

2	

3	

4	

5	

6	

(b) Example encoder

Fig. 4. (a) Using a permutation gadget as an absolute encoder. Cycle
length increases rapidly as the number of robots increases, and the
current arrangement of robots uniquely represents how many rotations
have taken place. (b) An obstacle arrangement to permute a 10×10
matrix in four moves 〈u, r, d, l〉, with a cycle length over 200 million.
The first 6 permutations are shown at left with each cycle a different
color.

of length two that transpose two robots. This technique
does not extend to images with more than two colors.

B. Physical Absolute Encoders and Animations

As shown in Fig. 3, a permutation gadget allows us to
design a display that is hard-coded with a set of pictures.
A potential practical application uses these permutations
as a physical absolute encoder or as a pseudo-random
number generator. In an absolute encoder the current
arrangement of robots serves as a unique representation
of how many rotations have taken place. These applica-
tions exploit the fact that these physical permutations are
cyclic, and that we can design the cycle length. Applying
the CW circular movements 〈u, r, d, l〉 in succession
moves all the robots through one permutation.

The cycle length is the least common multiple of the
permutation cycles in the transformation A 7→ B. Given
N robots, we want to partition the set of k permutation
cycles in such a way that the sum

∑k
i=1 ni = N and

maximizes LCM(n1, n2, . . . , nk).
This cycle length grows rapidly. For instance, using

N = 100 robots, we can partition the robots into cycles
of length {2, 3, 5, 7, 11, 13, 17, 19, 23}, see Fig. 4b.
The LCM is 223,092,870. See [26] for a more in-depth
look at the growth of the maximum cycle length as a
function of N .

1) Animations: It would be useful if we could design
permutations to generate sequences of images, e.g. 〈“R”,

4

http://www.youtube.com/watch?v=3tJdRrNShXM
http://www.youtube.com/watch?v=3tJdRrNShXM
http://youtu.be/3tJdRrNShXM
http://youtu.be/3tJdRrNShXM
http://youtu.be/3tJdRrNShXM
http://youtu.be/3tJdRrNShXM
http://youtu.be/3tJdRrNShXM
http://youtu.be/3tJdRrNShXM
http://youtu.be/3tJdRrNShXM
http://youtu.be/3tJdRrNShXM
http://youtu.be/3tJdRrNShXM
http://youtu.be/3tJdRrNShXM
http://youtu.be/3tJdRrNShXM
http://youtu.be/mJWl-Pgfos0
http://youtu.be/3tJdRrNShXM
http://www.youtube.com/watch?v=eExZO0HrWRQ
http://www.youtube.com/watch?v=eExZO0HrWRQ
http://www.youtube.com/watch?v=eExZO0HrWRQ
http://www.youtube.com/watch?v=eExZO0HrWRQ
http://www.youtube.com/watch?v=eExZO0HrWRQ

Fig. 5. The obstacles above generate the base permutation p = (1, 2)
in the CW direction 〈u, r, d, l〉 and q = (1, 2, · · ·N) in the CCW
direction 〈r, u, l, d〉. These can be applied repeatedly to BUBBLE
SORT the matrix and generate any desired permutation.

“o”, “b”, “o”, “t”〉. Surprisingly, there are sequences of
just three images that cannot be constructed with a single
permutation. Consider the three 5-robot arrangements
�����, �����, �����. Though permutations
between any two exist, there is no single permutation
that can generate all three. In fact, no single permutation
can generate all possible permutations of the given
robots. For the example in Fig. 4b, with 100 robots, 9
painted black and the rest white, the maximum cycle
length we can generate is of length ≈ 2 × 108, but
for permutations of length N with repeated elements
N1, N2, . . ., the total number of permutations is

N !

N1!N2! . . . Nk!

For the example above, there are 100!/(9!91!) ≈ 2×1012

permutations possible.
2) Reversible Permutations: The permutations gener-

ators shown in Fig. 4b are one-way devices. Attempting
to drive them in reverse 〈l, d, r, u〉 allows some robots
to escape the obstacle region. It is possible to insert
additional obstacles to encode an arbitrary permutation
when run in reverse, at a cost of 2N additional obstacles
and requiring an area in worst case 3N × 3N rather
than N × 2N . An example is shown in Fig. 5. Here,
we encode the base permutation p = (1, 2) in the CW
direction 〈u, r, d, l〉 and q = (1, 2, · · ·N) in the CCW
direction 〈r, u, l, d〉. Repeated application of these two
base permutations can generate any permutation, when
used in a manner similar to BUBBLE SORT.

C. Designing a Workspace for Arbitrary Permutations

There are various ways in which we can exploit
Theorem 1 in order to generate larger sets of (or even
all) possible permutations. There is a tradeoff between
the number of introduced obstacles and the number of
moves required for realizing a permutation. We quote
these theorems from [4], as they will be used in our
PSPACE-proof. We start with obstacle sets that require
only a few moves.

Lemma 2: Any permutation of N objects can be
generated by the two base permutations p = (1, 2)
and q = (1, 2, · · ·N). Moreover, any permutation can

be generated by a sequence of length at most N2 that
consists of p and q.

Proof: See Fig. 5. Similar to BUBBLE SORT, we
use two nested loops of N . Each move consists of
performing q once, and p when appropriate.

This allows us to establish the following result.
Theorem 3: We can construct a set of O(N) obstacles

such that any n × n arrangement of N pixels can be
rearranged into any other n × n arrangement π of the
same pixels, using at most O(N2) force-field moves.

IV. COMPLEXITY

In previous work [4], we showed that the problem
GLOBALCONTROL-MANYROBOTS is computationally
intractable in a particular sense: given an initial con-
figuration of movable robots and fixed obstacles, it is
NP-hard to decide whether any robot can be moved
to a specified location. It was left as an important
open problem whether an even stronger hardness result
applies. In the following, we resolve this problem by
proving PSPACE-completeness.

Theorem 4: GLOBALCONTROL-MANYROBOTS is
PSPACE-complete: given an initial configuration of
(labeled) movable robots and fixed obstacles, it is
PSPACE-complete to compute a shortest sequence
of force-field moves to achieve another (labeled)
configuration.

Proof: The proof is largely based on a complexity
result by Jerrum [27], who considered the following
problem: Given a permutation group, specified by a set
of generators, and a single target permutation π which is
a member of the group, what is the shortest expression
for the target permutation in terms of the generator? This
problem was shown in [27] to be PSPACE-complete,
even when the generator set consists of only two per-
mutations, say, π1 and π2.

As shown in the previous Section III, we can realize
any matrix permutation πi of a square arrangement of
robots by a set of obstacles, such that this permutation
πi is carried out by a quadruple of force-field moves. We
can combine the sets of obstacles for the two different
permutations π1 and π2, such that π1 is realized by going
through a clockwise sequence 〈u, r, d, l〉, while π2 is
realized by a counterclockwise sequence 〈r, u, l, d〉. We
now argue that a target permutation π of the matrix can
be realized by a minimum-length sequence of m force-
field moves, if and only if π can be decomposed into a
sequence of a total of n applications of permutations π1
and π2, where m = 4n.

The “if” part is easy: simply carry out the sequence
of n permutations, each realized by a (clockwise or
counterclockwise) quadruple of force-field moves. For

5

(a) i = 1 (b) i = 2 (c) i = 3 (d) i = 4

Fig. 6. Variable gadgets that execute by a sequence of 〈d, l/r〉
moves. The ith l/r choice sets the variable to true or false by putting
the robot in a separate column. This selection move is shown in blue.
Each gadget responds to the ith choice but ignores all others, letting us
make several copies of the same variable by making multiple gadgets
with the same i. Above n=4, and the input 〈d, l, d, r, d, l, d, r, d, r, d〉
causes i = (1, 2, 3, 4) to produce (true, false, true, false). Robots
arrive at their output ports at exactly the same time.

the “only if” part, suppose we have a shortest sequence
of m force-field moves to achieve permutation π, and
consider an arbitrary subsequence that starts from the
base position in which the robots form a square arrange-
ment in the lower left-hand corner. It is easy to see that
a minimum-length sequence cannot contain two consec-
utive moves that are both horizontal or both vertical:
these moves would have to be be in opposite directions,
and we could shorten the sequence by omitting the first
move. Furthermore, by construction of the obstacle set,
the first move must be u or r. Now it is easy to check
that the choice of the first move determines the next
three ones: u must be followed by 〈r, d, l〉; similarly,
r must be followed by 〈u, l, d〉. Any other choice for
moves 2–4 would produce a longer overall sequence,
or destroy the matrix by leading to an arrangement
from which no recovery to a square matrix is possible.
Therefore, the overall sequence can be decomposed into
m = 4n clockwise or counterclockwise quadruples. As
described, each of these quadruples represents either π1
or π2, so π can be decomposed into n applications of
permutations π1 and π2. This completes the proof.

Note that the result also implies the existence of
solutions of exponential length, which can occur with
polynomial space. Binary counters are particular exam-
ples of such long sequences that are useful for many
purposes.

V. PARTICLE LOGIC

In our previous work [4] we showed that with only
fixed obstacles and robots that move maximally in
response to an input, we can construct a variety of logic
elements. These include variable gadgets that enable
setting multiple copies of up to n variables to be true
or false, (Fig. 6), m-input OR, and AND gates. Unfortu-
nately, we cannot build NOT gates because our system of
robots and obstacles is conservative—we cannot create
a new robot at the output when no robot is supplied
to the input. A NOT gate is necessary to construct a
logically complete set of gates. To do this, we rely on a

(a)
reversible NOT

(b)
one-way NOT

(c) reversible
connect

(d)
one-way connect

A=0, B=0

0, 1, 0, 1

A=0, B=1

0, 1, 1, 0

A=1, B=0

0, 1, 1, 0

A=1, B=1

1, 0, 1, 0
(e) Dual-rail gadget with outputs {AND,NAND,OR,NOR}.

A=0, B=0

0, 1, 1

A=0, B=1

1, 0, 1

A=1, B=0

1, 0, 1

A=1, B=1

0, 1, 1
(f) Dual-rail gadget with outputs {XOR(AB), XNOR(AB), 1}.

Fig. 7. Dual-rail gadgets using cycle 〈d, l, d, r〉.

form of dual-rail logic, where both the state and inverse
(A and Ā) of each signal are propagated throughout
the computation. Dual-rail logic is often used in low-
power electronics to increase the signal to noise ratio
without increasing the voltage [28]. With dual-rail logic
we can now construct the missing NOT gate, as shown
in Figs. 7a and 7b. The command sequence 〈d, l, d, r〉
inverts the input. By adding one-way valves we can
ignore any superfluous commands. Note that regardless
of the command sequence, all robots arrive at their
output ports at exactly the same time.

We now revisit the OR and AND gates of [4] using
dual-rail logic and the four inputs A, Ā,B, B̄. Surpris-
ingly, with the gate in Fig. 7e we can simultaneously
compute AND, NAND, OR and NOR. using the same
command sequence 〈d, l, d, r〉 as the NOT gate. Outputs
can be piped for further logic using the interconnections
in Figs. 7c and 7d. Unused outputs can be piped into a
storage area and recycled for later use.

These gates are reminiscent of the Fredkin gate, a
three-bit gate that swaps the last two bits if the first bit
is 1 [29]. They are conservative, in that the number of
input and output 1’s and 0’s are unchanged. They also
form a universal set. Unlike the Fredkin gate, our gate is
kinematic rather than dynamic, making it robust to noise
and self-synchronizing – at the end of every move the
robots are in a known state, and will not move until we
apply another input. However, unlike the Fredkin gate,
our AND/NAND/OR/NOR gate is not reversible.

Dual-rail devices open up new opportunities, includ-

6

ing XOR and XNOR gates, which are not conservative
using single-rail logic. This gate, shown in Fig. 2 also
outputs a constant 1 and 0.

With an AND and XOR we can compactly construct a
half-adder. We are hindered by an inability to construct
a fan-out device that produces multiple copies of an
input. Instead, we must take any logical expression and
create multiple copies of each input. For example, a half-
adder requires only one XOR and one AND gate, but our
particle computation requires two A and two B inputs.

To make our gate robust to input sequences that
deviate from 〈d, l, d, r〉, we can create caves that act
as one-way valves, as shown in Figs. 7b and 7d. After
an l input, the robot is at the left end of a horizontal
corridor. By placing a 1-unit cave at the rightmost end
of the corridor we can latch the l input—moving right
inserts the robot into a cave that can only be exited by
an l input. Similarly, by placing a 1-unit cave above the
leftmost end of the corridor, a u input inserts the robot
into a cave that can only be exited by an l input.

VI. HARDWARE DEMONSTRATIONS

Fig. 8 shows our scale prototype of a reconfigurable
GLOBALCONTROL-MANYROBOTS environment, using
1.27 diam steel and nylon bearings as our robots and
a naturally-occuring gravity field as the control field.
The prototype is a 61×61 cm square sheet of 2 cm
thick medium-density fiberboard (MDF), with a lattice
grid of hemispherical-profile, 1.27 cm grooves milled
at 1.27 cm spacing in the x and y directions. At the
intersection of each set of orthogonal grooves is a 4
mm diameter hole. We can then insert plastic-headed
thumb screws with 1.27 cm diam heads (McMaster
#91185A444) to serve as obstacles. The prototype is
centered and glued on top of a 20×20 cm square section
of MDF. Pushing down on any top board edge tilts the
entire prototype u, r, l, or d, and the bearings roll until
they hit an obstacle or another bearing. The companion
video illustrates this prototype configured to create a
permutation that converts ‘A’ to ‘b’ under the command
sequence 〈u, r, d, l〉, also shown in Fig. 3.

We have also configured the prototype to generate the
dual-rail universal Boolean gate in Fig. 2 and the logical
interconnects of Fig. 7c, see the accompanying video.
The long open paths in the permutation arrangement
often lead to errors when bearings pop off their proper
paths. The enclosed mazes of the logic gates are more
reliable and we have not recorded any errors.

VII. CONCLUSIONS

We analyzed the problem of steering many robots with
uniform inputs in a 2D environment containing obsta-

Fig. 8. Gravity-fed hardware implementation of GLOBALCONTROL-
MANYROBOTS. Bottom left is a matrix permutation for changing ‘A’
to ‘b’, top left is a combination AND, NAND, OR, NOR gate, and top
right is a NOT gate. See http://youtu.be/mJWl-Pgfos0.

cles. We introduced dual-rail particle logic computation,
and designed environments that can efficiently perform
matrix operations on groups of robots in parallel—our
matrix permutation requires only four moves for any
number of robots. These matrix operations enabled us
to prove the general motion planning problem PSPACE-
complete.

There remain many interesting problems to solve. We
are motivated by practical challenges in steering micro-
robots through vascular networks, which are common in
biology. Though some are two-dimensional, including
the leaf example in Fig. 1 and endothelial networks on
the surface of organs, many of these networks are three
dimensional. Magnetically actuated systems are capable
of providing 3D control inputs, but control design poses
additional challenges.

The paper investigated a subset of control in which all
robots move maximally. Future work should investigate
more general motion—what happens to our complexity
proof if we can move all the robots a discrete distance, or
along an arbitrary curve? We also abstracted important
practical constraints e.g., ferromagnetic objects tend to
clump in a magnetic field, and most magnetic fields are
not perfectly uniform.

Using dual-rail logic, we are limited to conservative
logic. We cannot create new robots, so logic such as a
multi-bit adder require exponentially increasing numbers
of inputs. Generating fan-out gates seems to require
additional flexibility in our problem definition, because
conservation rules are violated. Some way of encoding
an order of precedence is needed so that a reversible op-
eration on robot a can affect robot b. Possible approaches
use non-unit size components–either 2×1 robots, or
0.5×1 obstacles.

7

http://www.mcmaster.com/#91185a309
http://www.mcmaster.com/#91185a309
http://youtu.be/mJWl-Pgfos0
http://youtu.be/mJWl-Pgfos0
http://youtu.be/mJWl-Pgfos0
http://youtu.be/mJWl-Pgfos0
http://youtu.be/mJWl-Pgfos0
http://youtu.be/mJWl-Pgfos0
http://youtu.be/mJWl-Pgfos0

Finally, our research has potential applications in
micro-construction and nano-assembly. These applica-
tions require additional theoretical analysis to model
heterogeneous objects and objects that bond when forced
together, e.g., MEMS components and molecular chains.

ACKNOWLEDGMENTS

We acknowledge the helpful discussion and moti-
vating experimental efforts with T. pyriformis cells by
Yan Ou and Agung Julius at RPI and Paul Kim and
MinJun Kim at Drexel University. Ricardo Marquez and
Artie Shen assisted with photography and the hardware
platform. This work was supported by the National
Science Foundation under CPS-1035716.

REFERENCES

[1] A. Chanu, O. Felfoul, G. Beaudoin, and S. Martel, “Adapting
the clinical MRI software environment for real-time navigation
of an endovascular untethered ferromagnetic bead for future
endovascular interventions,” Magn Reson Med, vol. 59, no. 6,
pp. 1287–1297, Jun. 2008.

[2] I. S. M. Khalil, M. P. Pichel, B. A. Reefman, O. S. Sukas,
L. Abelmann, and S. Misra, “Control of magnetotactic bacterium
in a micro-fabricated maze,” in IEEE International Conference
on Robotics and Automation, Karlsruhe, Germany, May 2013,
pp. 5488–5493.

[3] D. de Lanauze, O. Felfoul, J.-P. Turcot, M. Mohammadi,
and S. Martel, “Three-dimensional remote aggregation and
steering of magnetotactic bacteria microrobots for drug delivery
applications,” The International Journal of Robotics Research,
11 2013. [Online]. Available: http://ijr.sagepub.com/content/
early/2013/11/11/0278364913500543

[4] A. Becker, E. D. Demaine, S. P. Fekete, G. Habibi, and
J. McLurkin, “Reconfiguring massive particle swarms with
limited, global control,” in Algorithms for Sensor Systems,
ser. Lecture Notes in Computer Science, P. Flocchini, J. Gao,
E. Kranakis, and F. Meyer auf der Heide, Eds. Springer
Berlin Heidelberg, 2014, pp. 51–66. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-45346-5 5

[5] A. Becker, Y. Ou, and A. Julius, “Feedback control of many
magnetized tetrahymena pyriformis cells by exploiting phase
inhomogeneity,” in IEEE Int. Rob. and Sys., 2013.

[6] E. D. Demaine, M. L. Demaine, and J. O’Rourke, “PushPush and
Push-1 are NP-hard in 2D,” in Proceedings of the 12th Annual
Canadian Conference on Computational Geometry (CCCG),,
Aug. 2000, pp. 211–219.

[7] M. Hoffmann, “Motion planning amidst movable square blocks:
Push-* is NP-hard,” in Canadian Conference on Computational
Geometry, Jun. 2000, pp. 205–210.

[8] R. A. Hearn and E. D. Demaine, “PSPACE-completeness
of sliding-block puzzles and other problems through the
nondeterministic constraint logic model of computation,”
arXiv:cs/0205005, vol. cs.CC/0205005, 2002. [Online].
Available: http://arxiv.org/abs/cs/0205005

[9] M. Holzer and S. Schwoon, “Assembling molecules in ATOMIX
is hard,” Theoretical Computer Science, vol. 313, no. 3, pp.
447–462, 2 2004. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0304397503005930

[10] A. Becker. (2013, July) “Drive Magnetic Micro Robots through
a 2D Vascular Network.” MATLAB Central File Exchange.
[Online]. Available: http://www.mathworks.com/matlabcentral/
fileexchange/42889

[11] ——. (2014, Feb.) “Particle Computation: Permute an array
of particles with 4 global moves.” MATLAB Central File
Exchange. [Online]. Available: http://www.mathworks.com/
matlabcentral/fileexchange/45538

[12] M. Rubenstein, C. Ahler, and R. Nagpal, “Kilobot: A low cost
scalable robot system for collective behaviors,” in IEEE Int.
Conf. Rob. Aut., May 2012, pp. 3293–3298.

[13] Y. Ou, D. H. Kim, P. Kim, M. J. Kim, and A. A. Julius, “Motion
control of magnetized tetrahymena pyriformis cells by magnetic
field with model predictive control,” Int. J. Rob. Res., vol. 32,
no. 1, pp. 129–139, Jan. 2013.

[14] P.-T. Chiang, J. Mielke, J. Godoy, J. M. Guerrero, L. B. Alemany,
C. J. Villagómez, A. Saywell, L. Grill, and J. M. Tour, “Toward
a light-driven motorized nanocar: Synthesis and initial imaging
of single molecules,” ACS Nano, vol. 6, no. 1, pp. 592–597, Feb.
2011.

[15] B. R. Donald, C. G. Levey, I. Paprotny, and D. Rus, “Planning
and control for microassembly of structures composed of stress-
engineered MEMS microrobots,” The International Journal of
Robotics Research, vol. 32, no. 2, pp. 218–246, 2013. [Online].
Available: http://ijr.sagepub.com/content/32/2/218.abstract

[16] S. Floyd, E. Diller, C. Pawashe, and M. Sitti, “Control method-
ologies for a heterogeneous group of untethered magnetic micro-
robots,” Int. J. Robot. Res., vol. 30, no. 13, pp. 1553–1565, Nov.
2011.

[17] D. Frutiger, B. Kratochvil, K. Vollmers, and B. J. Nelson,
“Magmites - wireless resonant magnetic microrobots,” in IEEE
Int. Conf. Rob. Aut., Pasadena, CA, May 2008.

[18] K. E. Peyer, L. Zhang, and B. J. Nelson, “Bio-inspired magnetic
swimming microrobots for biomedical applications,” Nanoscale,
2013.

[19] A. Becker, G. Habibi, J. Werfel, M. Rubenstein, and J. McLurkin,
“Massive uniform manipulation: Controlling large populations of
simple robots with a common input signal,” in IEEE Int. Rob.
and Sys., Oct. 2013.

[20] H. Abelson, J. Beal, and G. J. Sussman,
“Amorphous computing,” MIT, MA 02139 USA,
Tech. Rep. MIT-CSAIL-TR-2007-030, Jun. 2007. [On-
line]. Available: http://18.7.29.232/bitstream/handle/1721.1/
37591/MIT-CSAIL-TR-2007-030.pdf?sequence=1

[21] F. T. Leighton, Introduction to Parallel Algorithms and Archi-
tectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, 1991.

[22] G. Wilfong, “Motion planning in the presence of movable
obstacles,” Annals of Mathematics and Artificial Intelligence,
vol. 3, no. 1, pp. 131–150, 1991.

[23] D. Dor and U. Zwick, “Sokoban and other motion planning
problems,” Computational Geometry, vol. 13, no. 4, pp. 215–
228, 1999.

[24] J. S. Lewis and J. M. O’Kane, “Planning for provably
reliable navigation using an unreliable, nearly sensorless
robot,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1342–1357, 2013. [Online]. Available:
http://ijr.sagepub.com/content/32/11/1342.abstract

[25] B. Engels and T. Kamphans, “On the complexity of Randolph’s
robot game,” Rheinische Friedrich-Wilhelms-Universität Bonn
Institut für Informatik I, University of Cologne, Germany, Tech.
Rep., 2005.

[26] M. Deléglise and J.-L. Nicolas, “Maximal product of primes
whose sum is bounded,” ArXiv e-prints, Jul. 2012.

[27] M. R. Jerrum, “The complexity of finding minimum-length
generator sequences,” Theoretical Computer Science, vol. 36, pp.
265–289, 1985.

[28] R. Zimmermann and W. Fichtner, “Low-power logic styles:
CMOS versus pass-transistor logic,” Solid-State Circuits, IEEE
Journal of, vol. 32, no. 7, pp. 1079–1090, 1997.

[29] E. Fredkin and T. Toffoli, “Conservative logic,” International
Journal of Theoretical Physics, vol. 21, no. 3-4, pp. 219–253,
1982. [Online]. Available: http://dx.doi.org/10.1007/BF01857727

8

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1035716
http://ijr.sagepub.com/content/early/2013/11/11/0278364913500543
http://ijr.sagepub.com/content/early/2013/11/11/0278364913500543
http://dx.doi.org/10.1007/978-3-642-45346-5_5
http://arxiv.org/abs/cs/0205005
http://www.sciencedirect.com/science/article/pii/S0304397503005930
http://www.sciencedirect.com/science/article/pii/S0304397503005930
http://www.mathworks.com/matlabcentral/fileexchange/42889
http://www.mathworks.com/matlabcentral/fileexchange/42889
http://www.mathworks.com/matlabcentral/fileexchange/45538
http://www.mathworks.com/matlabcentral/fileexchange/45538
http://ijr.sagepub.com/content/32/2/218.abstract
http://18.7.29.232/bitstream/handle/1721.1/37591/MIT-CSAIL-TR-2007-030.pdf?sequence=1
http://18.7.29.232/bitstream/handle/1721.1/37591/MIT-CSAIL-TR-2007-030.pdf?sequence=1
http://ijr.sagepub.com/content/32/11/1342.abstract
http://dx.doi.org/10.1007/BF01857727

	I Introduction
	I-A Problem Definition

	II Related Work
	II-.1 Large Robot Populations
	II-.2 Computational Particles
	II-.3 Computational Geometry: Robot Box-Pushing

	III Matrix Permutations
	III-A Designing Workspace for a Single Permutation
	III-B Physical Absolute Encoders and Animations
	III-B.1 Animations
	III-B.2 Reversible Permutations

	III-C Designing a Workspace for Arbitrary Permutations

	IV Complexity
	V Particle Logic
	VI hardware demonstrations
	VII Conclusions
	References

