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Abstract— The classical problem of robot coverage is to plan
a path that brings a point on the robot within a fixed distance
of every point in the free space. In the presence of significant
uncertainty in sensing and actuation, it may no longer be
possible to guarantee that the robot covers all of the free space
all the time, and so it becomes unclear what problem we are
trying to solve. We will restore clarity by adopting a “probably
approximately correct” measure of performance that captures
the probability 1−ε of covering a fraction 1−δ of the free space.
The problem of coverage for a robot with uncertainty is then
to plan a feedback policy that achieves a given value of ε and
δ. Just as solutions to the classical problem are judged by the
resulting path length, solutions to our problem are judged by
the required execution time. We will show the practical utility
of our performance measure by applying it to several examples
in simulation.

I. INTRODUCTION

The classical problem of robot coverage is to plan a path
that—if followed exactly—would bring a point on the robot
within a fixed distance of every point in the free space. The
“fixed distance” in this problem is the size of the robot’s
coverage implement, for example the radius of a mower
blade. The “free space” (following standard convention) is
the region of the workspace that is to be covered, for example
a yard excluding trees and sidewalks, and in particular
should not be confused with the free part of the robot’s
configuration space. This coverage problem has been the
focus of considerable research over the past three decades
(e.g., see [1]–[25]) and is important for a variety of military,
industrial, and domestic applications that include painting,
demining, floor cleaning, and lawn mowing.

In many cases, we can assume that the path planned by a
coverage algorithm is followed by the robot, if not exactly,
then at least with negligible error. Such an assumption would
be reasonable for an industrial robot arm or an autonomous
tractor with centimeter-level GPS.

However, in the presence of significant uncertainty in
sensing and actuation, the path followed by the robot may
deviate from the path planned by the coverage algorithm. For
example, a robot with consumer-grade GPS in an outdoor
environment often has localization error variance that is
bigger than the size of its coverage implement, causing parts
of the free space to be missed and leading to performance
of the sort shown in Fig. 1.

In principle, it is possible to improve performance by
using a coverage algorithm that explicitly takes uncertainty
into account and that produces a feedback policy rather than
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(a) coverage with negligible uncertainty in sensing and actuation

(b) coverage with significant uncertainty in sensing and actuation

Fig. 1. Simulation over a fixed time horizon of a robot trying to cover
a rectangular free space by following a boustrophedon (square wave) path
in the case of negligible uncertainty (top) and of significant uncertainty
(bottom). Sensing and actuation uncertainty cause parts of the free space to
be missed and, in general, lead to poor performance.

a nominal path. However, it is no longer clear what good
performance even means in this context, because it may no
longer be possible to guarantee that the robot covers all of
the free space in finite time [26]. Prior work has suggested
a variety of ways to measure performance, including by the
expected fraction covered, the variance of fraction covered,
and the probability that the entire free space is covered. Each
of these measures is more or less appropriate for any given
application, and none have been universally adopted. Our
goal in this paper is to introduce a more general measure of
performance that unifies this prior work.

In particular, we suggest a “probably approximately cor-
rect” (PAC) measure of performance that captures the prob-
ability 1− ε of covering a fraction 1− δ of the free space:

P (C ≥ 1− δ) ≥ 1− ε ε, δ ∈ [0, 1].

The problem of coverage for a robot with uncertainty is then
to plan a feedback policy that achieves a given value of ε and
δ. Just as solutions to the classical problem are judged by
the resulting path length, solutions to our problem are judged
by the required execution time. We will consider a specific
example system and will illustrate the practical utility of our
performance measure by applying it to rank policies with
respect to the probability of achieving a desired fraction
covered, to compute the minimum time required to meet
a given performance objective, and to choose the optimal
global sensor for a robot.

The remainder of this paper proceeds as follows. We begin
with a brief review of related work, focusing on existing



measures of performance for coverage under uncertainty
(Section II). Then, we present our alternative PAC measure
of performance (Section III), and consider its application
to several examples in simulation (Section IV). We discuss
broader implications in our concluding remarks (Section V).

II. RELATED WORK

We give a brief overview of robotic coverage and highlight
research on coverage under forms of uncertainty. We also
survey coverage statistics relevant to robotics.

A. Robotic Coverage

Robotic coverage algorithms typically use a form of
cellular decomposition which breaks down the free space
into cells whose union fills (or approximately fills) the free
space. Planners with an exact cellular decomposition achieve
a provable guarantee of complete coverage if the robot visits
each cell. Exact cellular decomposition can be achieved using
on-board sensing via the boustrophedon (a square wave path)
decomposition [11] or Morse functions [15], both of which
rely on the identification of critical points [12], points where
the connectivity of a slice moving across the workspace
changes. In these works the goal is to construct a minimum-
length path that visits and covers each cell. Choset et al. [21]
showed that the minimum path length is bounded linearly by
the area of the free space, the number of critical points, and
the perimeter lengths of the obstacles and outer boundary.
These planners assume the presence of an accurate global
localization sensor or accurate odometry. We are interested
in coverage when these sensors are uncertain. In this work,
we modify the boustrophedon path so that the reference
trajectory extends beyond the boundary and has path spacing
less than the width of the coverage implement. These are
heuristic methods of dealing with uncertainty.

While Acar et al. [12], [15] achieve complete coverage un-
der sensing uncertainty, their focus is on rejecting bad sensor
readings. They assume that most readings are good and that
bad readings are exceptional. This paper considers systems
where all sensor readings and actuations are corrupted by
Gaussian noise. Algorithms such as in [27] and [28] deal with
robotic uncertainty, but consider the navigation problem—
moving from one configuration to another—not the coverage
problem.

For random-reflection, Acar et al. [18] analyzes policy
performance in detecting 80% of mines found versus the total
mean search time. The data represents performance over a
discrete number of points, i.e, mines, in the free space and
is expressed by mean and standard deviation values. If the
mines are uniformly distributed, this problem is a special
case of the coverage problem we consider.

B. Coverage Statistics

Prior art has investigated coverage for many end pur-
poses, resulting in a variety of performance objectives for
coverage policies. The ideal performance measure is the
probability density function (PDF) of coverage for a given
policy because any other statistic can be constructed from

the PDF. This ideal has so far proved elusive. World War
II led to a surge in research funding for coverage related to
search and rescue, reconnoissance, bombing, weapon salvos
and mine-sweeping. This research generated the expected
coverage probabilities for both random and boustrophedon
search paths. Later work led to additional statistics about the
probability distributions for coverage tasks.

As Stone showed in [29], the expected fraction covered
E[C(t)] of a region with area A by a random strategy in
time t is

E[C(t)] = 1− e− 2rvt
A . (1)

for velocity v, and a coverage implement radius r. They
also considered search via boustrophedon paths under three
simplifying assumptions: each pass is long enough that the
paths may be considered independent, the paths are corrupted
by a zero-mean Gaussian noise with standard deviation σ,
and the number of passes is large compared to the width of
the area to be covered. With these assumptions, the function
E[C(r, S, σ)] is the expected fraction covered after following
a boustrophedon path with path centers spaced S units apart.
It is computed by first calculating g(i, x), the probability of a
point at x being covered by the i-th pass; next finding h(x),
the total probability of coverage at x after parallel passes
i = −∞ through i =∞; and finally computing the average
coverage by integrating h(x) over one path width.

g(i, x) =
1√
2π

∫ (x−iS+r)/σ

(x−iS−r)/σ
e−

1
2 z

2

dz

h(x) = 1−
∞∏

i=−∞

(
1− g(i, x)

)
E[C(r, S, σ)] =

1

S

∫ S/2

−S/2
h(x) dx (2)

Fig. 2 shows the expected fraction covered versus time for
a random path and for a boustrophedon path with several
values of path spacing and no uncertainty (σ = 0). Time is
expressed in units of nominal coverage Ψ, the time required
to fully cover an equal area with no overlap. Fig. 3 shows
the expected fraction covered versus uncertainty σ for the
same path spacings as in Fig. 2. As σ increases, the E[C(·)]
converges to that of a random strategy traveling an equal
distance. With (1) or (2) we can use the Markov inequality to
find a loose upper bound of the form P (C ≥ x) ≤ E[C]/x.
To obtain tighter bounds, we need additional information.

The probabilities for vacancy and coverage of a space
in Rn by random n-D spheres is a topic of considerable
interest to the mathematics community [26], [30], but the
full probability distribution function is only known for the
1-D case. We focus on 2-D results because of their relation
to robotic coverage. The mean and variance for coverage of
a plane under the torus convention1 by discs whose centers

1The torus convention treats a rectangular area as a torus such that any
disc that protrudes out one side of the rectangle enters again from the
opposite side.
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Fig. 2. Expected fraction covered by a random strategy (dashed blue)
and four boustrophedon paths with different path spacing (S) and zero
uncertainty (σ = 0). The markers indicate the expected fraction covered
by a random strategy after executing for equal times as the boustrophedon
paths.
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Fig. 3. Expected fraction covered versus the ratio of the uncertainty
(σ) to the coverage implement size (2r) for boustrophedon paths with
different path spacing (S). As the uncertainty increases (x-axis), the
expected fraction covered converges to that of a random strategy
executing for equal time (the markers in Fig. 2).

are distributed randomly are

E[C] = 1− e−nπr
2

A

σ2(C) = Aπe−
2nπ
A

(
8

∫ 1

0

(
e
nB(x)
A − 1

)
x dx− nπ

A

)
(3)

where

B(x) =

{
0 if x > 1

−x
√

1− x2 + acos(x) otherwise

As the ratio of disc size to region area decreases, the
contribution by the torus convention asymptotes to zero.

Simulation shows that (3) accurately describes the per-
formance of a random policy. Indeed, the expected values
given by (1) and (3) are identical. Having the variance allows
us to obtain tighter bounds on coverage estimates using
Chebyshev’s inequality. Unfortunately, such results do not
exist for the boustrophedon policy.

The probability of completely covering a region by ran-
domly placing shapes is given in [31]. Shapes are placed
isotropically with centers inside the region. Complete cov-
erage has a Bernoulli distribution with success probability
p, which increases as the number of shapes n increases,
the region area A decreases, or the areas a of the shapes
increase. The expected number of gaps (uncovered areas)
less the number of isles (unattached covered areas) can be
computed exactly:

Φ = e−Ψ

(
Ψ

(
sSa

2π
− χA

a

)
+

Ψ2As2

4πa2
+X

)
(4)

Here s and S are the perimeter lengths of a and A, Ψ = na
is the nominal coverage if the n shapes did not overlap, and
χ and X are the Euler characteristic [32] of the shapes a
and A, which for simple shapes without holes is 1.

For large n, the probability for isles becomes vanishingly
small, and Φ represents the expected number of gaps. Com-
plete coverage occurs when there are zero gaps. A valid
approximation of complete coverage for large n is 1− e−Φ.
This function compares reasonably with a random-reflection
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Fig. 4. Complete coverage results for simulated random-reflection and (4).
Solid lines represent 500 simulations of the random-reflection policy for
three region sizes with a coverage implement radius r. Dashed lines show
coverage on the same regions by placing 2r×1m2 rectangles randomly with
centers inside the region. Random-reflection outperforms a purely random
strategy because random-reflection produces a continuous path.

policy, as shown in Fig. 4. Random-reflection slightly outper-
forms IID placement of equal-sized shapes because random-
reflection produces a continuous path. Sadly, no similar
results on the probability of complete coverage exist for a
boustrophedon policy.

III. PERFORMANCE MEASURE

In the presence of significant uncertainty in sensing and
actuation, it may no longer be possible to guarantee that the
robot covers all of the free space all the time, and this leads
us to redefine what is meant by coverage. The breadth of
the coverage problem with uncertainty is illustrated by two
coverage tasks: painting and demining. Painting represents
tasks that are considered a success only if the region is com-
pletely covered. Demining represents tasks where success is
achieved when a robot guarantees that some fraction of the
free space has been covered. A ready example of such a
criterion is given by the UN mine-clearing standard of 1996,
requiring 99.6% of an area be checked for mines in order
to be “cleared” [33]. Our performance measure encompasses
the competing demands for complete coverage and fraction
covered. Now, painting and demining are points on a 2-D
spectrum of coverage tasks.



Previous work on coverage provides several performance
measures such as the expected fraction covered for a given
distance traveled (1)–(3) and the probability of complete
coverage (4). These measures provide only a single point
of comparison. A better performance measure would allow
us to compare the entire probability distribution.

We define such a measure by:

P (C ≥ 1− δ) ≥ 1− ε (5)

where C is the fraction covered and ε, δ ∈ [0, 1]. This is
a “probably approximately correct” measure of performance
that captures the probability 1−ε of covering a fraction 1−δ
of the free space [34], [35]. Certain values of ε, δ correspond
naturally with common robotic coverage tasks. A painting
robot, required to cover an entire space with probability 1−ε,
has δ = 0. In contrast, a demining robot that achieves success
when it is guaranteed to cover a fraction 1− δ, has ε = 0.

For any policy, the cumulative distribution function (CDF)
captures the full range of performance. For a given system
and policy, the CDF can either be constructed directly from
the generating probability distribution or approximated by
Monte Carlo analysis. Because the generating probability
distributions are unknown for 2-D, as shown in Section II-B,
we construct the CDF from Monte Carlo simulations.

The relationship between the PAC objective and the CDF
is shown by the following transformation:

P (C ≥ 1− δ) ≥ 1− ε∫ 1

1−δ
PDF(τ) dτ ≥ 1− ε

1−
∫ 1−δ

0

PDF(τ) dτ ≥ 1− ε

1− CDF(1− δ) ≥ 1− ε

Equivalently,

CDF(1− δ) ≤ ε. (6)

This is the constraint that for a given δ, CDF(1−δ) must be
less than or equal to ε. A desired performance, characterized
by an ε,δ pair, places a constraint rectangle on the CDF
from (0, 1) to (1− δ, ε). To satisfy such a constraint, the
CDF must not cross the boundary of this rectangle. Fig. 5
shows an example of this type of constraint.

Multiple ε,δ constraints may be concatenated to fully
specify the desired coverage task. For instance, if we must
never have less than 50% covered and also require at least
70% covered in 8 out of 10 trials, our constraint set is {(ε1 =
0, δ1 = 0.5) ∪ (ε2 = 0.2, δ2 = 0.3)}. This set is illustrated
in Fig. 9. The most stringent constraint set (δ = 0, ε = 0)
is achieved by systems with negligible error. The random-
reflection and boustrophedon policies achieve this constraint
with probability 1 as time goes to infinity. In practice we are
interested in tight constraints for finite-horizons.

As (6) shows, the CDF gives an ε-value for every δ,
generating a performance curve ε(δ). It is now possible to
formulate well-posed problems, e.g., finding a policy that
maximizes some objective function.
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Fig. 5. Cumulative distribution functions for three policies with an
execution time tf = 4Ψ in a rectangular region (W = 80m, H =
5m). The grey rectangle depicts the desired performance constraint of
(ε = 0.5, δ = 0.02)—the robot must “cover at least 98% of the free space
with probability at least 50%”. The boustrophedon short policy exceeds the
requirement, but the random-reflection and boustrophedon long policies fail.
All CDFs represent 500 simulations, each with process noise σp = 0.1m
and measurement noise σm = 1.0m.

One example is to find a policy π that maximizes the
probability of achieving a desired fraction covered given a
system and an execution time:

arg min
π∈{π1,π2,...,πn}

ε (π)
∣∣
δ,tf

. (7)

Another example is to find the minimum execution time that
meets some desired performance. That is, given a policy, a
desired ε,δ pair, and a system

minimize tf such that CDF(1− δ) ≤ ε. (8)

The PAC performance measure is a tool for analyzing
feedback polices for coverage in systems with sensing and
actuation uncertainty.

IV. EXAMPLES

We apply the PAC measure to a simplified system under
three feedback policies: random-reflection, boustrophedon
long, and boustrophedon short. All three policies are em-
ployed in practice [29], [36]. We begin by describing the
robotic system and the candidate policies, then describe three
applications. The policies are tested on identical free spaces
to allow unbiased comparison.

A. System

We consider discrete time, bounded control systems with
white Gaussian noise in a bounded 2-D free space. Our
process model and prediction is described by

xk+1 = xk + uk∆t+wk

x̂k+1|k = x̂k|k + uk∆t

σ2
k+1|k = σ2

k|k + σ2
p

where xk,xk+1 ∈ Rn are system states at times k, k + 1,
||uk|| ≤ v the control input, wk ∼ N

(
0, σ2

p

)
zero-mean

Gaussian process noise, and x̂k+1|k, σ
2
k+1|k the estimated

state and variance. The measurement model at time k + 1
is given by

zk+1 = xk+1 + νk+1 (9)



Fig. 6. A representative path of the random-reflection policy. The robot
moves until it detects a boundary, turns to a uniformly random heading, and
repeats the process until time tf .

where νk+1 ∼ N
(
0, σ2

m

)
is the zero-mean Gaussian mea-

surement noise. The Kalman update is then

K = σ2
k+1|k

(
σ2
k+1|k + σ2

m

)−1

x̂k+1|k+1 = x̂k+1|k +K
(
zk+1 − x̂k+1|k

)
σ2
k+1|k+1 = (1−K)σ2

k+1|k.

For constant σ2
p and σ2

m, the steady-state localization vari-
ance is solved by setting σ2

k+1|k+1 = σ2
k|k, giving

σ2 =
σ2
p

2

(
−1 +

√
1 + 4 (σm/σp)

2

)
.

We are particularly interested in systems with σ2 such that a
robot attempting to follow a nominal path is not guaranteed
to achieve complete coverage. The robot is also equipped
with a boundary sensor to prevent it from exiting the free
space.

We consider obstacle-free, rectangular workspaces with
width W and height H . The free space is a bounded subset
of R2 with no holes. This class of free space has a simple
topology and isolates problems due to uncertainty from
problems due to narrow passages as in [37].

B. Policies

A policy
π : x0, z0 · · · zk, tk → uk

assigns the current input uk given the initial condition x0

and the measurement history z0 · · · zk. We consider three
policies in our experiments.

1) Random Reflection: A common industry approach to
coverage under uncertainty is random-reflection [18]. It
requires no a priori information of the environment nor
global localization sensors, but does require a boundary
sensor. The robot chooses a uniformly random heading and
attempts to move straight with speed v until it detects a
boundary at which point the process repeats until time tf . A
representative path is shown in Fig. 6.

2) Boustrophedon (Long and Short): The boustrophedon
long and short policies are motivated by [11]. They command
the robot to follow a square wave trajectory as shown in
Figs. 7(a) and 7(b). The boustrophedon long policy assigns
a reference trajectory of square wave motions with passes
aligned with the long axis of the boundary. The boustrophe-
don short policy is similar, but with passes aligned with the
short axis of the boundary. The trajectory is parameterized by
path spacing S and by path overshoot b. Upon completion of

S

b
(a) Boustrophedon Long Policy

S b
(b) Boustrophedon Short Policy

Fig. 7. The boustrophedon path for policies (2) and (3). The geometry
of the path is parameterized by path spacing S and overshoot b, which is
the same in both x- and y-directions. The robot computes its state estimate
using a KF and tracks its trajectory with an LQR controller.

the reference trajectory, the robot retraces it in reverse until
time tf .

The robot relies on measurements from the global localiza-
tion sensor described in (9) and uses its boundary sensor to
remain in the workspace. The robot uses a Linear Quadratic
Regulator (LQR) controller as an optimal dynamic regulator
about the reference trajectory and a Kalman Filter as a state
estimator.

C. Application

We demonstrate the practical utility of our performance
measure by applying it to three examples. For each example
we run 500 simulations following the policies in Section
IV-B. In each simulation the robot executes a policy until
complete coverage. We record the actual fraction covered
at each time increment, then construct the CDF from this
data set. This free space is 400m2 and the robot has an
implement radius r = 0.15m and a maximum velocity
v = 0.5m/s, yielding a nominal coverage Ψ = 43.74min.
Ψ is the time required for a robot to cover an equal area
perfectly—with no process or measurement noise and no
overlap. The boustrophedon reference trajectories use path
spacing S = 0.15m and overshoot b = 0.6m.

1) Ranking Candidate Policies: In this example, we use
ε,δ curves to compare the three policies from Section IV-
B. Policies are ranked by their probability of achieving a
desired fraction covered of 97.5% (δ = 0.025). The system
is the same for all cases with process noise σp = 0.1m
and measurement noise σm = 1.0m for a region with width
W = 5m and height H = 80m. Applying (7) for tf = 4Ψ,
the boustrophedon short policy performs better than random-
reflection and boustrophedon long policies, implying that in
many cases it is better to align passes with the short axis of
a boundary than with the long axis. This is clear from Fig.
8 which shows the performance curves of each policy for
tf = {1, 2, 4}Ψ.
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Fig. 8. Performance curves (lower is better) for three policies in a system
with uncertainty (σp = 0.1, σm = 1.0) in a rectangular region (W =
5m, H = 80m). Policies are ranked by their probability of achieving δ =
0.025 with an execution time tf = 4Ψ using (7). The boustrophedon short
policy has the highest probability (ε = 0.01), followed by boustrophedon
long (ε = 0.36), and random-reflection (ε = 0.59).
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Fig. 9. Cumulative distribution functions for execution time tf =
{0.25, 0.5, 1, 2, 4}Ψ for a random-reflection policy under process noise
σp = 0.1. The grey rectangles depict the desired performance constraints
of (ε1 =0.0, δ1 =0.5) ∪ (ε2 =0.2, δ2 =0.3)—the robot must “cover 50%
or more of the free space every time and 70% or more with probability at
least 80%.” A search yields that tf = 1.33Ψ (58min) is the minimum time
to achieve the desired performance.

2) Optimizing Path Length: To minimize wear-and-tear
on the robot, it is often desirable to know the minimum
execution-time to achieve some performance. Consider a
random-reflection policy with tf the design parameter and
a desired performance of (ε1 = 0.0, δ1 = 0.5) ∪ (ε2 =
0.2, δ2 = 0.3)—that the robot must “cover 50% or more of
the free space every time and 70% or more with probability
at least 80%.” In Fig. 9 we show the performance for
tf = {0.25, 0.5, 1, 2, 4}Ψ. The first three do not meet the
requirement; tf = {2, 4}Ψ exceed the requirement. Applying
(8) for the constraint set optimizes this policy. The minimum
time that achieves the desired performance is tf = 1.33Ψ
(58min). The same analysis may be extended to optimize
other policy parameters.

3) Robot Sensor Selection: Sensor selection is a rele-
vant problem in robot design. In this example, we exam-
ine the effect of increasing measurement accuracy σm for
the boustrophedon long policy and compare it to random-
reflection, independent of σm. Fig. 10 shows results for
a region with width W = 10m, height H = 40m,
process noise σp = 0.1, and measurement noise σm =
{0.1, 0.5, 1.0, 2.5, 10}. We compare strategies at execution
times tf = {0.5, 1.5, 2.5}Ψ. For tf = {0.5, 1.5}Ψ, the
random strategy performs best. For tf = 2.5Ψ, the bous-
trophedon policy with σm = {0.1, 0.5, 1.0, 2.5} results in
better performance than random-reflection (for most values
of δ). These results imply that for small tf a random strategy
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Fig. 10. Cumulative distribution functions for execution times tf =
{0.5, 1.5, 2.5}Ψ under process noise σp = 0.1 and varying measurement
noise σm. These results are compared to a random-reflection strategy,
independent of measurements. For short execution times {0.5, 1.5}Ψ, the
random strategy performs best, followed by high measurement noise, and
low measurement noise. As tf increases boustrophedon paths result in better
coverage—performance increases as σm decreases.

performs best. This is expected because random policies
tend to explore more than boustrophedon policies, giving
them an early advantage. This dependence is also shown
in Figs. 2 and 8. For larger tf decreasing values of σm
yield better performance for the boustrophedon long policy.
Modifying (7) to vary over candidate σm values—perhaps
from a catalog of sensors—is straightforward. Applying (7)
for a given execution time and fraction covered determines
the optimal sensor selection. This analysis provides a tool for
robot design and design trade-offs, e.g., cost and accuracy
of a sensor versus time to achieve a desired performance
objective.

V. CONCLUSION

Many existing coverage policies are provably complete in
that they guarantee a robot visits all points in the free space.
However, these policies assume negligible localization error
and perform differently in systems with uncertainty in sens-
ing and actuation. In this work we provided a performance
objective to evaluate policies under such systems, which
enabled us to form well-posed problems. We demonstrated
the usefulness of this problem formulation by applying it
to an example system and several policies. In particular, we
showed that under certain levels of uncertainty boustrophe-
don policies outperform random policies. We also showed
how this performance objective can be used to optimize
policy and system design. As an example, we showed that
orienting boustrophedon paths in a rectangular free space
parallel to the short axis yields better performance than
orienting perpendicular to the long axis.

The CDFs for the three policies in this work can be
approximated by two-parameter logistic (sigmoid) functions,
(1 + e−c1(x+c2))−1. Future work should classify policies
based on this or a related parameterization, enabling ε, δ



comparisons in a functional form. In this work we applied
the PAC objective to three policies in rectangular free spaces
using a global localization sensor. Future lines of inquiry
include applying the PAC objective to investigate other
policies, to optimize policies (e.g., the S and b boustrophedon
parameters), to explore topologically interesting free spaces,
and to integrate information from other sensors. In particular,
the PAC objective could provide a useful benchmark for
multi-robot coverage algorithms.
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