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Abstract— In this paper we derive the control policy that
minimizes the total expected time for a point mass with bounded
acceleration, starting from the origin at rest, to find and return
to an unknown target that is distributed uniformly on the unit
interval. We apply our result to proof-of-concept hardware
experiments with a planar robot arm searching for a metal
object using an inductive proximity sensor. In particular, we
show that our approach easily extends to optimal search along
arbitrary curves, such as raster-scan patterns that might be
useful in other applications like robot search-and-rescue.

I. INTRODUCTION

The classical linear search problem, originally posed by
Bellman [1] and Beck [2], is the following:

A target z is placed somewhere on the real line R
according to a known probability distribution g(z).
We can search for this target by starting at the
origin and moving in either direction at unit speed.
If we recognize the target when we pass it, what
policy minimizes the expected time to do so?

In some cases the solution to this problem is intuitively clear.
For example, assume that g(z) describes a uniform distribu-
tion on the interval [−a, b] for positive constants a, b > 0.
If a > b, we should move first to b and then to a. If b > a,
we should do the opposite. In other cases, for more general
distributions g(z), the situation is much more complex. As
a result, this problem has prompted a long string of papers
over the past fifty years, some of which have considered
extensions like achieving rendezvous with two searchers [3]
or doing linear search on a network [4]. Linear search falls
within a broader class of search problems that are reviewed
by [5], [6].

In this paper we consider a variant of the linear search
problem in which the searcher is a point mass that—instead
of moving at unit speed—is subject to bounded acceleration.
Our goal in this case is to not only find the target but also
return to its location in minimum expected time. Although
we will assume that the target is distributed uniformly over
the unit interval, the optimal policy is no longer intuitively
clear. In particular, there is a tradeoff now between finding
the target (for which faster is better) and returning to the
target (for which slower is better).
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This variant of the linear search problem is of particular
relevance to robotics, where the point mass could represent
an unmanned aircraft doing search and rescue, the tip of a
confocal microscope looking for tagged fluorescent particles,
or the end effector of a robot arm searching for objects
using a proximity sensor. This variant has also received little
previous attention. Perhaps most closely related, the work of
Demaine [7] and earlier of Lopez-Ortiz [8] considered the
linear search problem with an additional cost for turning, but
still assumed unit speed between turns.

Much more general search problems than ours have been
considered over the past decade by the robotics community.
This work tends to focus on pursuit-evasion games [9], where
both the pursuer (the searcher) and the evader (the target) are
moving. It addresses complications like probabilistic motion
models, probabilistic sensor models, multiple pursuers or
evaders, and visibility constraints (e.g., [10]–[16]). It is
closely related both to the problem of coverage [17] and to
the problem of exploration, either for active localization or
mapping [18]. This work may be classified more broadly
as planning under uncertainty, for which general solution
approaches exist (e.g., POMDP solvers [19]–[21]). However,
these approaches rarely lead to exact solutions, and are of-
ten computationally prohibitive. Common heuristics include
finite horizon policies and policies based on the certainty
equivalence principle (i.e., on an assumed decoupling be-
tween optimal estimation and optimal control).

In contrast, our linear search problem—although a special
case—admits an exact analytical solution, which we will
proceed to derive as follows. In Section II, we will formulate
our problem as a time-invariant optimal control problem
with free terminal time and additive cost. In Section III,
we will establish necessary conditions for optimality using
the minimum principle [22]–[24], and establish sufficient
conditions by explicit computation. The resulting optimal
control policy accelerates at the maximum rate for a distance
3−2
√
2 ≈ 0.17, then decelerates at a lower but still constant

rate until returning to rest at the end of the unit interval.
This result corresponds neither to the trajectory that crosses
the interval and returns to rest in minimum time, nor to the
trajectory that would have been derived from the certainty
equivalence principle. In Section IV, we will apply our result
to hardware experiments with a planar robot arm searching
for a metal object using an inductive proximity sensor. In
particular, we will show that our approach easily extends to
search along arbitrary curves, such as raster-scan patterns,
that might be useful in practical applications. Finally, in
Section V, we will consider possibilities for future work.



II. PROBLEM STATEMENT

Consider a unit mass with position q ∈ R being driven
by a force u ∈ [−1, 1] with dynamics q̈ = u. The target
is some point z ∈ [0, 1]. All possible target positions are
equally likely. The mass starts at q(0) = 0. We have a sensor
that tells us when we have passed the target, in other words
when q(t) = z. Our goal is to stop at the target in minimum
expected time, in other words to reach (q, q̇) = (z, 0).

A. The Cost to Reach a Particular Target
Define the state as x = (x1, x2), where x1 = q and x2 =

q̇. Consider the instant t0 at which the mass passes the target,
so x1(t0) = z. For convenience, we denote the velocity of
the mass at this instant by v = x2(t0). After this instant, the
time-optimal policy is a bang-bang solution of the form

u(t) =

{
−1 t ∈ [t0, t0 + t1]

1 t ∈ (t0 + t1, t0 + t2]

for some t2 ≥ t1 ≥ 0. To reach x1(t0 + t2) = x1(t0) = z
and x2(t0+ t2) = 0, the following two equations must hold:

z = z +

(
vt1 −

t21
2

)
+

(
(v − t1)(t2 − t1) +

(t2 − t1)
2

2

)
0 = (v − t1) + (t2 − t1) .

The first is an expression for the position at time t0 + t2,
and the second is an expression for the velocity at this time.
Noting that z ≥ 0 implies v ≥ 0, we find that

t1 =

(
1 +

1√
2

)
v and t2 =

(
1 +
√
2
)
v.

So, the cost of reaching the target after passing it is a linear
function of the velocity at which it is passed:

treturn(v) = av,

where a = 1 +
√
2. The total cost is therefore

t0 + ax2(t0).

B. The Expected Cost to Reach an Unknown Target
For now, we will assume that x2 ≥ 0 until the target is

passed. It will turn out that this assumption holds for any
optimal policy (Section III-E). Given that z is uniformly
distributed over [0, 1], the expected time to reach the target
may therefore be found by integration

J =

∫ 1

0

(t+ ax2) dx1,

where t is the time at which the target is passed, i.e., at
which x1(t) = z. Since dx1 = x2dt, then equivalently

J =

∫ T

0

(t+ ax2)x2dt,

where T is the free final time at which x1(T ) = 1. For
convenience, we will define an additional state x3 = t, so
that ẋ3 = 1, in order to make the system time-invariant. The
total expected cost becomes

J =

∫ T

0

(
x2x3 + ax2

2

)
dt.

C. The Resulting Optimal Control Problem

Our goal is to minimize

J =

∫ T

0

(
x2x3 + ax2

2

)
dt (1)

for free final time T subject to the dynamics

ẋ1 = x2, ẋ2 = u, and ẋ3 = 1,

the constraints

u ∈ [−1, 1] and x2 ≥ 0,

and the boundary conditions

x1(0) = 0, x2(0) = 0, x3(0) = 0, and x1(T ) = 1,

where a = 1 +
√
2. The Hamiltonian is

H(x, p, u) = p0
(
ax2

2 + x2x3

)
+ p1x2 + p2u+ p3,

where p0 ≥ 0 is a constant. The adjoint equations are

ṗ1 = − ∂H

∂x1
= 0

ṗ2 = − ∂H

∂x2
= −p0 (2ax2 + x3)− p1

ṗ3 = − ∂H

∂x3
= −p0x2.

(2)

The minimum principle tells us that any optimal policy u∗

must satisfy

0 = H∗(x∗, p∗0, p
∗, u∗) ≤ min

u
H(x, p0, p, u) (3)

along the optimal trajectory x∗ for some p∗0 and p∗, not both
zero [22]–[24].

III. SOLUTION APPROACH

In Sections III-A through III-C, we will establish neces-
sary conditions for optimality. Our main result (Lemmas 3.2
and 3.3) will be to identify five candidate control policies,
each of which can be parameterized by no more than two
switching times. Then, in Section III-D, we will eliminate
all but one of these candidate policies by minimizing (1)
with respect to the switching times. Finally, in Section III-E,
we will relax the assumption x2 ≥ 0 made in our problem
statement, in particular showing that an optimal trajectory
must satisfy this constraint. We will conclude in Section III-
F with a comparison between the optimal policy that we
derive and two reasonable heuristic policies.

A. Valid Inputs

Lemma 3.1: An optimal policy must satisfy

u(t) ∈
{
−1,− 1

2a
, 1

}
for (almost) all t ∈ [0, T ].

Proof: Consider a particular time t1 ∈ [0, T ). If
p2(t1) 6= 0, then the condition (3) tells us that

u(t1) = − sign p2(t1),



in other words that u(t1) ∈ {−1, 1}. If p2(t1) = 0, then the
condition (3) provides no information. First, assume there
exists no interval [t1, t2) ⊂ [0, T ) such that p2(t) = 0
for all t ∈ [t1, t2). In this case, the time t1 at which
p2(t1) = 0 is isolated, so since u(t1) is bounded it may
be safely ignored. Conversely, assume the existence of such
an interval [t1, t2), within which we must have ṗ2(t) = 0
and hence also p̈2(t1) = 0. If p0 = 0, then this condition
implies that p1 = 0. But, since H = 0 along an optimal
trajectory, we conclude that p3(t1) = 0 as well, hence that
p3 = 0 always. Since not both of p0 and p can vanish, we
must have p0 > 0, hence we may assume without loss of
generality that p0 = 1. So, in this case, we must have

u(t1) = −
1

2a
,

and therefore we have our result.
In fact, it will turn out that an optimal policy is a finite

sequence of these inputs. For convenience, we will label
intervals along which u = 1 as ↑, intervals along which
u = −1 as ↓, and intervals along which u = −1/2a as y.

B. Normal Extremals

Lemma 3.2: An optimal policy for which p0 > 0 must be
of type ↑, ↑↓, ↑y, ↑y↑, or ↑y↓.

Proof: We assume without loss of generality that p0 =
0. To satisfy x2 ≥ 0, the condition (3) implies that we must
have p2(0) < 0, hence that an optimal policy must begin
with an interval of type ↑. For convenience, we will denote
the initial condition by p2(0) = −c and the interval by [0, t1],
where c > 0 and t1 > 0. For all t ∈ [0, t1], we have

ẋ2(t) = 1 ⇒ x2(t) = t

and so
ṗ2(t) = − (1 + 2a) t− p1.

Integrating, we find

p2(t) = −c−
(
1 + 2a

2

)
t2 − p1t.

If
p1 > −

√
2(1 + 2a)c,

then there is no time t1 > 0 at which p2(t1) = 0, hence the
entire policy is of type ↑. Alternatively, if

p1 < −
√
2(1 + 2a)c,

then there exists t1 > 0 at which p2(t1) = 0, and at the first
such time we have

ṗ2(t1) =
√
p21 − 2(1 + 2a)c > 0

regardless of u(t1), hence we switch to an interval of type ↓
for which

ẋ2(t) = −1 ⇒ x2(t) = x2(t1)− (t− t1)

and so
ṗ2(t) = ṗ2(t1) + (2a− 1) (t− t1)

when t ≥ t1. Since ṗ2(t1) > 0 by assumption and 2a− 1 =
1 + 2

√
2 > 0, then ṗ2(t) > 0 for all t > t1. So, the entire

policy in this case is of type ↑↓. Finally, if

p1 = −
√
2(1 + 2a)c,

then there exists t1 > 0 at which p2(t1) = ṗ2(t1) = 0. Three
subsequent policies satisfy the minimum principle:

u(t) =
{
−1/2a t1 ≤ t

⇒ ṗ2(t) =
{
0 ⇒y

u(t) =

{
−1/2a t1 ≤ t ≤ t2

1 t2 < t

⇒ ṗ2(t) =

{
0

−(2a+ 1)(t− t2)
⇒y↑

u(t) =

{
−1/2a t1 ≤ t ≤ t2

−1 t2 < t

⇒ ṗ2(t) =

{
0

(2a− 1)(t− t2)
⇒y↓

The entire policy in each case becomes ↑y, ↑y↑, and ↑y↓,
respectively. And so, we have our result.

C. Abnormal Extremals

Lemma 3.3: An optimal policy for which p0 = 0 must be
of type ↑ or ↑↓.

Proof: If p0 = 0 then the Hamiltonian becomes

H(x, p, u) = p1x2 + p2u+ p3 = 0,

where both p1 and p3 are now constant. In particular, the
minimum principle requires that

p1x2(0) + p2(0)u(0) + p3 = 0. (4)

Consider the case for which p2(0) = ṗ2(0) = 0. Equation (2)
requires that p1 = 0, and Eq. (4) then requires that p3 = 0.
But, we cannot have both p0 and p vanish. It must therefore
be the case that either p2(0) 6= 0 or ṗ2(0) 6= 0, or both.

First, assume that ṗ2(0) = 0 so that p2(0) 6= 0. From (2),
we have p1 = 0 and so p2(t) = p2(0) for all t. Since we
must have x2 ≥ 0, the condition (3) implies that p2(0) > 0
and so the entire policy is of type ↑.

Now, assume that ṗ2 6= 0 so that p1 6= 0. Then, we
integrate to find p2(t) = p2(0) − p1t. This expression
is linear in t, so there is at most one switch. Given the
constraint x2 ≥ 0, the resulting policy must be either of
type ↑ or of type ↑↓.

D. Finding the Optimal Policy

Lemma 3.4: The optimal policy is of type ↑y and can be
expressed as

u∗(t) =

{
1 0 ≤ t < 2−

√
2

−1/2a 2−
√
2 ≤ t < 2 +

√
2



or equivalently as

u∗(x1) =

{
1 0 ≤ x1 < 2−

√
2

−1/2a 2−
√
2 ≤ x1 < 1

.

The corresponding cost is

J∗ =
2

3

(
2 +
√
2
)
=

2T

3
,

where T is the final time, i.e., the time at which x1(T ) = 1.
Proof: Lemmas 3.2-3.3 imply that the optimal policy

must be of type ↑, ↑↓, ↑y, ↑y↑, or ↑y↓, so in any case

u(t) =


1 0 ≤ t < t1

−1/2a t1 ≤ t < t1 + t2

−1 t1 + t2 ≤ t < t1 + t2 + t3

, (5)

where t1, t2, t3 ≥ 0 and t1+t2+t3 = T . We want to find the
values of t1, t2, and t3 that minimize (1), and to establish
the corresponding cost. We do this as follows:
• Integrate (5) to find x1(t) and x2(t) as functions of t1, t2,
and t3, given x1(0) = x2(0) = 0.
• Apply the final conditions

x1(t1 + t2 + t3) = 1, x2(t1 + t2 + t3) = v

for arbitrary v ≥ 0 to eliminate t2 and t3, leaving our ex-
pressions for x1(t) and x2(t) in terms of the parameters t1
and v only.
• Establish bounds on t1 as a function of v. In particular,
we note that t1 is minimized when t3 = 0 and maximized
when t2 = 0, resulting in the bounds√(

6− 4
√
2
)
+ 2

(
−1 +

√
2
)
v2 ≤ t1 ≤

√
1 +

v2

2
, (6)

where 0 ≤ v ≤
√
2.

• Plug in x2(t) and T = t1+t2+t3 to find the cost J , given
by (1), as a function of t1 and v. By evaluating ∂J/∂t1
and ignoring solutions to ∂J/∂t1 = 0 for which t1 < 0,
we establish that candidate extremals of J occur at

t1 = 2−
√
2 and t1 =

√
1 +

v2

2
.

Comparing these candidates with the bounds (6), we note
that [√(

6− 4
√
2
)
+ 2

(
−1 +

√
2
)
v2,

√
1 +

v2

2

]

⊆

[
2−
√
2,

√
1 +

v2

2

]
for all 0 ≤ v ≤

√
2. Furthermore, it is easy to verify that

∂2J

∂t21

∣∣∣∣
t1=

√
1+ v2

2

< 0

for all 0 ≤ v ≤
√
2. As a consequence, the minimum value

of J occurs at

t∗1 =

√(
6− 4

√
2
)
+ 2

(
−1 +

√
2
)
v2.

• Plug in t∗1 to find J as a function of v only. By evalu-
ating ∂J/∂v, we establish that candidate extremals occur
at v = 0 and v =

√
2. We find that

∂2J

∂v2

∣∣∣∣
v=0

= 0 and
∂2J

∂v2

∣∣∣∣
v=
√
2

= −2
√
2 < 0.

We immediately conclude that J is minimum at

v∗ = 0, t∗1 =

√
6− 4

√
2 = 2−

√
2.

Note that, for these values, we recover

t∗2 = 2
√
2, t∗3 = 0.

As a consequence, the optimal policy is of type ↑y and
can be expressed as

u∗(t) =

{
1 0 ≤ t < 2−

√
2

−1/2a 2−
√
2 ≤ t < 2 +

√
2

or equivalently as

u∗(x1) =

{
1 0 ≤ x1 < 3− 2

√
2

−1/2a 3− 2
√
2 ≤ x1 < 1

.

The corresponding cost is J∗ = 2
3

(
2 +
√
2
)
.

In exactly the same way, we can verify that the only
remaining candidate policy ↑y↑, expressed as

u(t) =


1 0 ≤ t < t1

−1/2a t1 ≤ t < t1 + t2

−1 t1 + t2 ≤ t < t1 + t2 + t3

,

is optimal for the same choice of parameters

t∗1 = 2−
√
2, t∗2 = 2

√
2, t∗3 = 0,

hence that it also reduces to the same policy ↑y.

E. Relaxing the Constraint x2 ≥ 0

We have assumed that x2 ≥ 0, i.e., that the velocity must
be non-negative always. If we relax this assumption, it is still
possible to show that x2 ≥ 0 along any optimal trajectory,
hence that the optimal policy remains as we computed it in
Section III-D. We will sketch a proof in this section, omitting
the details. We will rely on the general principle that any
subset of an optimal trajectory must, itself, also be optimal.

Assume that x2(t) < 0 for some t > 0. Then, there must
exist some time t1 ≥ 0 at which x2(t1) = 0, and furthermore
some time t2 > t1 satisfying x1(t2) = x1(t1). Denote the
velocity at time t2 by x2(t2) = v, where we may assume
without loss of generality that v ≥ 0. It is easy to verify that
the optimal policy on the interval [t1, t2), i.e., the policy that
minimizes the time required to transition from (x1, x2) =
(0, 0) to (x1, x2) = (0, v), is

u(t) =

{
−1 t1 ≤ t < t1 + v

(√
2/2
)

1 t1 + v
(√

2/2
)
≤ t < t1 + v

(
1 +

(√
2/2
)) .

The resulting cost is t2− t1 =
(
1 +
√
2
)
v = av. In fact, we

see that the effect of allowing x2(t) < 0 is to allow points of
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Fig. 1. Velocity profile for the optimal policy (red), the “bang-bang” policy
(blue), and the policy that would result from the application of a certainty-
equivalence principle (green), i.e., of decoupling estimation and control.

discontinuity t at which the velocity jumps from x2(t) = 0
to x2(t) = v ≥ 0, at a cost of av. In other words, we can
describe any trajectory on the interval [0, T ] as a sequence
of shorter trajectories on the subintervals

[t0, t1], [t1, t2], . . . , [tn−1, tn].

For each subinterval i = 1, . . . , n, we may choose the initial
velocity x2(ti−1) = vi−1 and require that the final velocity is
zero. Also, within each subinterval, we may assume x2 ≥ 0.
We note that any optimal trajectory must also be optimal
when restricted to any of its subintervals. This decomposition
suggests the following strategy of proof:

• Repeat the above analysis but for arbitrary initial veloc-
ity x2(0) = v0 and for modified cost J ′ = av0 + J .

• Show that the optimal policy satisfies v∗0 = 0, i.e., it is
always best to begin each subinterval at zero velocity.

• Conclude that our assumption x2 ≥ 0 was valid, hence
that we recover the same optimal policy.

The technical details are not hard, just tedious. For example,
we must consider several additional candidate policies (e.g.,
↓y↑ and ↓y↓) and we must optimize over three variables
(t1, v, v0) instead of two (t1, v).

F. Comparison with Heuristic Strategies

Figure 1 shows the optimal velocity profile as compared
to two other alternative strategies that may at first seem
reasonable. The first alternative—a “bang-bang” strategy—
crosses the interval and returns to rest in minimum time.
It is easy to verify that this strategy incurs a cost that is
about 15% higher than optimal. The second alternative—
a certainty equivalence strategy—continues to accelerate all
the way across the interval. It is again easy to verify that this
strategy incurs a cost that is about 41% higher than optimal.

Why do we call this second alternative a “certainty equiv-
alence” strategy? Note that, having moved a distance x1 ∈
[0, 1), we know the target is uniformly distributed on the
interval [x1, 1). The mean of this distribution—a common
choice of best estimate—is at the position

x1 + 1

2
> x1.

Fig. 2. Two-link arm (lengths 0.3m and 0.45m) used in our experiments.
The end-effector is an inductive proximity sensor that detects metal objects.

The time-optimal control policy to reach this position—
assuming that it is, indeed, the location of the target—
is a “bang-bang” policy that accelerates at maximum rate
until reaching the halfway point (x1 + 3)/4. However, this
halfway point will recede as we move. So, if we assume
for the purposes of computing the optimal control that our
best estimate of the target position is correct—i.e., if we
apply what is called the certainty equivalence principle, a
common heuristic when dealing with more general search
problems—then we do exactly the wrong thing and never
stop accelerating.

IV. HARDWARE EXPERIMENTS

To validate our solution approach, we applied our results
to hardware experiments with a two-link planar robot arm
(Fig. 2). Each link was powered by a direct-drive brushless
DC servo motor with encoder feedback. Planning and control
were done on an external PC with a 1kHz control loop.
The end-effector carried an inductive proximity sensor that
detected metal objects within a radius of 15mm but that did
not respond to nonmetallic objects. In our experiments we
used a US $1 coin, placed at unknown locations.

First, we considered a straight-line search path of length
1m (see the video attachment). We used task-space inverse
dynamics to generate reference torques for each joint and a
computed torque method to control each motor [25]. As a
consequence, by defining conservative acceleration bounds
in the task-space (i.e., on the motion of the end-effector),
we could model the robot exactly as described in Section II.
Figure 3 shows example velocity profiles for both the optimal
policy and for the alternative “bang-bang” policy along with
aggregate results for the optimal policy and for both of the
alternatives we considered in Section III-F. These results
match the theory developed in Sections II-III.

A natural extension of our work would use space filling
curves to search two dimensional areas. As a proof-of-
concept, we considered the raster scan pattern in Fig. 4.
Although the search path is now a smooth curve, the result
is still a linear search problem, and so can be addressed with
our solution approach. The only difference is the introduction
of configuration-dependent velocity constraints, in particular
at the switch-back. Although we do not prove it here, these
constraints are easily handled within the same framework.

V. CONCLUSION

We presented an optimal control policy that minimizes
the total expected time for a point mass with bounded

656



-0.25

0.00

0.25

0.50

0.0 0.2 0.4 0.6 0.8 1.0

optimal policy

target +
x2

x1

-0.25

0.00

0.25

0.50

target +

0.0 0.2 0.4 0.6 0.8 1.0

“bang-bang” policy

x2

x1

(a) Velocity profiles

2

4

6

8

0.0 0.2 0.4
target position

tim
e

optimal

“bang-bang”

certainty-equivalence

(b) Total time to reach unknown target

Fig. 3. Experimental results: (a) Optimal and “bang-bang” velocity profiles for one target location. The optimal policy takes longer to detect the target,
but returns more quickly. (b) Total time as a function of target position. Each data point is averaged over five trials.
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Fig. 4. A raster-scan search path (left) and the corresponding optimal
velocity profile (right).

acceleration, starting from the origin at rest, to find and return
to an unknown target that is distributed uniformly on the unit
interval. We derived this policy using the minimum principle.
We applied the result to experiments with a planar robot
arm, in particular showing that our “linear search problem”
is not confined to straight lines, but rather is easily extended
to optimal search along arbitrary curves like raster-scan
patterns. Opportunities for future work include extending
our results to handle configuration-dependent constraints
on velocity and acceleration, to handle target distributions
that are non-uniform, and to handle sensor uncertainty. Our
results may also simplify the problem of planning optimal
raster patterns to handle targets distributed across a surface
or volume rather than along a given smooth curve.
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