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Abstract— This paper presents a mechanism and a control
strategy that enables automated non-contact manipulation of
spherical objects in three dimensions using air flow, and demon-
strates several tasks that can be performed with such a system.
The mechanism is a 2-DOF gimbaled air jet with a variable
flow rate. The control strategy is feedback linearization based
on a classical fluid dynamics model with state estimates from
stereo vision data. The tasks include palletizing, sorting, and
ballistics. All results are verified with hardware experiments.

I. INTRODUCTION

Our long-term goal is to enable automated, parallel ma-
nipulation of multiple objects with air flow. Two key control
challenges are presented by this type of manipulation, in
contrast to traditional robotic manipulation with a mechanical
gripper. First, the dynamics of the flow field itself are difficult
to model. These dynamics are typically governed by systems
of partial differential equations and may exhibit behavior that
is both uncertain and chaotic. Second, the dynamics of the
manipulated objects are strongly coupled, since the presence
of an object in a flow field changes the structure of that field
for other objects.

To make progress, this paper considers the particular
example system shown in Fig. 1, for which it is possible
to simplify the above two control challenges. In this system,
the objects are spheres and the air flow is generated by a
single axisymmetric air jet. This air jet has a variable flow
rate and is mounted on an actuated 2-DOF rotary motion
stage. Our control inputs are the angles 61,6, of the stage
and the velocity u of the nozzle flow.

The steep velocity gradient outward from the air jet’s axis
of symmetry creates a stable equilibrium point at a distance
that depends on the nozzle velocity and on the physical
characteristics of the sphere. By changing the orientation and
flow rate of the jet, we can move spherical objects to any
point within a three-dimensional workspace.

Although the underlying physics of this equilibrium point
are well known for a vertically mounted jet and make for a
classic demonstration in the classroom [1], transient behavior
is less well understood. Being able to model and control this
transient behavior is necessary for automated point-to-point
manipulation. In particular, adjusting the flow rate excites
low-frequency, high-amplitude oscillations along the axis of
symmetry of the jet. These oscillations take a significant
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Fig. 1.
gimbaled air jet with a variable flow rate. Our control strategy enables
automated manipulation of this object in three dimensions.

A spherical object hovering in stable equilibrium above a 2-DOF

amount of time to settle, tend to have a destabilizing effect
on the system, and would preclude rapid manipulation.

In this paper we apply feedback linearization based on a
classical fluid dynamics model in order to dampen these axial
oscillations more quickly. Our approach depends on having
a good state estimate, in this case provided by stereo visual
feedback from a pair of low-cost cameras.

This control strategy enables a number of manipulation
tasks. For example, we can palletize spheres, lifting them
on and off a perch and moving them through obstacles in
3D. We can sort spheres without sensors according to their
physical characteristics, either stacking several of them in the
same flow field or depositing them in bins on the ground.
Long-range ballistic positioning is also possible, using a
rapid increase in the flow velocity to fire an object to a remote
location.

Our hope is that some of these manipulation tasks can
be transitioned out of the laboratory and into real-world
situations. For instance, because air flow avoids the need
for mechanical contact, it is particularly appropriate for
applications in the textile, printing, and foodstuffs industries
that involve the conveyance or rearrangement of flexible,
porous, or delicate objects. Examples include the handling
of clothes [2], [3], paper [4], sliced fruit and vegetables [5],
and biscuits [6]. Similarly, this type of manipulation can
move many objects at the same time, and may increase the
throughput of systems for industrial parts handling.
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Fig. 2. Schematic of our hardware system. The air nozzle is located at the
origin and the sphere position, nozzle direction and equilibrium position are
shown. The sphere’s location is p, the distance from origin to the sphere
equilibrium position is req. The perpendicular distance from the sphere to
the nozzle centerline is d. The component of p along es of the nozzle frame
is r.

The outline of this paper is as follows. In Section II we
describe our hardware system in more detail and present our
control strategy. In Section IIT we show how our control strat-
egy can be applied to enable a number of manipulation tasks.
Finally, we present some concluding remarks in Section IV.

II. CONTROL STRATEGY
A. Mechanism

Figure 1 shows our mechanism for automated manipula-
tion of objects with air flow. It consists of an air jet mounted
to a 2-DOF rotary motion stage. The air jet is supplied up
to 620 kPa through a valve that is continously adjustable via
a DC motor with encoder feedback. Both the motion stage
and the valve are controlled by a digital signal processor
(DSP) running a 1 kHz control loop, which allows us to
command the angles 61, 62 of the motion stage and the flow
velocity w as inputs to the system. The objects are spheres,
with radii from 12 to 97 mm and masses from 2.6 to 188 g.
The positions of these spheres are captured with stereo vision
from two orthogonally mounted cameras triggered at 55 Hz.

B. Dynamic model

1) Coordinates: We assume the object to be manipulated
is a perfect sphere and define its configuration by p € R®
as shown in Fig. 2. It will be useful for us to express p in
two different Cartesian coordinate systems, one fixed in the
workspace and one aligned with the rotary motion stage. We
call the former the base frame b and denote the corresponding
coordinates by p’; we call the latter the nozzle frame n and
denote the corresponding coordinates by p”. We assume the
air jet is aligned with the unit vector e3 = [0 0 1]T in
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Fig. 3. Measured air velocity along the jet’s centerline d = 0O for increasing
distance from the nozzle r. Each line represents a different nozzle velocity
u. The solid lines are fits of the form v(u,r,0) = where ¢ is a
constant.
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the nozzle frame. Given the angles 6, and 6, of the stage,
we define a rotation matrix

(1 0 0 cosf; 0 sinfy
R: = |0 cosf; —sind, 0 1 0
0 sinfy cosd; —sinfly; 0 cosfsy
i cos 05 0 sin 05
= | sinfysinfy; cos@; —sinb cosby
—cos@ysinfy sinf;  cos b cosbs

between these two coordinate frames, so we can say

p'=FRop"  and  p" = Ryp”

where
n nN\T'
Ry = (Ry)" .

We define the axial distance r and the perpendicular dis-
tance d to the object as follows:

r=el RPp? (axial distance)

d=

[e1 ez]T R}}pr (perpendicular distance).

In what follows, we will characterize the dynamics of the
spherical object in terms of these variables r and d.

2) Axial flow velocity: We make the common assumption
that the flow field of the air jet is axisymmetric and is
dominated by the velocity component in the axial direction,
ie., the direction e3 as expressed in the nozzle frame [7].
For a given velocity w at the nozzle outlet, the axial ve-
locity v varies as a function of the axial distance r and
the perpendicular distance d from the nozzle. In particular,
Pitot tube measurements, as shown in Figs. 3- 4, confirm the
relationship

v(u,r, d) =

U d
h? ( eo— 1
—— sec <02T) (1)

(81, [9].

where c¢; and ¢ are fixed constants
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Fig. 4. Measured free air velocity v in the flow field for varying distance
from the jet’s centerline d. Each line represents a different axial distance .

The red line corresponds to » = 0.232 m and the blue line » = 0.187 m.
The solid lines are fits of the form v(u,r,d) = v(u,r,0)sech? (02%
where cg is a constant. Notice that the nozzle velocity decays significantly
for d > 0.02 m.

3) Flow field: It is important to note that the dynamics
of flow itself can have a significant effect on the system.
Changes to the nozzle pressure take time to propagate to
objects in the flow. In addition, the volume of air in the
system can store and output energy over time. These effects
are part of the complex dynamics of the overall system that
make a precise model impractical. For our model, we assume
changes to the fluid are instantaneous and memoryless, so
changes to u have an immediate and time invariant effect on
objects in the flow.

Flow is also assumed to be in the turbulent regime with
Reynolds number R, = % in the range of 10* — 109,
where (3 is the radius of the sphere and v is the kinematic
viscosity of the fluid. In this regime, the relationship between
air velocity and drag has a nonlinear dependence on R, [10].
By assuming the sphere is always near the equilibrium point,
this relationship can be neglected. While flow through and
near the nozzle may be supersonic, the models here assume
that flow around the sphere is subsonic and incompressible.

4) Perpendicular motion: Because of the steep velocity
gradient at small distances from the nozzle axis (Fig. 4), the
position of a spherical object in the direction perpendicular to
this axis is stable about d = 0. A position offset from d = 0
causes a velocity, and therefore pressure, difference across
the cylinder. This pressure difference makes the sphere stable
in the direction perpendicular to the flow, as shown in Fig.
5.

5) Axial motion: The axial dynamics r of a spherical
object are governed by the standard drag equation and
gravity.

7= %%pA(v(u, r,d) — 1) — gel Res 2)
Here, Cy is the coefficient of drag, m the mass of the sphere,
p the density of the fluid and A the sphere cross sectional
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Fig. 5. Dependence of equilibrium perpendicular distance d on the angle
of the nozzle away from vertical for several nozzle velocities u. This raw
position data shows that for any configuration, the equilibrium position of
a 6.7 g 40 mm diameter sphere is within 25 mm of the nozzle axis. By
assuming that the perpendicular position is stable, the modeling is greatly
simplified.

area. In writing this equation of motion, we assume that the
angular velocity of the nozzle frame is small relative to the
dynamics of axial motion. For the applications we consider
in this paper, this assumption is reasonable. Substituting
equation 1 into equation 2 and solving for zero acceleration
and velocity gives the axial equilibrium position

Ca_ p4

_ 3
m 2g cos 6 cos O tes ®)

Teq(61,02,u) =u
where c3 is a fixed constant. In other words, for a given 61,
02, and u, the following configuration is stable:

0
P’ =Ry, |0
Teq

It is easy to invert this relationship to find the values
of 01,05, u required to achieve a given configuration p°.

6) Frequency response: Figure 6 shows the helical motion
of the sphere in three dimensions about this equilibrium con-
figuration. It traces elliptical patterns around the centerline of
the nozzle, but the dominant motion is in the axial direction.

To characterize the stability of this equilibrium configura-
tion, we measured the frequency response of the system from
the nozzle velocity u to sphere position, in both the axial and
perpendicular directions (Fig. 7). In each case, there are two
resonant frequencies, and the corresponding low-frequency
oscillations are lightly damped.

Notice that the amplitude of these oscillations is much
larger in the axial direction than in the perpendicular direc-
tion. The large-amplitude axial oscillations make the settling
time for a step response large, precluding rapid manipulation.
It is this problem that we will correct with our control design.

C. Control design

Based on our fluid dynamic model, we applied feedback
linearization to control the axial position of the sphere. Given
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Fig. 6. Recorded 0.7 s trajectory of a sphere in Cartesian coordinates. Top
left, r oscillations vs. time. Bottom left, x-axis oscillations over time. The
perpendicular amplitude is an order of magnitude less than the r amplitude
and oscillates at roughly four times the frequency. Right, 3D plot of sphere
trajectory.
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Fig. 7. Input to output Bode analysis with sinusoidal nozzle velocity input

and the amplitude of oscillations in r (top) and d (bottom) recorded for a
vertically oriented air jet. Note that the oscillations in the axial direction
are an order of magnitude larger than in the perpendicular plane.

a desired axial acceleration a of the sphere (provided by an
outer PID loop), we compute the desired nozzle velocity of
our controller

r4+c 2a
sech? (02 d) %pA

T

Udes = +7 ) (4)

where c¢; and ¢, are constants determined by the free fluid
flow. Through this choice of uges, We try to eliminate the
nonlinear dependence of #* on r and 7. For this approach
to work, we need an accurate state estimate. Our cameras
only sample at 55 Hz, so we use an extended Kalman filter
to estimate the state between each image capture (Fig. 8).
Occasionally the camera provides spurious measurements.
The Kalman filter provides a robust method to handle sensor
noise.
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Fig. 8. State tracking using a Kalman filter. The Kalman filter propagates
the past state according to the system model, and combines the model with
imperfect sensor data to produce a robust state estimate. With these estimates
the controller can use the predicted position of the sphere (blue dot) instead
of the measured position of the sphere (green circle) from the previous time
step.

D. Performance

We compared an open-loop strategy to our control strategy
both with and without predictive estimation. Figure 9 shows
the results for an open-loop strategy. As expected, the axial
position of the sphere is stable when 7,.r is changed.
However, this position differs significantly from the reference
position, due to imperfections in our model. In addition,
there is significant steady-state oscillation. The second plot
shows the results for feedback linearization, and the third the
results for feedback linearization with predictive estimation
using an extended Kalman filter. The last controller shows
the fastest settling time and damping (Table I). Moreover,
feedback linearization exhibits these responses over a larger
range of r than the PID controller, because of the nonlinear
dependence of the control effort on r.

I1I. APPLICATION TO MANIPULATION TASKS
A. Sphere sorting

When spheres with differing drag to mass ratios are
introduced to the same fluid jet, the spheres quickly arrange
themselves in order of increasing drag to mass, barring

TABLE I
QUANTITATIVE RESPONSE COMPARISON

Control | Estimation || ¢,(s) ts(s) | ess(mm) | M,%
OL No 1.31 | 11.18 —10 34.0
m No 1.29 | > 20 8 35.5

U Yes 1.21 7.95 -2 32.2
FL No 1.23 | 11.99 0 28.7
FL Yes 1.34 1.21 0 18.5

Comparison of controllers: OL, open loop; u, PID control on nozzle
air velocity u; and FL, feedback linearization on force. Here ¢, is
the 10-90% rise time, ¢ is the time to steady state within 25% of
the step input, ess is the mean steady state error and M), is the
maximum overshoot as a percentage of the step size.
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Fig. 9. Three control policies on a 10.8 g 40 mm diameter sphere. Open

loop (top) uses no feedback and simply chooses the « that corresponds with
req. Feedback linearization (center) noticeably reduces the oscillation and
removes steady state error. Adding estimation (bottom) using an extended
Kalman filter further improves the transient response.

~—

Fig. 10. Sorting multiple spheres simultaneously without camera feedback
according to their ratio of drag to mass. The spheres with the highest Cy/m
have equilibria higher in the jet. Left: At a flow velocity of 220 m/s, a
sphere weighted to 12.9 g has an equilibrium position of 0.34 m and a
sphere weighted to 6.7 g has an equilibrium of 0.49 m. By tilting the air
jet, the spheres can be sorted into bins. Right: Three spheres of equal shape
but differing weights are shown in equilibrium.

collisions. This behavior provides a simple, non-contact,
sensorless sorting solution that arranges dissimilar spheres
into a column. This column can be tilted to guide spheres
into corresponding bins (Fig 10, left). Spheres can also
be classified individually, using a constant velocity jet. The
height above the nozzle is determined by AC;/m (Eq. 3),
and again, a single actuator can sort spheres into bins accord-
ing to their drag to mass ratios. Our experiment successfully
sorted spheres by gradually increasing u to 220 m/s, tilting
the nozzle from vertical to ¢; = =w/4 in 4 seconds, then
rapidly zeroing the flow rate to drop the spheres into their
respective containers. Reliably sorting stacked spheres into
bins takes 6 seconds from the time they are introduced to
the flow field, with up to three spheres per operation.
Objects can be introduced into the flow field in many

Fig. 11. Long-range ballistic positioning of spheres. Note the sphere falling
towards the target beaker on the right.

ways, including being delivered from another non-contact
manipulator, caught, manually placed, or lifted from a perch.
Sphere stacking has last in, first out (LIFO) properties. Since
objects with lower drag to mass ratios are always below
objects with larger ratios, moving a stack of spheres is an
exact implementation of the tower of Hanoi problem [11].

For three air jets performing this operation, any stack of
n spheres that can be stably stacked in the air flow can be
moved in 2" — 1 operations. We have stably stacked three
spheres of uniform size (Fig 10, right).

B. Long-range ballistic positioning

Because supersonic air velocities can be generated close
to the nozzle, a nearby sphere can experience very large
accelerations due to drag. Also, at low nozzle velocities, it
is possible to hold the sphere in a nearby equilibrium even
if the air jet is tilted far from vertical. This allows spheres
to be aligned precisely along the barrel of the nozzle. The
accuracy can be improved by waiting for oscillations to settle
before firing the sphere. By rapidly increasing the flow rate
to a calibrated set point, the sphere becomes a predictable
projectile (Fig.11). While the impulse on the ball is difficult
to calculate analytically for a rapidly accelerating u, the
results are reliable and can be determined empirically to
calibrate the ballistic system. Our platform repeatedly tilted
and held a 40 mm ping pong ball, weighted to 12.6 g, to
any angle within 7/4 radians from the vertical axis. By
increasing u from 77 to 312 m/s, the sphere landed in
a 74 mm target located 1.75 m from the airjet. Ballistic
positioning extends the reachable space of the robot from
0.7 m to 2.5 m for a 12.6 g ping pong ball. This could
allow teams of similar manipulators to exchange spheres over
longer distances.

C. 3D trajectory tracking

The gimbaled air jet can place a weighted ping pong ball
at any point within 7 /4 radians from the vertical axis and
0.7 m from the tip of the air nozzle. Two loops of 3 mm wire,
each twice the ball diameter in size, and one loop fashioned
from 10 mm steel strap that was 1.5 ball diameters wide were
used as obstacles to test if the controller could pass spheres
though loops without losing stability. The controller was
tested with the loops at arbitrary angles to the flow (Fig. 12).
Currently, these trajectories are learned from an operator,
streamlined, sped up and implemented by the controller. A
future controller could visually identify obstacles and plan
an appropriate path.



Fig. 12. Navigating a sphere among obstacles in three dimensions. Two
wire obstacles are each twice the sphere diameter. The wire strap obstacle
is 1.5 sphere diameters in width and is aligned with the flow.

Fig. 13. Placing a sphere on a perch. The air jet lifted the sphere from
a perch on the left and navigated through both obstacles before landing on
the 35 mm perch shown.

D. Liftoff and landing

The ability to do pick-and-place tasks (a mainstay of
robotic manipulation) adds a great deal of versatility to the
air jet controller (Fig. 13). Two perch styles were tested, one
with rubber jaws and the other with metal rails. Each had
an open front to reduce flow disturbances, were cupped to
passively stabilize the sphere, and were 35 mm wide. Perches
were tested at five distances from the nozzle, ranging from
0.1 to 0.6 m with equal success, but were never successtul
for a starting angle more than 7 /4 radians from vertical. The
most successful liftoff method was to slowly lower the jet
over the sphere until it rocked free, using a u corresponding
0 r., = r (BEq. 4). Larger nozzle velocities push the
sphere away, while lower nozzle velocities give no response.
Landing is similar to the liftoff operation, but requires greater
precision.

IV. CONCLUSION

In this paper we showed one way to manipulate spherical
objects in three dimensions using air flow. Our mechanism
was a 2-DOF gimbaled air jet with a variable flow rate.
The position of the spherical object was stable along the
axis of the jet at a distance that depended on the flow rate.
However, it was still necessary to apply feedback control in
order to damp the residual oscillations about the equilibrium

point. In particular, we focused on the axial oscillations,
which were of lower frequency and higher amplitude than the
perpendicular oscillations. Our control strategy was feedback
linearization based on a classical fluid dynamics model
with state estimates from stereo vision data. We applied
our control strategy to enable several different manipulation
tasks. These tasks included sorting based on physical char-
acteristics, repeatable long-range ballistic positioning, 3D
trajectory tracking among obstacles, and liftoff and landing
for pick-and-place operations.

There are many opportunities for future work. First, our
control strategy did not completely eliminate axial oscilla-
tions. Doing so, and in particular eliminating perpendicu-
lar oscillations, is a challenging control problem that may
require online learning and adaptation or a more complete
model of the system dynamics. Second, we could explore
in more detail the manipulation tasks suggested in this
paper. For example, 3D trajectory tracking poses an inter-
esting optimal control problem—for our model, maximum
lift on a sphere with radius § is achieved when d =
min (arctan(3/r),0.06)). Maintaining this distance creates
maximum acceleration, but also increases the probability the
system will become unstable. Third, there are many other
manipulation tasks that could be done, in particular ones
involving the manipulation of more than one object at a time.
For example, it is possible to catch thrown objects as well as
to “juggle” several objects simultaneously—we are currently
working on enabling these tasks. Finally, as a long-term goal,
we would like to extend our work to a consideration of non-
spherical and non-rigid objects.
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