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Abstract— This paper presents a distributed approach for
exploring and triangulating an unknown region using a multi-
robot system. The objective is to produce a covering of an
unknown workspace by a fixed number of robots such that
the covered region is maximized, solving the Maximum Area
Triangulation Problem (MATP). The resulting triangulation is
a physical data structure that is a compact representation of the
workspace; it contains distributed knowledge of each triangle,
adjacent triangles, and the dual graph of the workspace.
Algorithms can store information in this physical data structure,
such as a routing table for robot navigation

Our algorithm builds a triangulation in a closed environment,
starting from a single location. It provides coverage with a
breadth-first search pattern and completeness guarantees. We
show the computational and communication requirements to
build and maintain the triangulation and its dual graph are
small. Finally, we present a physical navigation algorithm that
uses the dual graph, and show that the resulting path lengths
are within a constant factor of the shortest-path Euclidean
distance. We validate our theoretical results with experiments
on triangulating a region with a system of low-cost robots.
Analysis of the resulting quality of the triangulation shows
that most of the triangles are of high quality, and cover a
large area. Implementation of the triangulation, dual graph,
and navigation all use communication messages of fixed size,
and are a practical solution for large populations of low-cost
robots.

I. INTRODUCTION AND RELATED WORK

Many practical applications of multi-robot systems, such
as search-and-rescue, exploration, mapping and surveillance
require robots to disperse across a large geographic area.
Large populations of robots offer two large advantages: they
can search the environment rapidly using a breadth-first
approach, and can maintain coverage of the environment after
the dispersion is complete.

In this paper, we demonstrate that triangulating the
workspace with a multi-robot system is a useful approach to
dispersion and monitoring. Triangulations are used in a large
variety of applications because of their useful properties. In
our application they provide complete coverage, they can be
built with only basic local geometry, and they allow proofs of
properties for coverage, navigation, and distributed data stor-
age. The underlying topological structure of a triangulation
allows us to exploit its dual graph for mapping and routing,
with performance guarantees for these purposes. Fig. 1 shows
an example output demonstrating a triangulated network, its
dual graph, and a navigating robot.
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Fig. 1: A sample triangulation and navigation experiment result
with 17 r-one robots. The planar network of triangulation is a subset
of the full network (dashed gray lines). Each robot creates a new
triangle (dark green) by expanding toward the frontier or discovers
new triangles (light green triangles) by examining local network
geometry. Small black arcs indicate which robot creates and stores
which triangle. This is a distributed physical data structure; there
is no centralized storage of triangulation information. The network
between adjacent triangles forms a dual graph of the triangulation.
In this example, a navigating robot uses a tree rooted at the red
triangle to guide it from its start location to its current location. It
follows the red path, the numbers indicate hops in the dual graph
from the goal triangle.

We are interested in solutions for large populations of
robots, and focus our attention on approaches applicable on
small, low-cost robots with limited sensors and capabilities.
In this work, we assume that robots do not have a map of the
environment, nor the ability to localize itself relative to the
environment geometry, i.e. SLAM-style mapping is beyond
the capabilities of our platform. We exclude solutions that
use centralized control, as the communication and processing
constraints do not allow these approaches to scale to large
populations. We also do not assume that GPS localization
or external communication infrastructure is available, which
are limitations present in an unknown indoor environment.
Finally, we assume that the communication range is much
smaller than the size of the environment, so a multi-hop net-
work is required for communication, and the local network
geometry provides each robot with geometric information
about its neighboring robots.

The basic problem requires exploring an unknown region
by triangulation from a given starting position. The maxi-
mum edge length is a triangle is bounded by the commu-
nications range of the robots. If the number of available
robots is not bounded a priori, the problem of minimizing
their number for covering all of the region is known as
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the Minimum Relay Triangulation Problem (MRTP); if their
number is fixed, the objective is to maximize the covered
area, which is known as the Maximum Area Triangulation
Problem (MATP). Both problems have been studied both
for the offline scenario, in which the region is fully known,
and the online scenario, where the region is not known in
advance [1]. Online MRTP admits a 3-competitive strategy,
while the online MATP does not allow a bounded competitive
factor: If the region consists of many narrow corridors, we
may run out of robots exploring them, and thereby miss a
large room that could permit large triangles. In this work, we
focus on the online MATP problem. Our algorithm proceeds
by extending the covered region by adding new triangles to
the frontier of the exploration. The motion controllers we
present use local geometric information. In particular, we
focus on a simple platform that can only measure angles
between neighbors and detect nearby obstacles. We provide
a number of results:
• We develop simple and efficient exploration methods

based on triangulation.
• We show that these methods only require local infor-

mation and geometry.
• We demonstrate that well-known abstract concepts

(such as the dual graph) can be implemented in a
distributed network of robots.

• We provide provable performance guarantees for online
triangulation and routing.

• We demonstrate the practicality of our method by
implementing it with simple, low-cost robots. (See our
video [2] for an overview of [1].)

Related Work

Our work combines ideas of self-organization and routing
in stationary sensor networks with approaches to dynamic
robot swarms. For the former, e.g., see [3], [4]. The new
challenges arise from considering a large number of mobile
nodes with limited capabilities, and real-life platforms and
constraints. Classical triangulation problems seek a trian-
gulation of all vertices of a polygon, but allow arbitrary
length of the edges in the triangulation [1]. This differs
from our problem, in which edge lengths are bounded by
communication length. Triangulations with shape constraints
for the triangles and the use of Steiner points are considered
in mesh generation, see for example the survey by Bern and
Eppstein [5].

The problem of placing a minimum number of relays
with limited communication range in order to achieve a
connected network (a generalization of the classical Steiner
tree problem) has been considered by Efrat et al. [6], who
gave a number of approximation results for the offline
problem (a 3.11-approximation for the one-tier version and a
PTAS for the two-tier version of this problem); see the survey
[7] for related problems. A similar question was considered
by Bredin et al. [8], who asked for the minimum number of
relays to be placed to assure a k-connected network. They
presented approximation results for the offline problem. For
swarms, Hsiang et al. [9] consider the problem of dispersing
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Fig. 2: (a) Robot u can measure the bearing to neighbor uL,
Bu(uL), and the orientation of neighbor uL, Ori(uL). (b), triangle
angles (black arrows) are measured from neighbors of robot u, and
shared with u using a local broadcast message. We define left (right)
inner angle for the triangle angle of u’s left (right).

a swarm of simple robots in a cellular environment, mini-
mizing the time until every cell is occupied by a robot. For
workspaces with a single entrance door, Hsiang et al. present
algorithms with time optimal makespan and Θ(log(k + 1))-
competitive algorithms for k doors.

There are many types of exploration in the multi-robot
literature. McLurkin and Smith [10] present a breadth-first
distribution from a more practical view, using a swarm of
100 robots. Durham et al. [11] present an algorithm for a
team of robots to cover entire region using pursuit-evasion
problem, using the robot’s state to store intermediate results
of the search. Spears and Spears describe slgorithms for to
produce a triangle lattice, but this is not a triangulation: there
is no knowledge of triangles, the dual graph, or distributed
data structures for computation [12].

II. COMPUTATIONAL MODEL

We have a system of n robots. The communication net-
work is an undirected graph G = (V,E). Each robot is
modeled as a vertex, u ∈ V , where V is the set of all robots
and E is the set of all robot-to-robot communication links.
The neighbors of each vertex u are the set of robots within
line-of-sight communication range rmax of robot u, denoted
N(u) = {v ∈ V | {u, v} ∈ E}. Robot u sits at the origin of
its local coordinate system, with the x̂-axis aligned with its
current heading. Each robot can measure the angles of the
geometry of its local network, as shown in Fig. 2a. Robot
u cannot measure distance to its neighbors, but can only
measure the bearing and orientation. We assume that these
angular measurements have limited resolution.

Robots share their angle measurements with their neigh-
bors. In this way, robot u can learn of all angles in its 2-hop
neighborhood. Fig. 2b shows the relevant inner angles of a
triangle around u. Each neighbor of u computes these angles
from local bearing measurements, then announced them. The
communication used by these messages is O(max(δ(u ∈
V )2), where δ(u) is the degree of vertex u.

Each robot has contact sensors that detect collisions with
the environment. There is an obstacle avoidance behavior
that can effectively maneuver the robot away from these
collisions. The robots also have a short-range obstacle sensor



that can detect walls closer than ≈ 50 cm. The obstacle
sensor does not detect neighboring robots.

Algorithm execution occurs in a series of synchronous
rounds, tr. This greatly simplifies analysis and is straight-
forward to implement in a physical system [13]. At the end
of each round, every robot u broadcasts a message to all
of its neighbors. The robots randomly offset their initial
transmission to minimize collisions. During the duration of
each round, robot u receives a message from each neighbor
v ∈ N(u). Each message contains a set of public variables,
including the sending robot’s unique ID number u.id. The
remaining variables will be defined later, but we note that
the number of bits needed for each variable is bounded by
log2n, i.e. the number of bits required to identify each robot.
This produces a total message of constant size.

III. MAX-AREA TRIANGULATION ALGORITHM

Fig. 3 illustrates the execution of the Max-Area Trian-
gulation (MAT) algorithm. Initially, two base robots mark
the base edge — such as a door to an unexplored building.
The algorithm starts with this base edge and proceeds by
constructing a triangulation in a breadth-first manner. The
triangulation is extended as robots construct triangles along
the current frontier of exploration. The frontier is shown as
blue lines in Fig. 3, and it delineates the boundary between
triangulated space and untriangulated space. All the area
between the base edge and the frontier is triangulated. Each
mobile robot extends the frontier by moving into unexplored
space and forming a triangle with itself and at least two other
adjacent robots from the frontier. The algorithm terminates
when either all of the workspace has been explored, or the
maximum number of robots has been exhausted.

Each robot tries to build a high-quality triangle—one that
does not have edges that are too short or angles that are too
small. Equilateral triangles are ideal, but cannot always be
constructed due to errors or environmental constraints.

During algorithm execution, we we distinguish the follow-
ing types of edges in the robot network G: 1) Frontier edges
(Blue lines in Fig. 3), {u, v} ∈ EF , which belong to only
one triangle and have at least one vertex that is not in contact
with the wall. 2) Internal edges, {u, v} ∈ EI which belong
to two adjacent triangles. 3) Wall edges, {u, v} ∈ EW , which
also belong to only one triangle, but both vertices of the edge
are in contact with a wall. The yellow lines indicate the dual
graph, D, which connects adjacent triangles. We will address
the detail of the dual graph in Section. III-B.

A. Triangulation

Construction of a new triangle begins with the addition
of a new navigating robot, u. To build the triangulation in a
breadth-first fashion, a frontier triangle is selected that is the
minimum distance in the dual graph from the base triangle.
This triangle will have at least one frontier edge, we select it
to be the goal frontier edge, {l, r}. The robot uses the dual
graph to navigate to the frontier triangle, these algorithms
are described in Secs. III-B and III-C.

Fig. 3: Constructing a triangulation in a BFS manner. The frontier
edges are blue and interior edges are green. The edges of the
BFS tree (the dual graph) are yellow. The blue tick marks on
each robot show the direction of the frontier normal. This points
into unexplored space, in the direction perpendicular to the frontier
edges incident at each robot.

A new triangle can be formed in two ways, expansion or
discovery. Fig. 4a illustrates the construction of a triangle by
expansion. When navigating robot u is within the frontier
triangle, it switches to the expanding state, and moves
towards the equilateral point for the new triangle. When u
crosses the frontier edge {l, r}, it creates a new expansion
triangle ∆ulr (l = l0 and r = r0 in Fig. 4a). Once robot u
arrives at the equilateral point, it switches to the expanded
state, and adds ∆ulr to its list of triangles, becoming its
owner. Edge {l, r} becomes an internal edge, and robot u
broadcasts a message to neighbors l and r, so that they update
their right and left frontier neighbors to u. Because the edge
{l, r} is now internal, it is not used for expansion again,
which prevents creating overlapping triangles.

When u enters the expanded state, it needs to discover all
of the unexpanded high-quality triangles adjacent to ∆ulr.
Fig. 4b shows an example of triangle discovery. We describe
the process for the left frontier neighbor (l), it is analogous
for the right. We label the left neighbors {l0, l1, . . .} where
l0 ≡ l. Robot u first considers neighbor l1, then proceeds
through each neighbor on its left side in counter-clockwise
order. For each neighbor li, i ≥ 1, robot u checks for edge
{li, li−1} ∈ EF . If this edge exists, then u forms a candidate
triangle, ∆ulili−1 (light green in Fig. 4b), and evaluates
its quality using definition 3.1. The search terminates if the
triangle is not high-quality, or there are no further neighbors
to consider. If the candidate triangle is high-quality, robot
u becomes its owner, and switches its left frontier neighbor
from li−1 to li. Robot u then broadcasts a message to li to
update its right frontier neighbor from ii−1 to u.

B. Dual Graph Construction

The dual graph of our a triangulation, D, describes the
adjacencies between adjacent triangles. The dual graph can
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Fig. 4: (a) An example of Expansion triangle: Red arrow is the path
of u in Expanding state. After arriving at the equilateral point, u
switches to Expanded state. (b) An example of Discovery triangle
(light green). u checks θF to evaluate the quality of candidate
triange, ∆ul1l0.

be used for realizing global objectives, such as routing.
However, one difficulty for a distributed swarm of robots
is the absence of a centralized authority that can explicitly
keep track of a dual graph, as there are only “primal”
vertices, i.e., robots. Our solution is to establish and maintain
the dual graph implicitly, by assigning each triangle ∆ to
a unique robot “owner”, o(∆), and then mapping edges
between triangles in the dual graph to edges between robots
in the primal graph.

We first observe that all owners are connected because all
robots in our network, with the exception of the base robots,
are owners by construction; every time a new navigating
robot is added to the network, it becomes the owner of
at least one constructed triangle. A robot can own multiple
discovered triangles, and must maintain multiple vertices in
the dual graph.

We must ensure that two triangle owners connected by
an edge in the dual graph can communicate with each other
through the primal graph. This is trivial for two triangles ∆1

and ∆2 owned by the same robot, so we must show that for
two different triangle owners o(∆1) 6= o(∆2) with a dual
graph edge, {o(∆1), o(∆2)}D ∈ D, {o(∆1), o(∆2)} is an
edge in the primal graph.

Lemma 3.1: Consider edge {a, b} ∈ EF and ∆abo, where
o is the triangle owner. Then o = a or o = b.

Proof: By contradiction: assume o 6= a and o 6= b. Then
consider the expanding state for ∆oab. Since o is the owner
in the expanded state, o must have been the navigation robot
in the expanding state. Therefore {a, b} was the frontier edge
in the expanding state and {a, b} is now the internal edge in
the expanded state, a contradiction.

Theorem 3.2: The owners of two adjacent triangles must
also be connected.

Proof: Let ∆abc and ∆abd be the two adjacent trian-
gles, and {a, b} be the edge they share. These two triangles
can be formed in the following two ways (in the expanding
state): 1) Robot a was the navigation robot. Then a is the
owner for both ∆abc and ∆abd. a is connected to itself.
2) Robot d was the navigation robot. This makes ∆abc an
existing triangle and {a, b} a frontier edge in the expanding
state. d is also the owner robot for ∆abd in the expanded
state. Either a or b is the owner of ∆abc by Lemma 3.1, so d,
the owner of ∆abd, must be connected to the owner of ∆abc
through either edge {a, d} or edge {b, d}. By symmetry, b
is equivalent to a and c is equivalent to d.

C. Dual Graph Navigation
We use the dual graph as a navigation guide for robots in

our triangulation. If the destination triangle is known, such
as a frontier triangle, then a broadcast message can be used
to build a BFS tree suitable for navigation [14]. Our previous
work shows there is no lower bound on the competitive factor
of the stretch of a path in the online MATP problem [1], but
this requires narrow corridors of infinitesimal width. In the
following, we show that more realistic assumptions do allow
constant-factor performance.

Let rmax be the maximum length of a triangulation edge.
We also consider a lower bound of rmin on the length of the
shortest edge in the triangulation; in particular, we assume
that the local construction ensures that any non-boundary
edge is long enough to let a robot pass between the two
robots marking the vertices of the edge, so rmin ≥ 2δ, where
δ is the diamater of a robot. (The practical validity of these
assumptions for a real-world robot platform will be shown in
the experimental Section V.) Finally, angular measurements
of neighbor positions let us guarantee a minimum angle of α
in all triangles. These constraints give rise to the following:

Definition 3.1: Let T be a triangulation of a planar region
R, with vertex set V . T is (ρ, α)-fat, if it satisfies the
following properties:
• The ratio rmax/rmin of longest to shortest edge in T is

bounded by some positive ρ.
• All angles in T have size at least α.

This definition is used to prove properties of triangulations.
1) Covered Area:
Theorem 3.3: Consider a (ρ, α)-fat triangulation of a set

V with n vertices, with maximum edge length rmax and
minimum edge length rmin. Then the total triangulated area
is within

√
3ρ2/2sin(α) of the optimum.

Proof:
Each edge has length at least rmin, and any angle is

bounded from below by α. The claim follows by trigonom-
etry.

Note that in a practical setting, ρ will be much smaller
than the theoretically possible worst case; see Fig. 11b for a
real-world evaluation.

2) Path Stretch: Now we establish that the dual graph of
our triangulations can be exploited for provably good routing.
We make use of the following terminology.

Definition 3.2: Consider a triangulation T of a planar
region R, with vertex set V . Let s, g be points in R
and let p(s, g) be a polygonal path in R that connects s
to g; let dp(s, g) be its length. Let ∆s and ∆g be the
triangles containing s and g, respectively, and let D(s, g) :=
∆s,∆1, . . . ,∆`,∆g be a shortest path in the dual graph
of T . Then a T -greedy path between s and g is a path
s, q1, . . . , q`, g, such that qi ∈ ∆i, and consecutive vertices
of the path are connected by a straight line.

In other words, a T -greedy path between s and g builds a
short connection in the dual graph of the triangulation, and
then goes from triangle to triangle along straight segments.
Note that we do not make any assumptions whatsoever
concerning where we visit each of the triangles.
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Fig. 5: (a) A shortest s,g-path (shown in red) in a region covered
by a triangulation T . The resulting T -greedy path is depicted in
yellow; a shortest dual path is indicated by colored triangles. Note
that each point qi may be anywhere in the respective triangle ∆i.
(b) A triangle ∆ is intersected by a straight line L. If L passes
the triangle not too close to one of the endpoints, the length of the
intersection is long. If the line passes the triangle close to one of the
endpoints (indicated by the dashed line L′), then the intersection
with a circle of radius rmin/2 must be long.

Lemma 3.4: Consider a (ρ, α)-fat triangle ∆ with mini-
mum edge length at least rmin; let ∆ be intersected by a
straight line L. Then the total length of the intersection of L
and ∆ is at least rmin

2 sin(α/2) , or the length of the intersection
of L with the rmin/2-disk around one of ∆’s vertices is at
least rmin

2 sin(α/2) .

Proof: Refer to Fig. 5b. Consider the closest distance
between L and one of the vertices of ∆. If this is larger
than 2rmincos(α/2), then we see from Pythagoras’ theo-
rem that the intersection of L and ∆ must have length
at least 2rminsin(α/2). Otherwise the distance is at most
2rmincos(α/2), and the intersection of L with the rmin/2-
disk around the closest vertex of ∆ must have length at least
2rminsin(α/2).

With this, we can proceed to the proof of the theorem.

Theorem 3.5: Consider a (ρ, α)-fat triangulation T of a
planar region R, with vertex set V , maximum and minimum
edge length rmax and rmin, respectively. Let s, g be points
in R that are separated by at least one triangle, i.e., the
triangles ∆s, ∆g in T that contain s and g do not share
a vertex. Let p(s, g) be a shortest polygonal path in R that
connects s with g, and let dp(s, g) be its length. Let pT (s, g)
be a T -greedy path between s and g, of length dpT (s, g).
Then dpT (s, g) ≤ c · dp(s, g) + 2, for c = b 2πα c

ρ
sin(α/2) , and

dpT (s, g) ≤ c′ · dp(s, g), for c′ = b 6πα c
ρ

sin(α/2) .

Proof: Consider p(s, g), triangles ∆s, ∆g and the
sequence ∆1, . . . ,∆`′ of `′ other triangles intersected by
it; by assumption, `′ ≥ ` ≥ 1, where ` is the number of
triangles contained in pT (s, g). Furthermore, note that the
disjointness of ∆s, ∆g implies dp(s, g) ≥ rmin.

We first show that dp(s, g) ≥ `′b 2πα c
ρ

2 sin(α/2) . For this
purpose, charge the intersection of p(s, g) with ∆i to ∆i,
if its length is at least ρ

2 sin(α/2) ; if it is shorter, we charge
the length of the intersection of p(s, g) with the rmin/2-disk
around one of ∆’s vertices pj evenly to all of the triangles
∆i that are incident to pj . Because the minimum angle in a
triangle is bounded from below by α, the preceding lemma
implies the lower bound on the length of dp(s, g).
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Fig. 6: Finite state machine for MAT algorithm.

On the other hand, it is straightforward to see that no edge
in a T -greedy s, g-path can be longer than 2rmax. Therefore,
dpT (s, g) ≤ 2(` + 2)rmax. Comparing the lower bound on
dp(s, g) and the upper bound on dpT (s, g) yields the claim
dpT (s, g) ≤ c · dp(s, g) + 2 with c as stated. The additive
term of 2 results from the s and g possibly being close to the
boundaries of ∆s and ∆g , respectively; it can be removed
by noting that `′ ≥ ` ≥ 1 implies (`+ 2) ≤ 3`′, as indicated
by the second comparison and the choice of c′.

This provides constant stretch factors even under mini-
mal, purely theoretical and highly pessimistic assumptions.
The practical performance in real-world settings (where the
greedy paths do not visit worst-case points in the visited
triangles) is considerably better, as we demonstrate in Sec-
tion V.

IV. IMPLEMENTATION

A high-level finite-state machine of our implementation
of triangulation construction is shown in Fig. 6. Two robots
are initialized in the Frontier-Wall state and placed at the
base-edge. All other robots begin behind the base edge in
the Navigation state. Table I lists helper functions for all
algorithms below.

A. Navigation State

The navigation contains three states; Nav-Internal,
Expand-Triangle, and Wall-Follow. A new robot, u, enters
the network in the Nav-Internal state, and runs algorithm 1 to
navigate to a frontier triangle. Line 2 runs an occupancy test
function, shown in Fig. 7a, that returns the current triangle,
Tc, that contains robot u, and its owner, o. If Tc is a non-
frontier triangle, then u moves to an adjacent triangle that
is closer to (fewer hops from) the frontier (line 10 to 11).
Theorem 3.2 ensures that the owner of Tc is connected
to owners of adjacent triangles, so u learns the hops of
all adjacent triangles with a 2-hop message similar to the
geometry message from Fig. 2b. If Tc is a frontier triangle
(line 3) or null (only true if u has just crossed the base edge,
line 6), then u will create a new triangle. The variables u.L
and u.R are set to the left and right neighbors of the frontier
edge (line 4 and 7), and the robot changes its state to Expand-
Triangle (line 5 and 8).

Once in the Expand-Triangle state, u runs algorithm 2.
Line 2 computes the left and right inner angles to the



Algorithm 1 NAV-INTERNAL

1: while u.state =Navigate-Internal do
2: Tc ← GETCURRENTTRIANGLE()
3: if ISFRONTIERTRIANGLE(Tc) then
4: (u.L, u.R)← GETFRONTIEREDGENBR(Tc)
5: u.state ← Expand-Triangle
6: else if ISONLYBASEEDGE(N(u)) then
7: (u.L, u.R)← GETBASEEDGENBR()
8: u.state ← Expand-Triangle
9: else

10: Tnext ← GETMINHOPADJTRI(Tc)
11: MOVETONEXTTRIANGLE(Tnext)
12: end if
13: end while

TABLE I: Table of Helper Functions

GetCurrentTriangle()
Runs occupancy test and returns
current triangle, Tc.

GetMinHopAdjTri(Tc) Get Tc’s min-hop adjacent triangle.

DiscoverTriangle(u.L, u.R)
Runs discovery procedure and gets
discovery triangles, TD , and list of
u’s old and new frontier neighbors.

IsIsoscelesTriangle(u.L, u.R)
Checks if θL = θR in an expand
triangle.

GetFrontierWallNbr(u.L, u.R) Returns u.L or u.R in frontier-wall
state.

BCastFMsg(uold, unew)
Broadcast new frontier msg to nbrs
∈ unew .

RecvFMsg(uold, unew) Receive new frontier nbrs.

UpdateFNbr(uold, unew) Change frontier nbr from uold to
unew .

BCastDisconnectMsg(uold) Broadcast disconnect msg to nbrs ∈
uold .

RecvDisconnectMsg() Return usender if usender dis-
connects u.

IsContainFrontierEdge(Ti) Checks if Ti has a frontier edge.

UpdateTriangleHop()
For each triangle u owns, sets its
hop to 1 + minimum among all
adjacent triangles’ hops.

BCastTriangleHop(N(o)) Broadcast all hops of all triangles u
owns.

frontier neighbors, θL and θR. Line 3 then runs the triangle-
expansion controller illustrated in Fig. 7b until u is in region
3.

We lack the space here for a complete description of the
controller, we sketch its operation here. When robot u enters
region 3, if θL > θR, u first moves toward Bu(u.L)+π until
θR ≥ π

3 . It then changes its heading toward Bu(u.R) + π,
and moves until it reaches the goal region (region 4). The
opposite control happens when θL < θR.

Robot u stores the triangle on its list (line 5), runs the
Discover Triangle procedure to discover all adjacent triangles
as described in section III-A (line 6). The Frontier angle, θF ,
provides a simple way to evaluate the quality of candidate
triangles; we define a triangle to be high-quality if θF <
k, with k manually tuned to reduce errors. After adding
triangles, u updates its frontier neighbors, those of u.L and
u.R (line 7), adds new frontier neighbors in unew, and
disconnects frontier neighbors in uold.

If u detects a wall while expanding a triangle (line 12),
it changes its state to Wall-Follow (line 13). This controller
moves u along the wall until it forms an isosceles triangle.
Then u stores the triangle, and broadcasts disconnect mes-
sage to u.L or u.R, and changes its state to Frontier-Wall.

B. Frontier and Frontier-Wall State

When robot u enters the frontier or frontier-wall state,
it becomes stationary and runs algorithm 3. In lines 3-7,

Algorithm 2 EXPAND-TRIANGLE

1: while u.state = Expand-Triangle do
2: (θL, θR)← GETINNERANGLE(u.L, u.R)
3: TRIANGLEEXPANSIONCONTROLLER(θL, θR)
4: if ISINGOALREGION(θL, θR) then
5: STORETRIANGLESTOLIST (∆uu.Lu.R)
6: (uold, unew, TD)← DISCOVERTRIANGLE(u.L, u.R)
7: UPDATEFNBR(uold, unew)
8: BCASTFMSG(uold, unew)
9: BCASTDISCONNECTMSG(uold)

10: STORETRIANGLESTOLIST (TD)
11: u.state← Frontier
12: else if ISWALLDETECTED() then
13: u.state ← Wall-Follow
14: end if
15: end while
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Fig. 7: (a) The occupancy test algorithm determines if a robot is
inside a given triangle. If any angle between neighbors of u is
greater than π, then u is outside of the triangle. (b) Diagram of
triangle expansion controller regions between robots uL and uR,
each with π

8
bearing resolution. A robot 1 in region 1 rotates around

uL or uR, so that it always converges in region 2. A robot in region
2 always moving toward the direction where its two inner angles
are getting smaller. By doing so, The controller always guides a
robot from lower number region to higher number adjacent region
by only considering θL and θR. All sample trajectories in red lines
converge to the goal region.

u labels all of its triangles which include a frontier edge
to frontier triangles. These triangles become sources for
the frontier message that guides navigating robots to them.
(line 8-9). The frontier robots compute the Frontier angle,
θF , between adjacent frontier neighbors, in the direction
of the frontier normal, shown in Figs. 4b and 3. This
is done in line 11-12. To maintain the simply-connected
frontier subnetwork, robot u will need to update its frontier
edges when new triangles are added. After a new navigation
robot, v, expands and discovers new triangles, lines 14-16
ensure the frontier edges adjacent to robot u are updated
when messages from v are received. If robot u receives a
disconnect message from v, it has no more incident frontier
edges, and transitions to the Internal state in lines 17-19.
This is illustrated in Fig. 4b) by robot l0. If u and v are both
frontier-wall robots, v’s disconnect message to u will cause
it to transition to internal state and create a wall edge (line
20-22).

C. Internal State

Eventually, robot u is likely to become an Internal robot.
It remains stationary, and relays broadcast messages. Every
robot processes broadcast messages by updating the hops



Algorithm 3 FRONTIER/FRONTIER-WALL()
1: while u.state=Frontier OR u.state=Frontier-Wall do
2: for all Ti ∈ TriangleList do
3: if ISCONTAINFRONTIEREDGE(Ti) then
4: SETFRONTIERTRIANGLE(Ti)
5: else
6: CLEARFRONTIERTRIANGLE(Ti)
7: end if
8: UPDATETRIANGLEHOP(Ti, N(o))
9: BCASTTRIANGLEHOP(N(o))

10: end for
11: COMPUTE/ROTATETONORMALVEC(B(u.L), B(u.R))
12: θF ← COMPUTEFRONTIERANGLE(B(u.L), B(u.R))
13: BROADCASTFRONTIERANGLE(θF )
14: if RECVFMSG(uold, unew) then
15: UpdateFNbr(uold, unew)
16: end if
17: v ← RECVDISCONNECTMSG()
18: if v.state = Frontier then
19: u.state ← Internal
20: else if v.state = Frontier-Wall ∧u.state= Frontier-Wall then
21: u.state← Internal
22: end if
23: end while

of each triangle they own by considering the hops to adja-
cent triangles, finding the minimum, and adding one. This
procedure propagates the broadcast message, and the hops
updated, and ensures that any new robot crossing the base
edge will move to the frontier triangle that is nearest in the
dual graph, providing a breadth-first construction.

V. EXPERIMENTAL RESULTS

We have performed several real world experiments, using
the r-one robots shown in [15]. The capabilities of this
platform supports the assumptions in our problem statement.;
each robot can measure the bearings to its nearby robots,
despite of a limited resolution of only π

8 , and exchange
messages including those bearings and necessary information
to run an implemented algorithm in Section IV using inter-
robot communication. Each robot also has 8 bump sensors
that provides wall detection. To evaluate a resulting triangu-
lation quality or trace the trajectory of a navigation robot,
we use the April-Tag system by APRIL group [16]. This
measures the ground truth position, Pu = {xu, yu, θu}, of
each robot u. The u, however, cannot measure or use the
ground-truth position while executing our algorithms. All
robots only know the two-hop local network geometry shown
in Fig. 2b.

A. Maximum Area Trangulation using MATalgorithm

Fig. 8 shows snapshots of triangulation. Over 8 trials using
9-16 robots, the average triangulated area is 1.5±0.29m2.
It takes 7.8±2.1 robots to cover a unit area (1m2). The
resulting triangulations are (ρ = 3.6, α = 0.36rad)-fat.
Fig. 9a shows that our triangulations cover about 91% of the
region behind the frontier edges. The uncovered region is
because the top-left and bottom-left corner in Fig. 8 are wall
edges (incident on two wall robots), and are not expanded
by navigating robots. Fig. 9b shows the distribution of area
covered by individual triangles. The initial length of the base
edge predicts the area of an ideal equilateral triangle should
be 0.088m2, our triangles have a mean area of 0.13m2,

69%
Expansion
Type

22%
Discovery 
Type

9% Uncovered

(a)

0.1 0.2 0.3
0

5

10

15

20

25

Area covered by single triangle

N
u

m
b

er
 o

f 
tr

ia
n

g
le

s

(m  )2

Area of ideal triange
                 (0.088 m  )2

(b)

Fig. 9: (a) Pie chart for covered area by all triangles. (b) Histogram
of covered area by each triangle.
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Fig. 10: (a) Distribution of minimum angle of each triangle, not for
a global ρ. All triangles not constrained by a wall satisfy the lower
bound, π

8
. (b) Distribution of MaxMin ratio of each triangle. All

triangles whose minimum angle is larger than the π
8

(blue colored)
also satisfy corresponding upperbound MaxMin ratio.

with a std. dev. of 0.065m2. This discrepancy caused by the
angle-based sensors; the robots cannot measure range, and
therefore cannot control the area of the triangle they produce.
We show this by studying individual triangle quality.

Figs. 10a and 10b show our measurements of individual
triangle quality; the distribution of minimum angle and
maximum/minimum edge length ratio (MaxMin ratio) for
each triangle. The individual data shows triangle quality in
a way that overall ρ cannot. An ideal equilateral triangle
has a minimum angle of π

3 rad and MaxMin ratio of 1.
Triangles satisfying the lower bound for minimum angle
and the upper bound for MaxMin ratio are 95% and 96.7%
of overall triangles, respectively. We note that all triangles
not constrained by a wall satisfy these bounds, meaning
they are approximately the correct shape, but not always the
correct size. Knowing range would let us address this, but
it is unclear how robots expanding the triangulation should
choose between making a triangle of the correct shape, or
the correct size. We leave this for future work.



Fig. 8: Screenshots of constructing triangulation with 12 robots.
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Fig. 11: (a) Sample navigation results with r-one robots. (b) Stretch
factor histogram with 34 trials of navigation experiment.

B. Dual Graph Navigation

We start each navigation experiment with a constructed
triangulation. The triangulation is (ρ = 1.36, α = 0.88rad)-
fat. For each trial, we randomly select one triangle as a goal,
and the robots build a tree on the dual graph. Fig. 11a, shows
five trials of the 34 we conducted. The numbers inside the
triangles indicate the hops in the dual graph from the goal
triangle. (The trial from the 8-hop triangle is also shown
in Fig. 1) The thick blue lines show connectivity between
owners of adjacent triangles. Note that this graph is not
complete, but it is a spanning graph of all triangle owners
in G, which is implied by Theorem. 3.2.

Fig. 11b shows the distribution of the stretch factor over
all trials of navigation tests with various start-goal pairs.
The mean stretch factor is 1.38 ± 0.19. This is much
less than the theoretical bound implied by Theorem 3.5,
which is based on worst-case assumptions. Our occupancy
algorithm produces 91% correctness in returning the triangle
that actually includes u. We define navigation correctness as
the ratio of times u moves to the correct adjacent triangle.
This result is 99%, with incorrect navigation caused by
occupancy errors.

VI. CONCLUSION

We have presented a distributed algorithm to triangulate
a workspace, produce a physical data structure, and use this
structure for communications and robot navigation. There are
many exciting new challenges that lie ahead. The next step
is to extend this approach with a self-stabilizing algorithm
that can construct and repair the triangulation and dual graph
dynamically, starting from an arbitrary distribution of robots.
While existing controllers can already form triangulated
graphs [17], what is needed is construction and maintenance
of the physical data structures, i.e., the primal and dual
graphs. Future work can extend these ideas to very large
populations and dynamic environments. Another objectives
will be to improve the routing algorithm to replace the simple
dual graph paths by more sophisticated geodesic trajectories.

We are currently working on multi-robot patrolling using
the physical data structure to store visitation frequencies and
implement a geodesic Lloyds controller to provide periodic
coverage of the triangulation with multi-patrolling robots.
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