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Abstract— Micro- and nanorobotics have the potential to
revolutionize many applications including targeted material de-
livery, assembly, and surgery. The same properties that promise
breakthrough solutions—small size and large populations—
present unique challenges to generating controlled motion. We
want to use large swarms of robots to perform manipula-
tion tasks; unfortunately, human-swarm interaction studies as
conducted today are limited in sample size, are difficult to
reproduce, and are prone to hardware failures. We present
an alternative.

This paper examines the perils, pitfalls, and possibilities we
discovered by launching SwarmControl.net, an online game
where players steer swarms of up to 500 robots to complete
manipulation challenges. We record statistics from thousands
of players, and use the game to explore aspects of large-
population robot control. We present the game framework
as a new, open-source tool for large-scale user experiments.
Our results have potential applications in human control of
micro- and nanorobots, supply insight for automatic controllers,
and provide a template for large online robotic research
experiments.

I. INTRODUCTION

Large populations of micro- and nanorobots are being pro-
duced in laboratories around the world, with diverse potential
applications in drug delivery and construction [1]–[3]. These
activities require robots that behave intelligently. Limited
computation and communication rules out autonomous oper-
ation or direct control over individual units; instead we must
rely on global control signals broadcast to the entire robot
population. It is not always practical to gather pose infor-
mation on individual robots for feedback control; the robots
might be difficult or impossible to sense individually due to
their size and location. However, it is often possible to sense
global properties of the group, such as mean position and
density. Finally, many promising applications will require
direct human control, but user interfaces to thousands—or
millions—of robots is a daunting human-swarm interaction
(HSI) challenge.

The goal of this work is to provide a tool for investigating
HSI methods through statistically significant numbers of ex-
periments. There is currently no comprehensive understand-
ing of user interfaces for controlling multi-robot systems
with massive populations. We are particularly motivated by
the sharp constraints in micro- and nanorobotic systems.
For example, full-state feedback with 106 robots leads to
operator overload. Similarly, the user interaction required
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Fig. 1. Screenshots from our five online experiments controlling multi-
robot systems with limited, global control. (a) Varying the number of robots
from 1-500 (b) Comparing 4 levels of visual feedback (c) Comparing 3
control architectures (d) Varying noise from 0 to 200% of control authority
(e) Controlling the position of 1 to 10 robots.

to individually control each robot scales linearly with robot
population. Instead, user interaction is often constrained to
modifying a global input. This input may be nonstandard,
such as the attraction/repulsion field from a scanning tunnel-
ing microscope (STM) tip.

Our previous work with over a hundred hardware robots
and thousands of simulated robots [4] demonstrated that
direct human control of large swarms is possible. Unfortu-
nately, the logistical challenges of repeated experiments with
over one hundred robots prevented large-scale tests.

Our goal was to test several scenarios involving large-
scale human-swarm interaction (HSI), and to do so with
a statistically-significant sample size. Towards this end, we
created SwarmControl.net, an open-source online testing
platform suitable for inexpensive deployment and data col-
lection on a scale not yet seen in swarm robotics research.
Screenshots from this platform are shown in Fig. 1. All
code [5], and experimental results are posted online.

Our experiments show that numerous simple robots re-
sponding to global control inputs are directly controllable
by a human operator without special training, that the visual
feedback of the swarm state should be very simple in order to
increase task performance, and that humans perform swarm-
object manipulation faster using attractive control schemes
than repulsive control schemes.

http://www.swarmcontrol.net
http://www.swarmcontrol.net/show_results
https://github.com/crertel/swarmmanipulate.git
https://github.com/crertel/swarmmanipulate.git
http://www.swarmcontrol.net/show_results


Our paper is organized as follows. After a discussion of
related work in Section II, we describe our experimental
methods for an online human-user experiment in Section
III. We report the results of our experiments in Section
IV, discuss the lessons learned in Section V, and end with
concluding remarks in Section VI.

II. RELATED WORK

A. Human-Swarm Interaction

Olson and Wood studied human fanout, the number of
robots a single human user could control [6]. They postulated
that the optimal number of robots was approximately the
autonomous time divided by the interaction time required
by each robot. Their sample problem involved a multi-
robot search task, where users could assign goals to robots.
Their user interaction studies with simulated planar robots
indicated a fanout plateau of about 8 robots, after which there
were diminishing returns. They hypothesize that the location
of this plateau is highly dependent on the underlying task,
and our work indicated there are some tasks without plateaus.
Their research investigated robots with 3 levels of autonomy.
We use robots without autonomy, corresponding with their
first-level robots.

Squire, Trafton, and Parasuraman designed experiments
showing that user-interface design had a high impact on the
task effectiveness and the number of robots that could be
controlled simultaneously in a multi-robot task [8].

A number of user studies compare methods for controlling
large swarms of simulated robots, for example [9]–[11].
These studies provide insights but are limited by cost to
small user studies, have a closed-source code base, and focus
on controlling intelligent, programmable agents. For instance
[11] was limited to a pool of 18 participants, [9] 5, and [10]
32. Using an online testing environment, we conduct similar
studies but with much larger sample sizes.

B. Global-control of micro- and nano-robots

Small robots have been constructed with physical hetero-
geneity so that they respond differently to a global, broadcast
control signal. Examples include scratch-drive microrobots,
actuated and controlled by a DC voltage signal from a
substrate [12], [13]; magnetic structures with different cross-
sections that could be independently steered [14], [15];
MagMite microrobots with different resonant frequencies and
a global magnetic field [16]; and magnetically controlled
nanoscale helical screws constructed to stop movement at
different cutoff frequencies of a global magnetic field [1].

Similarly, our previous work [17], [18] focused on exploit-
ing inhomogeneity between robots. These control algorithms
theoretically apply to any number of robots—even robotic
continuums—but in practice process noise cancels the dif-
ferentiating effects of inhomogeneity for more than tens of
robots. We desire control algorithms that extend to many
thousands of agents.

C. Three challenges for massive manipulation

While it is now possible to create many micro- and
nano-robots, there remain challenges in control, sensing, and
computation.

1) Control—global inputs: Many micro- and nano-robotic
systems [1]–[3], [12]–[16], [19], [20] rely on global inputs,
where each robot receives an exact copy of the control signal.
Our experiments follow this global model.

2) Sensing—large populations: Parallel control of n
differential-drive robots in a plane requires 3n state variables.
Even holonomic robots require 2n state variables. Numer-
ous methods exist for measuring this state in micro- and
nanorobotics. These solutions use computer vision systems
to sense position and heading angle, with corresponding
challenges of handling missed detections and registration
of detections with corresponding robots. These challenges
are increased at the nanoscale where sensing competes with
control for communication bandwidth. We examine control
when the operator has access to only the first and second
moments of a population’s position, or the convex-hull
containing all robots of interest.

3) Computation—calculating the control law: In our pre-
vious work the controllers required at best a summation over
all the robot states [18] and at worst a matrix inversion [17].
These operations become intractable for large populations of
robots. By focusing on human control of large robot popu-
lations, we accentuate computational difficulties because the
controllers are implemented by the unaided human operator.

III. EXPERIMENTAL METHODS

A. Framework

We have developed a flexible testing framework for online
human-swarm interaction studies. There are two halves to
our framework: the server backend and the client-side (in-
browser) frontend. The server backend is responsible for
tabulating results, serving webpages containing the frontend
code, and for issuing unique identifiers to each experi-
ment participant. The in-browser frontend is responsible
for running an experiment—that is to say, accepting user
input, updating the state of the robot swarm, and ultimately
evaluating task completion.

1) Overview: Before describing the system in detail,
it helps to understand the workflow of a participant and
what data is passed back and forth when performing an
experiment.

A participant visits the site, initiating a communication be-
tween their browser and our server. The web server generates
a unique identifier for the participant and sends it along with
the landing page to the participant—this identifier is stored
as a browser cookie and will be sent along with all results
the participant generates. The participant’s browser prompts
for confirmation of the terms-of-service and offers a menu
of experiments.

Once the participant selects an experiment, their browser
makes a new request to the server to load the experiment’s
webpage. The server sends a common scaffolding (some



basic HTML describing the layout of the page and a script
block which will start the experiment) and the experiment
suite. The script instantiates and runs the experiment, and
upon the completion of the experiment success criteria
posts the experiment data back to the backend server. The
participant is then given the option of playing again or trying
a different experiment.

A participant may view all of the experimental data
we have gathered; this information is available as either a
webpage, a JSON file, or a comma-separated value (.CSV, a
common spreadsheet format) file.

2) Backend: The server backend is written in Ruby,
using the Ruby-on-Rails (usually abbreviated Rails) web
development framework.

Ruby is a dynamically-typed object-oriented scripting lan-
guage with a strong emphasis on programmer ergonomics
and metaprogramming support. It is well-suited for the
creation of domain-specific languages for a variety of tasks,
as exemplified by the Rails framework.

Our backend serves assets (images, scripts, stylesheets,
and so forth) to participants, selects the correct script to send
to perform a particular experiment, and stores results.

Results are database records containing the experiment
name, the participant identifier, the duration of the experi-
ment (time to completion), the number of robots involved,
the detailed mode information of the experiment, and the
user agent string of the browser running the experiment. Rails
automates the process of creating the relevant database-object
bindings, and thus we spent little time creating or modifying
the result records, allowing us to rapidly adapt the server to
our needs–for example, adding tracking of the user agent and
experiment mode both took less than five minutes of work
on the server side.

The script file to be sent to the client is selected by exam-
ining the route specified on the uniform resource identifier
(URI) for the experiment webpage; this done, the server will
render the page requested by the participant and insert a
script to run the selected experiment. The Rails framework
has a great deal of support for optimizing and compacting
(minifying) Javascript files, one of the reasons it was used
for this project.

3) Frontend: The client frontend which runs in the partic-
ipant’s browser is written in Javascript, a dynamically-typed
prototype-oriented scripting language with some functional
programming support.

We make heavy use of the Underscore framework (a
functional programming toolkit for Javascript) as well as the
Javascript port of Box2D (a popular 2D physics engine with
good support for rigid-body dynamics and fixed-timestep
simulation). Our frontend additionally includes helper li-
braries for things like drawing robots, handling user input,
and drawing graphs.

Our framework uses a base task to represent the lifecycle
of an experiment—instantiation, simulation, evaluation,
and submission. A particular experiment inherits from this
prototype but overrides particular methods and adds its own
variables for bookkeeping; in this way, new or modified tasks

may be created rapidly without worrying about boilerplate
code.

During the instantiation phase, an experiment sets up the
web page elements with help text and other information, and
also creates the obstacles, robots, and workpieces that will be
present during the experiment. It will also randomly select
which mode to run in, if applicable.

The simulation phase is the time at which all of the robots
are moved according to user input and given a chance to
interact with each other and the environment. As user input
is handled in a callback at some time not controlled by the
experiment, a proxy variable is updated by the user input
handling routines and evaluated during the simulation phase.
Finally, the simulation phase draws the current state of the
experiment to the canvas of the webpage.

The evaluation phase is when the experiment’s completion
criteria are applied to the current experiment state: are the
robots in the goal zone, are the workpieces in the correct
place, and so forth. If the criteria are not met, the experiment
loops back into the simulation phase; if they are met, then
the experiment proceeds to result submission.

The submission phase is when the results of the experi-
ment are combined with other user data, such as the browser
user agent string, and submitted to the server for collection.
As a means of encouraging user interaction, the results of
other runs of the experiment are shown to the participant after
submission along with merit badges displaying the number
of experiments completed.

B. Human subjects

Because our study involved recording data from human
subjects, it required IRB approval before we could legally
save user data (IRB #14-012E).

Subjects were recruited using a combination of social
network effects and coordinated news posts. We asked our
friends and colleagues to send links to our site out to their
friends via their preferred social networks, generally Twitter,
Facebook, Google+, and through email. Additionally, we
posted our site to several news aggregators in hopes that
it would be seen and visited. Our first such posting was to
Hacker News, an aggregator run by the Y-Combinator accel-
erator company; this posting resulted in our first thousand
trials. A second posting was made to Reddit, but did not
seem to cause much traffic. A third posting was made to the
Robohub.org site. The traffic generated by these postings is
shown in Fig. 2.

Concurrently, we contacted our university’s News and
Media Relations Team. They sent a writer and photographer
to our lab, worked with us to draft a press release, and
publicized with news outlets and alumni. Most universities
have a media team, and this is a valuable no-cost venue to
gain publicity.

C. Experimental costs

We’ve spent approximately one hundred dollars USD
provisioning and running this experiment.

http://news.rice.edu/2013/09/09/a-swarm-on-every-desktop-robotics-experts-learn-from-public/ 
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Fig. 2. Cumulative time played for completed tests.

Hosting is provided by Heroku, using a single web in-
stance costing around $40/month, with additional monitoring
services bringing that up to $50/month. In the event of in-
creased demand/participant traffic, we can trivially provision
another server to take up the load. We purchased our domain
name from Namecheap.com for $11.66 a year, giving our
site a short, easy to pronounce handle that was 10 characters
shorter than the free name.

Given the large number of experiment sessions run (over
4700 at the time of this writing), we see a per-experiment
cost of less than three cents.

D. Instrumentation

When conducting an online experiment, it is very helpful
to gather additional data about both the experiment infras-
tructure and the participants.

For the backend, we use a service called Airbrake to
monitor the ‘health’ of the Rails server, getting emails in the
events of any errors occurring or suspicious activity. We also
use another service called New Relic to provide monitoring
and analytics on the server traffic, giving coarse statistics
about site visitation, page load time, and other indicators of
how our backend is performing.

For the frontend, we use Google Analytics to track user
behavior. This tool allows us to see country of origin for
users, time spent on the site, relative percent of people who
look past the landing page (‘bounce rate’), and user agent
information (type of browser, type of device, etc.).

IV. RESULTS

We designed five experiments to investigate human control
of large robotic swarms for manipulation tasks. Screenshots
of each experiment are shown in Fig. 1. Each experiment
examined the effects of varying a single parameter: 1 to
500 robots for manipulation, four levels of visual feedback,
three control architectures, 200 levels of Brownian noise, and
position control with 1 to 10 robots. The users could choose
which experiment to try, but our architecture randomly
assigned a particular parameter value for each trial. We
recorded the completion time and the participant ID for each
successful trial. As Fig. 3 shows, one-third of all participants
played only a single game. Still, many played multiple
games, and their decreasing completion times demonstrates
their skills improved.
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Fig. 3. (Left) The total number of games played per player drops off
exponentially. (Right) We are able to show that players skill improves as
they retry tests using data from Varying Number
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Fig. 4. Data from Varying Number using robots to push an object through
a maze to a goal location. The data indicates that this task has an optimal
number of robots, perhaps due to the relative sizes of the robots, obstacles,
and object. Best-fit linear and quadratic lines are overlaid for comparison.

Our robots are disc-shaped, non-holonomic, and confined
to the 2D plane. The control input u consists of a single
bounded force vector that is applied to each robot, |u|≤
umax. We include a linear ramp for this force value that starts
at zero and increases to the maximum value in one second;
this allows participants to do fine control of the robots by
tapping the arrow keys.

ẋi = ux, ẏi = uy. (1)

A. Varying Number

Transport of goods and materials between points is at
the heart of all engineering and construction in real-world
systems. This experiment varied from 1 to 500 the number
of robots used to transport an object. We kept the total
area, maximum robot speed, and sum force the swarm
could produce constant. The robots pushed a large hexagonal
object through an ‘S’-shaped maze. Our hypothesis was that
participants would complete the task faster with more robots.
The results, shown in Fig. 4, do not support our hypothesis,
indicating rather that there is a local minima around 130
robots.

B. Varying Control

Ultimately, we want to use swarms of robots to build
things. This experiment compared different control architec-
tures modeled after real-world devices.

Heroku.com
Namecheap.com
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Fig. 5. Attractive control resulted in the shortest completion time and
repulsive the longest for building a three-block pyramid.

We compared attractive and repulsive control with the
global control used for the other experiments. The attrac-
tive and repulsive controllers were loosely modeled after
scanning tunneling microscopes (STM), but also apply to
magnetic manipulation [21] and biological models [22].
STMs can be used to arrange atoms and make small assem-
blies [23]. An STM tip is charged with electrical potential,
and used to repel like-charged or to attract differently-
charged molecules. In contrast, the global controller uses a
uniform field (perhaps formed by parallel lines of differently-
charged conductors) to pull molecules in the same direction.
The experiment challenged players to assemble a three-block
pyramid with a swarm of 16 robots.

The results were conclusive, as shown in Fig. 5: for our
assembly task attractive control was the fastest, followed
by global control, with repulsive control a distant last. The
median time using repulsive control was four times longer
than with attractive control.

C. Varying Visualization

Sensing is expensive, especially on the nanoscale. To
see nanocars [3], scientists fasten molecules that fluoresce
light when activated by a strong light source. Unfortunately,
multiple exposures can destroy these molecules, a process
called photobleaching. Photobleaching can be minimized by
lowering the excitation light intensity, but this increases
the probability of missed detections [24]. This experiment
explores manipulation with varying amounts of sensing in-
formation: full-state sensing provides the most information
by showing the position of all robots; convex-hull draws a
line around the outermost robots; mean provides the average
position; and mean + variance adds a confidence ellipse.
Fig. 7 shows screenshots of the same robot swarm with each
type of visual feedback. Full-state requires 2n data points
for n robots. Convex-hull requires at worst 2n, but usually a
smaller number. Mean requires two, and variance three, data
points. Mean and mean + variance are convenient even with
millions of robots. Our hypothesis predicted a steady decay
in performance as the amount of visual feedback decreased.

To our surprise, our experiment indicates the opposite:
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Fig. 6. Completion-time results for the four levels of visual feedback
shown in Fig. 7. Surprisingly, players perform better with limited feedback–
subjects with only the mean + variance outperformed all others.

players with just the mean completed the task faster than
those with full-state feedback. As Fig. 6 shows, the levels
of feedback arranged by increasing completion time are
[mean + variance, mean, full-state, convex-hull]. Anecdotal
evidence from beta-testers who played the game suggests that
tracking 100 robots is overwhelming—similar to schooling
phenomenons that confuse predators—while working with
just the mean + variance is like using a “spongy” manipu-
lator. Our beta-testers found convex-hull feedback confusing
and irritating. A single robot left behind an obstacle will
stretch the entire hull, obscuring what the rest of the swarm
is doing.

D. Varying Noise

Real-world microrobots and nanorobots are affected by
turbulence caused by random collisions with molecules. The
effect of these collisions is called Brownian motion.

This experiment varied the strength of these disturbances
to study how noise affects human control of large swarms.
Noise was applied at every timestep as follows:

ẋi = ux +mi cos(ψi)

ẏi = uy +mi sin(ψi).

Here mi, ψi are uniformly IID, with mi ∈ [0,M ] and ψi ∈
[0, 2π], where M is a constant for each trial ranging from 0
to 200% of the maximum control power (umax).

We hypothesized 200% noise was the largest a human
could be expected to control—at 200% noise, the robots

Full-state Convex-hull Mean + var Mean

Fig. 7. Screenshots from task Vary Visualization. This experiment
challenges players to quickly steer 100 robots (blue discs) to push an object
(green hexagon) into a goal region. We record the completion time and other
statistics.
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Fig. 9. Increasing the number of robots resulted in longer completion
times. For more than 4 robots the goal pattern contained a void, which may
have caused the longer completion times.

move erratically. Disproving our hypothesis, the results in
Fig. 8 show only a 40% increase in completion time for the
maximum noise.

E. Position Control

This experiment examined how completion time scales
with the number of robots n. Using a single square ob-
stacle, users arranged n ∈ [1, 10] robots into a specified
goal pattern. The goal pattern formed a block ‘A’ with 10
robots, and lesser numbers of robots used a subset of these
goal positions. Our hypothesis was that completion time
would increase linearly with the number of robots, as with
our position control algorithm in [4]. Our results roughly
corroborate this, as shown in Fig. 9. Though the number of
robots presented to game players is uniformly distributed,
larger n are more difficult, and the number of successful
experiments drops steadily as n increases.

Note there is a bifurcation between n = 4 and n = 5
robots. For n ∈ [1, 4] the goal patterns are not hollow, but
starting at n = 5 they are. A better experiment design would

randomly place the goal positions. Initially we tried this, but
our beta-testers strongly disliked trying to arrange robots in
random patterns.

V. DISCUSSION

During beta-testing and live deployment of SwarmCon-
trol.net we learned many things which will inform future
experimentation. These lessons are directly applicable to de-
signing better experiments, getting more results, and reaching
more users.

A. Lessons learned: Beta-testing

While waiting on our IRB approval, we tested our experi-
ment suite. This gave us an opportunity to refine our software
and to fix many flaws before they would have affected a
larger audience; none of this data was used in our analysis.

1) Be accessible: Our original color scheme made heavy
use of bright red, green, and blue colors. We tested for
colorblind accessibility, and changed our color scheme.
http://colorfilter.wickline.org/ is an online service which dis-
plays a website as it appears to a colorblind user.

2) Have a structure: Beta-testers desired a more struc-
tured experience; initially we had only shown screenshots
of the five experiments and each experiment had a replay
button.

Participants told us that they had no idea when they
had finished, how they had performed, why the experiment
mattered, or how to get to the next experiment.

To signal completion of a task and to show participants
how they had performed we added a results screen to the end
of each experiment. When a user completes an experiment
trial, they are congratulated, shown their completion time,
and shown how their results compare with everyone else.

Each experiment has a number of blank merit badge
outlines showing how many trials the participant should
complete. Finishing an experiment fills in one of these
outlines.

To explain why the experiment matters, we added The
Science sections on each page.

3) Respect participant time: Our beta testers were frus-
trated by slow robots; in contrast, when we have conducted
in-person tests with hardware robots in the lab, people have
been more patient. To fix this problem we sped up our
simulated robots by a factor of five.

For experiments conducted online, it is important to waste
as little of a participant’s time as possible: you are in direct
competition with a thousand other distractions.

4) Have simple instructions: Beta-testers never looked at
the instructions in the side-panel. To fix this, we overlaid
simple, mostly pictorial instructions on the experiment can-
vas before play, as shown in Fig. 10.

5) Test multiple displays: Finally, many participants used
laptop screens—displays much smaller than the desktops
on which we designed the experiments. We changed our
framework so that laptop participants could play without
scrolling the screen.

http://colorfilter.wickline.org/


Fig. 10. Screenshot showing the Varying Number experiment before
gameplay. At left are instructions and educational material, including a
video. At right is the experiment canvas. Large instructions and bold arrows
demonstrate the desired task—participants do not bother to read small print.

Fig. 11. Overview of the browsers used by game players, provided by
Google Analytics.

B. Lessons learned: Live website

After beta-testing, we launched the website and monitored
our traffic using saved results and tracking by Google Ana-
lytics. This information was helpful in finding several usage
trends.

1) Mobile traffic: Looking at this data, we found that
visitors using a smartphone or tablet leave within 17 seconds
on average. These participants are 10% of our first-time
visitors, and leave because our experiments require the use
of a mouse and keyboard.

To capture these participants, we plan to make a mobile-
friendly version of our experiments.

2) Browser considerations: Browser information for our
experiments is shown in Fig. 11. For an online experiment,
the experimenter cannot control the participant’s browser.
This imposes challenges for controlled experiments.

A large screen and a small screen—unless designed for—
may show content differently, leading to inconsistent results.
We optimized for a small laptop screen.

Additionally, certain browser/computer combinations will
exhibit abysmal performance as the number of robots in-

creases. Performance may suffer because of other processes
the participant is running.

Two ways to compensate for variance in performance
are to conduct large numbers of experiments or to record
performance data concurrently with experiment data. We
attempted both: after one week of testing we began recording
the user-agent string of participants’ browsers. A better setup
would benchmark a participant’s browser before running an
experiment.

3) Bounce rates: Participants are easily put off by having
to click through or sign-up for things [25]. Our bounce rate
of 42% and average visit time of just over 4 minutes indicate
that almost half potential testers never attempt an experiment.
We saw an exponential decrease in the number of trials
participants completed, as shown in Fig. 3.

We originally planned on a participant sign-up process,
but omitted it to let participants begin experiments faster.
A participant can start running an experiment now in two
clicks.

C. Other issues

There are ways we can improve the quality of our exper-
imentation.

1) Poor experiment design: We tried to design each
experiment to measure the effect one parameter; we did not
always succeed.

In particular, the Position Control experiment uses vary-
ing numbers of robots—however, there is no difference in
input required to solve certain configurations. Identical input
sequences solve n = 1 and n = 2, a problem also seen with
n = 3 and n = 4.

Additionally, there is a qualitative difference in difficulty
when arranging the robots into a solid versus hollow shape;
this is currently not controlled for. A possible solution would
require goal states for all values of n to be either solid or
hollow.

2) Missing participant behavior: We only recorded re-
sults when a participant successfully completed a task—we
did not track the case where a participant began but did
not complete an experiment. It is important to account for
every path a participant may take through an experiment. We
did not, and found a discrepancy between the visits reported
by Google Analytics and the number of experiment results
recorded.

VI. CONCLUSION AND FUTURE WORK

We introduced SwarmControl.net, a new online envi-
ronment for large-scale user experiments controlling 100+
populations of robots. Over the period of one month this
site conducted thousands of experiments with a worldwide
user base, as shown in Fig. 12. All code is open source and
downloadable from a public git repository [5]. All exper-
iment results can be freely downloaded from our website.
We implemented five unique experiments, and gathered data
that corroborated past lab experiments, but with a testing pool
two orders of magnitude larger than was possible before.

http://www.swarmcontrol.net/
http://www.swarmcontrol.net/


Fig. 12. Demographic information on game player’s location, provided
by Google Analytics. Game players from 84 countries and 49 US states
visited our site.

a) Site modifications: The current site is optimized for
desktop and laptop users, and we currently do not support
mobile users. Our IRB allows us to conduct demographic
questionnaires, and we will implement these questionnaires
in a future release–currently our only source of demographic
data is Google Analytics.

We are pursuing partnerships to increase the educational
content on our website. Our goal is to highlight a variety of
the leading micro- and nano-robotics labs and the challenges
they are working on.

b) Additional experiments: There are many avenues for
future work. Manipulation by large populations of robots
is an immature area and there are many open questions.
Future work will invite other collaborators to submit their
own experiments. Topics of interest include control with
nonuniform flow such as fluid in an artery, gradient control
fields like that of an MRI, competitive playing, multi-modal
control, and targeted drug delivery in a vascular network.

c) Automatic controllers: We have compiled a large
body of test results. Our goal is to design automatic con-
trollers using this data. One avenue is to identify the most
proficient players and perform inverse optimal control algo-
rithms to learn the cost functions used by the best players.
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