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Abstract

Tiny robots have many promising applications in medical treatment including targeted

drug delivery, non-invasive diagnosis, and minimally invasive surgery; and in micro-assembly/-

fabrication for Micro-Electro-Mechanical-Systems (MEMS). Microrobots are often deployed

in large populations, and typically steered by uniform driving signals, including magnetic,

electromagnetic, electrostatic, optical, gravitational, thermal, and chemical. The homogeneity

of the microrobots and the uniformity of the control input make microrobot swarm manipula-

tion difficult in constrained workspaces such as human vascular networks. The control laws

and path-planning algorithms designed for macro-size robotics do not scale well to a micro-

robot swarm, so new methodology must be developed to address more efficient planning with

constraints for a multi-agent problem in microscale.

This thesis addresses the path-planning problem of a swarm of microrobots using a

global control input. It begins with an introduction to state-of-the-art research and applica-

tions in microrobots. Chapter 2 gives an analysis of 2D and 3D position control of heteroge-

neous microrobots in the free space, together with demonstrations in simulations and hardware

experiments. Motivated by the need for higher computational efficiency and capability of

swarm manipulation with spatial constraints, chapter 3 discusses strategies of planning in 2D

vascular networks for a swarm of homogeneous microrobots given a shared, global control

input. Multiple path-planning methods and control algorithms are proposed, and their perfor-

mance is compared in multiple vascular networks with different scale and complexity. The

algorithms are validated with simulations and hardware experiments. Chapter 4 investigates

reinforcement learning strategies to further improve path-planning efficiency, and to overcome

local minima dilemmas in online algorithms. Chapter 5 reports automatic steering methods

in multi-bifurcation vessels with flow, and reinforcement learning algorithms are implemented

for improvement in microrobot delivery rate.
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Chapter 1

Introduction

1.1 Microrobots and Potential Applications

Micro- and nanorobots have great potential impacts in the fields of biology, medical di-

agnosis and treatment, and industrial manufacturing. Especially for biological and medical

tasks, micro- and nanorobots are promising for various applications such as cell manipulation,

bio-sensing, targeted drug delivery, blood clot removal, minimally invasive or non-invasive

surgical interventions, etc., because of their small size, flexibility, large population, and the

capability of carrying drug loads. For example, magnetic resonance imaging (MRI) guided in

vivo navigation of a microrobot has been reported by Martel et al. [1] in 2007, where micro-

robot tracking, control, and actuation have been achieved in the carotid artery within a living

swine. Such techniques are envisioned to deploy micro- or nanorobots within the human body

to reach remote regions and perform interventions that conventional treatment cannot. Another

example is drug delivery.

Current chemotherapy procedures inject boluses of drug from a catheter—the medical

device employed to treat disease or perform surgery—and the drug indiscriminatingly circu-

lates the human body without control, which is why it kills healthy and tumor cells alike. To

reduce toxic drug exposure to healthy cells, targeted drug delivery seeks to steer chemotherapy

directly to diseased tissue. Magnetic micro- and nano-carriers with drugs can play a key role in

such work, navigating through blood vessels by external magnetic fields and directly accessing

the target tumor area. This dissertation is focused on the path-planning and control algorithms

for targeted drug delivery with microrobot swarms.

Unlike macro-scale robots, due to space constraints microrobots usually have limited

1



capabilities for onboard computation, communication, sensing, and actuation. Typically an ar-

tificial microrobot might just be a magnetic bead, a chain-like structure of magnetic particles,

or a bulk of micro materials, such as the Mag-Mite magnetic microrobots [2], the therapeutic

magnetic microcarriers (TMMC) [3], the magnetic thin-film microrobots [4], the paramagnetic

Janus particles [5], the Mag-µBot [6,7], the paramagnetic microparticles [8], the magnetic mi-

crotransporters [9], flagellated nanoparticles [10], achiral microswimmers [11], etc. Other

microrobot forms include self-propelled cells or bacteria, for example, Magnetotactic Bacteria

(MTB) [12–14] and Tetrahymena pyriformis cells [15, 16]. Due to the limitation of the sens-

ing and actuating, external sensors (e.g., MRI, cameras) and actuators (e.g., electric/magnetic

fields or thermal/chemical/optimal/acoustic source) must be employed to localize and power

the microrobots.

1.2 Motivations and Objectives

In many aforementioned possible applications, microrobots are manipulated using a

global control input in highly constrained environments such as the circulatory system, the

central nervous system, the eye, the ear, etc. [17].

Many strategies and algorithms have been developed for navigation and motion control

of microrobots. Path planning and closed-loop control were proposed in free space [18–20].

Khalil et al. demonstrated the control of a single microrobot in a micro-fabricated maze [21].

Scheggi et al. implemented and compared six path-planning algorithms using magnetic mi-

crorobots [22]. However, it is not clear if the single-robot control strategy can be scaled to

microrobot swarm scenarios, or whether the feedback control solution in free space can be

well adapted to vascular networks.

Pierson et al. proposed a control strategy that by introducing herders to drive a swarm of

herding animals to the desired location with repelling potential fields [23]. Fine et al. reported

how to actively design environments to assist the process of controlling multiple agents using
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(a) (b)

Figure 1.1: (a) The six-coil electromagnetic system with a bottom-view camera. (b) A vascular
network tested in experiments.

(a) (b) (c) (d)

Figure 1.2: (a)-(d) Captured frames from a experiment. The goal location is marked with a
red point. (a) t = 0 min, (b) t = 4 min, (c) t = 19 min, (d) t = 36 min.

shape grammars [24]. This method addresses the automatic generation of environments given

specific swarm objective and a control model of agents. Becker et al. showed particle com-

putation methods to perform permutations between different swarm formations by designing

unit-size obstacles in a grid workspace, where they used mobile particles with maximal motion

(particles moved until they hit an obstacle or an obstructed particle) and a global input [25].

Bobadilla et al. gave another example of exploiting environment, where a state space is par-

titioned into discrete transition systems, and gates are configured to guide a swarm of simple

robots to achieve state transition, and thereby to accomplish high-level tasks [26]. Mahadev et

al. explored microrobot swarm aggregation in a planar grid environment, where microrobots

are of different sizes, capable of overlapping, moving in discrete steps and directed by a share,
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(a) (b) (c) (d)

Figure 1.3: (a)—(d) Vascular network examples in simulations.

global, control input [27].

The objectives of this thesis include the following three aspects: (i) exploring closed-

loop control laws for manipulating a microrobot swarm in free space; (ii) proposing efficient

strategies for real-time path-planning and control to steer the swarm in highly constrained

environments, and to validate the results in both simulations and experiments; and (iii) utilizing

learning-based algorithms to optimize the efficiency of path-planning and control policies, and

thus indicating the direction to improve the real-time planning process.

1.3 Dissertation Organization

The dissertation is arranged as follows. Chapter 2 gives an analysis of 2D and 3D posi-

tion control of a swarm of heterogeneous microrobots in the free space. Chapter 3 discusses

strategies of online planning in 2D vascular networks for a swarm of homogeneous microrobots

given a shared, global control input. Chapter 4 investigates reinforcement learning strategies

to further improve path-planning efficiency, and to overcome local minima dilemmas in online

algorithms. Chapter 5 reports automatic steering methods in multi-bifurcation vessels with

flow, and reinforcement learning algorithms are implemented for improvement in microrobot

delivery rate.
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Chapter 2

Steering a Heterogeneous Microrobot Swarm
by a Shared, Global Control Input

2.1 Introduction

Interest in swarm robotics in the control and robotics communities has increased. Com-

pared to highly intelligent and advanced robots, each agent in a swarm robot system is inexpen-

sive, easy to manufacture, and suitable to deploy in large populations [28]. At macro scales,

swarm robots such as micro aerial vehicles and 2D autonomous ground vehicles have great

potential to be applied to sensing, mapping, localization, surveillance, rescue, etc. At micro

scales, agents such as ferromagnetic microrobots, magnetotactic bacteria, and catalytic Janus

particles are researched for target drug delivery, non-invasive surgery, micro assembly, etc.

This chapter considers a swarm of simple robots with limited communication capability

such that agents are commanded by a central system, and agent-to-agent information exchange

is not applicable. The swarm system might consist of hundreds or thousands of agents, but

each agent receives a copy of the same control input. For example, one potential application

is steering catalytic Janus particles with uniform magnetic fields. These particles are self-

propelled by a reaction between platinum on the particle and the liquid the particle swims in.

The particles are also magnetic. The external magnetic field applies a torque that aligns the

magnetic dipole of the particle with the external field. The results in [5] demonstrate steering

an individual particle to a desired location and demonstrate that multiple particles could be

made to move in different directions when under the control of a single magnetic field.

Consider a swarm with n agents in free space, with their headings randomly initialized.

The agents are modeled as self-propelled points that move at a constant velocity along a thrust
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(a)
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(b)
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m
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(c)

φ1 = 0 φ2 = 0.46 φ3 = 0.91 φ4 = 1.4 φ5 =1.8 φ6 = 2.3 φ7 = 2.7

ψ1 = 0 ψ2 = -2.8 ψ3 = -1.2 ψ4 = -0.4 ψ5 =-0.7 ψ6 = -0.8 ψ7 = 1.0

Figure 2.1: Schematic of self-propelled agent in 2D (a) and in 3D (b). 2D thrust vector (blue)
is defined by the offset angle φ from the local coordinate frame, while 3D motion
is offset by φ and ψ. (c) Seven agents with different thrust vector orientations.

vector that is fixed in their local coordinate frame. A central system controls agents via a

broadcast mechanism. The only control inputs allowed are rotation commands that rotate each

agent’s local coordinate frame by the same rotation matrix.

This model is similar to ensemble control systems [29–39]. In these problems an en-

semble of nearly identical agents that differ only in a set of one or more parameters, are each

steered by the same control input. However, the major challenge in this chapter is the con-

strained control input in Equation (2.30), where R(t) needs to be a rotation matrix.

This chapter addresses the 3D position control problem of a multi-agent system using a

shared rotation control input, including (i) with no state perturbations, simultaneously steering

up to three agents to arbitrary locations; (ii) with independent rotation perturbations, enabling

simultaneously steering many agents (n > 3) to arbitrary locations. While boundary interac-

tions could be another method to steer large populations of agents [40], this chapter focuses on

simple agents in free-space that are affected only by their thrust, local coordinate frames, and
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the shared control command.

2.2 Related Work

Previous works have addressed control strategies for 3D multi-agent navigation and plan-

ning, for example, Roussos et al. discusses a distributed control scheme based on Navigation

Functions to drive aircraft-like vehicles towards their targets while avoiding colliding into each

other or obstacles [41]; Xu et al. proposes an acyclic minimally structural persistent graph

based formation control to steer a group of autonomous agents in 3D space [42]; and Nikou

et al. developed a decentralized 3D formation control algorithm for a multi-agent system with

unknown dynamics [43]. However, these control schemes rely on independent control of each

agent, which is not applicable within the scope of this chapter.

The key results of the this chapter include techniques to make n agents follow orbits (sec-

tion 2.4.2), steering a swarm of agents to arbitrary x, y, z positions, and reducing the variance

of the swarm (sections 2.4.4 to 2.4.6). Simulation code is available at GitHub [44] and Wolfram

Demonstration Projects [45], and see the video at See video at https://youtu.be/sSSQgnmjmJw

[46].

2.3 2D Control of Self-Propelled Agents

This section analyzes a 2D version of the broadcast control problem. Figure 2.1 shows a

schematic of a self-propelled point robot in 2D (a disk) and 3D (a sphere).

Bretl [47] and Das et al. [48] have discussed the shared control problem in a 2D plane.

Bretl proposes a control law that directs two agents to meet at the same location simultaneously,

and with input perturbations. Das demonstrates the possibility of achieving position consensus

for large number of agents.

Considering n agents in a 2D xy plane, the origin of each local coordinate frame coin-
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cides with the individual center of mass, and let the local coordinate frame be initially aligned

with the global coordinate frame. The kinematics of the ith agent is given by

xi(t+ 1) = xi(t) +Rθvi(t), (2.1)

with xi(t) ∈ R2×1 the position at time t, vi(t) ∈ R2×1 the thrust vector, and Rθ the shared

control command that rotates the agent along its local z-axis,

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
. (2.2)

Given two self-propelled agents with any initial positions x1,x2 ∈ R2×1, and thrust

vectors v1,v2 ∈ R2×1 (v1 6‖ v2), they can meet at only one unique location

x̂1,2 = x2 +
1

2

[
1 tan 2

φ2−φ1
tan −2

φ2−φ1 1

]
(x1 − x2) , (2.3)

where φi = arctan(vi). For n > 2 such agents in a 2D workspace, there are n(n − 1)/2

potential collision locations, as shown in Figure 2.2. The potential collision locations are

drawn as gray disks determined by the initial agent location and orientation. The radius of the

collision disk is a function of agent radius and difference in orientation (online demonstration

available at [45]).

In general, a sequence of commands for shared control cannot make large number of

agents (n > 2) to meet simultaneously except for some special initial conditions. If thrust

vector perturbations are permitted, Das shows the possibility of point convergence for all agents

in [48].

2.4 3D Control of Self-Propelled Agents

The effect of any command sequence for 2D position control (without perturbations) of

self-propelled agents can be replicated by three commands: an initial rotation along the local

8



Out[15]=

� �

����� ��

���� ����� �������

���� ����

���

����

���
���

���

���

���

���

���

���

���

���
�

�
�

�

�

Out[15]=

� �

����� ��

���� ����� �������

���� ����

���

���
���

���

���

���

���

���

���

���

���

�

�

�

��

Figure 2.2: The configuration space for self-propelled agents in 2D is in R2. Right panel shows
a set of control inputs that brings agents 1 and 5 into collision.

z-axis, a translation, and a final rotation along the local z-axis. Therefore, the configuration

space for these agents’ position is two-dimensional, no matter how many agents are used. This

is because the ending position of each agent is the result of the same rigid body transforma-

tion modulo an initial rotation. Interestingly, in 3D-space multiple rotation and translation

operations can be concatenated to control more than three degrees of freedom.

This work reports on simultaneous 3D position control for multiple self-propelled agents.

Without loss of any generality, each agent is initialized with different thrust vectors. The origin

of each agent’s coordinate frame is at the agent’s position, and the x, y, and z axes are aligned

with the global coordinate frame. The agents implement shared rotation commands based on

their local coordinate frames. For simplification, the actuation time for rotations is negligible

compared to the time of translation.

2.4.1 Steer One Self-Propelled Agent

To deliver a single self-propelled agent from its initial position x ∈ R3×1 to a goal

location x̂, the agent must be rotated so that the thrust vector points toward x̂, Let v be the

initial thrust vector defined in the global coordinate frame. The desired thrust vector can be

9



described as

v̂ =
x̂− x

‖x̂− x‖2

. (2.4)

First, identify the normal vector k of a plane containing both v and v̂,

k = v × v̂. (2.5)

Next, rotate θ about k to align the thrust vector with v̂, where

θ = arccos(v, v̂). (2.6)

2.4.2 Station-Keeping (Orbits) with Multiple Agents

The following sections provide control laws for steering 3D agents to goal positions. A

preliminary challenge is to keep multiple agents at given locations. The solution in 2D is to

revolve about the local z-axis at a constant rate, where the z-axis is perpendicular to the motion

plane. The orbital radius is the thrust velocity divided by the angular frequency r = |v|/ω.

The faster it revolves, the tighter the orbit. In three dimensions this technique no longer works.

The position change of the ith agent under a shared command that rotates θ(t) radians

about an axis k is given by
∫ t

0
Rk,θ(τ)vi dτ. It is easy to show that a rotation about the x-axis

does not, in general, return all agents to the initial location. As shown in Figure 2.3, rotating θ

radians at 1 radian per second about the local x-axis moves the agents to

[θvx, vz(cos θ − 1) + vy sin θ, vy(1− cos θ) + vz sin θ]>.

After one revolution, each agent has been displaced by [2πvx, 0, 0], and any agent with a non-

zero vx has followed a helical trajectory. Self-propelled agents with positive vx will have

moved in the positive x direction, and the others in the negative x.

A solution that returns all self-propelled agents to their initial positions is given by eight

revolutions that toggle between revolving about the local x and y-axes. All revolutions proceed

at a constant angular velocity and, as in 2D, the maximum deviation scales linearly with the
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r

(φ, ψ) =

(0.91,-1.2) (2.3,-0.8) (1.4,-0.4) (0.46,-2.8)

(1.8,-0.7)

(0,0) (2.7,1.0)

Figure 2.3: (Top) In 2D, revolving about the local z-axis results in circular orbits for self-
propelled agents. This is not generally true in 3D (Bottom), and revolving four
times around the local x-axis results in deviation from their initial locations.

inverse of the angular velocity,

Rx,πRy,−πRx,−πRy,πRx,−πRy,πRx,πRy,−π = I3. (2.7)

All x, y, z subscripts for any rotation R refer to the current local x, y, z-axes in the following

sections. The positions for an agent initially at the origin after each rotation are

θ̇−1

( πvx−2vz
2vy

,
 πvx + 2vz
−πvy − 2vz
2vx + 2vy

,
 2vz
−πvy

2vx + 4vy

,
 0

0
4vx + 4vy

,
 πvx

2vz
4vx + 2vy

,
 πvx − 2vz
−πvy + 2vz
2vx + 2vy

,
−2vz
−πvy
2vx

,
0

0
0

). (2.8)

Trajectories of this input sequence are shown in Figure 2.4.

2.4.3 Simultaneous Position Control

For a system of n ≥ 2 arbitrary self-propelled agents in a 3D free-space, there are 6n

DOF: the position vectors xi ∈ R3×1 and the thrust vectors vi ∈ R3×1. This work provides

both open-loop and closed-loop algorithms to control up to nine DOF in positions with no state

perturbations.

For ease of exposition, the shared controller only uses Rx,θx and Ry,θy as rotation prim-

itives to control the thrust vector heading, because any 3D rotations Rk,θ about a local axis k

11
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(/,0)=	(0,0),			(0.46,-2.8),	(0.91,-1.2),	(1.4,-0.4),			(1.8,-0.7),	(2.3,-0.8),										(2.7,1.0)

Figure 2.4: Periodic orbits of the seven agents shown in Figure 2.1c, under the open-loop input
(2.7). The agents and current thrust arrows are redrawn at ti = kπ.

can be represented by a series of rotations about the current local x, y, and x axis,

Rk,θ = Rx,θ1Ry,θ2Rx,θ3 . (2.9)

If the shared command steers agents to rotate θx about the current local x-axis, the cor-

responding rotation matrix and resultant thrust orientations in the global coordinate frame are

Rx,θx =

 1 0 0
0 cos θx sin θx
0 − sin θx cos θx

 and (2.10)

v̂i = Rx,θxvi, (2.11)

where the subscripts x, θx in Rx,θx denote the local x-axis and rotation angle. If the next

command is to rotates θy about the current local y-axis, the corresponding rotation matrix and
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thrust orientations in the global coordinate frame are

Ry,θy =

 cos θy 0 − sin θy
0 1 0

sin θy 0 cos θy

 and (2.12)

v̂i = Rx,θxRy,θyvi. (2.13)

These rotations are performed about the current local x or y-axis instead of the fixed

global coordinate frame, and both Equation (2.11) and (2.13) give a thrust vector v̂i defined in

the global frame.

Each rotation is followed by a translation motion. To simplify the derivation, the time

required for any rotation is assumed to be negligible compared to the translation actuation time.

In 3D space multiple self-propelled agents cannot be driven to arbitrary goal locations

x̂1, ..., x̂n ∈ R3×1 with one rotation and translation. However, concatenating the rotation oper-

ations (2.10) and (2.12) followed by translations enables controlling additional DOF.

This can be written in matrix form as

 ∆x1
...

∆xn

 =


R1v1 R2v1 · · · RNv1

R1v2 R2v2 · · · RNv2
...

...
...

...
R1vn R2vn · · · RNvn

 t = Rvt, (2.14)

with ∆xi = x̂i − xi, Rj = Rx,θ1Ry,θ2 · · ·Rx,θj , Rj+1 = RjRy,θj+1
, and t = [t1, t2, · · · , tN ]>.

If all Rj and t are unknown, solving Equation (2.14) directly is computationally intensive.

Instead, randomly generating the N angles is computationally cheap and works well in simu-

lation, though methods shown later can outperform this.

Given the N rotation angles, ∆xi, and vi, where i ∈ {1, 2, · · · , n}, the goal is to choose

t for Equation (2.14) that minimizes ‖t‖1 with tj ≥ 0, ∀j ∈ [1, N ].

Any three independent vectors in R3×1 forms a basis for the 3D space. Without loss of

generality, assume that v1,v2,v3 inRv (Equation (2.14)) are independent and all vi are unique.
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So any vi of Rv can be expressed as a linear combination of v1,v2,v3,

vi = λi,1v1 + λi,2v2 + λi,3v3, (2.15)

where λi,1, λi,2, λi,3 ∈ R. Recall that row 3i− 2 to row 3i in Rv has the form

Rv(3i− 2 : 3i, ∗) = [R1vi R2vi · · · RNvi], (2.16)

where vi ∈ R3×1. Substitute vi with Equation (2.15),

Rv(3i− 2 : 3i, ∗) = λi,1[R1v1 R2v1 · · · RNv1]
+ λi,2[R1v2 R2v2 · · · RNv2]
+ λi,3[R1v3 R2v3 · · · RNv3],

which indicates that any row of Rv is a linear combination of its first nine rows. So the row

rank of Rv is at most nine.

Recall that column j in Rv has the form

Rv(∗, j) =


Rjv1

Rjv2
...

Rjvn

 . (2.17)

Assuming there are at most k independent columns of Rv, without loss of generality, let

Rv(∗, 1 : k) be these columns. Hence, Rv(∗, j) can be expressed as

Rv(∗, j) = lj,1Rv(∗, 1) + lj,2Rv(∗, 2) + · · ·+ lj,kRv(∗, k) and (2.18)


Rjv1

Rjv2
...

Rjvn

 =


(lj,1R1 + lj,2R2 + · · ·+ lj,kRk)v1

(lj,1R1 + lj,2R2 + · · ·+ lj,kRk)v2
...

(lj,1R1 + lj,2R2 + · · ·+ lj,kRk)vn

 . (2.19)

That is, ∀i ∈ {1, 2, . . . , n},

(lj,1R1 + lj,2R2 + · · ·+ lj,kRk −Rj)vi = 03×1. (2.20)
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Therefore

lj,1R1 + lj,2R2 + · · ·+ lj,kRk = Rj. (2.21)

Write Rk as

Rk =

 rk,11 rk,12 rk,13

rk,21 rk,22 rk,23

rk,31 rk,32 rk,33

 , (2.22)

and let rk = [rk,11, rk,12, rk,13, · · · , rk,31, rk,32, rk,33]>, lj = [lj,1, lj,2, · · · , lj,k]>. Then Equation

(2.21) can be written as

[ r1 r2 · · · rk ]lj = rj. (2.23)

To have a unique solution to lj , [r1, r2, · · · , rk] needs to be invertible, that is, k = 9. It can be

concluded that the column rank of Rv is at most nine. Because the maximum rank of Rv is

nine, n ≤ 3 self-propelled agents can be steered to arbitrary goal locations, and only if these

agents have linearly independent initial thrust vectors.

Only nine of 3n DOF can be manipulated if n > 3. A special case is to make four agents

to meet simultaneously. There is a unique position x̂ where four such agents can meet,

x̂ = x1 +
N∑
i=1

Riv1ti = x2 +
N∑
i=1

Riv2ti

= x3 +
N∑
i=1

Riv3ti = x4 +
N∑
i=1

Riv4ti.

(2.24)

Let Rt =
N∑
i=1

Riti, so

x1 − x2 = Rt(v2 − v1),
x2 − x3 = Rt(v3 − v2), and
x3 − x4 = Rt(v4 − v3).

(2.25)

Flatten Rt as a vector rt, and rewrite the right side of Equation (2.25) as

 x1 − x2

x2 − x3

x3 − x4

 =

 RΛ(v2,v1)
RΛ(v3,v2)
RΛ(v4,v3)

 rt = RΛvrt, (2.26)
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where

RΛ(vi,vj) =

 v>i − v>j 01×3 01×3

01×3 v>i − v>j 01×3

01×3 01×3 v>i − v>j

 . (2.27)

So rt (i.e., Rt) has a unique solution if and only if RΛv is invertible. Hence the meeting point

can be derived,

x̂ = x1 +Rtv1. (2.28)

2.4.4 Open-Loop Control Using Linear Programming

One way to solve Equation (2.14) is via linear programming. The objective is to find a

vector t such that the total control time ‖t‖1 is minimized subject to (2.14) with n = 3,

min
N∑
j=1

tj, such that tj ≥ 0, j = 1, ..., N, andR1v1 R2v1 . . . RNv1

R1v2 R2v2 . . . RNv2

R1v3 R2v3 . . . RNv3

 t =

∆x1

∆x2

∆x3

 , (2.29)

where the initial thrust vectors are linearly independent. Because the tj must be nonnegative,

the number of rotation matrices (N ) should be much greater than nine, as shown in Figure 2.7a.

2.4.5 Feedback Control

Let the state space representation of n such agents be

[
ẋ1 · · · ẋn

]
= R(t)

[
v1 · · · vn

]
, (2.30)

where xi denotes position of the ith agents, vi describes the initial thrust vector, andR(t) is the

shared control input. Construct an objective function based on the sum of squared Euclidean

distance error

V (t) =
1

2

n∑
i=1

(x̂i − xi(t))
> (x̂i − xi(t)) , (2.31)
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Figure 2.5: Open-loop control simulations using linear programming. The goal locations are
indicated by green orbits. In each figure, all spheres move the same total distance
and reach the goal location at the same time.

where x̂i is the ith goal location. Hold R(t) constant for time interval [tk, tk + τk), such that τk

minimizes the convex objective function. Consider the first-order necessary condition,

V̇ (tk + τk) = d
dτk
V (tk + τk) = 0 and

−
n∑
i=1

(x̂i − xi(tk)− τkR(tk)vi))
>R(tk)vi = 0, and thus

(2.32)

τk =

n∑
i=1

(x̂i − xi(tk))
>R(tk)vi

n∑
i=1

‖R(tk)vi‖2
2

. (2.33)

Note that the time interval τk must be non-negative, so if there exists an R(tk) such that τk >

0, then
∫ tk+τk
tk

V̇ (t)dt < 0, and the total distance error decreases monotonically with time;

otherwise, the objective function has reached the minimum. Thus the system kinematics can

also be written as

xi(tk+1) = xi(tk) +R(tk)viτk. (2.34)
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(a) (b)

x: -6.105
y: -30.66
z: 10.15

(c) (d)

Figure 2.6: (a) & (c) Simulations of self-propelled agents using greedy optimal control. All
agents reach the goal location at the same time. (b) & (d) The corresponding ob-
jective function plot with simulation time.
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2.4.6 Greedy Optimal Control

It has been discussed that the optimal actuation time to minimize the objective function

V (t) with a constant rotation matrixR(t) within time interval [t, t+τk). By carefully choosing

this R(t), the objective function follows the steepest gradient during each time interval,

R(tk) = argmin
αk,βk,γk

V̇ (tk), (2.35)

with R(tk) a function of rotation angles αk, βk, and γk,

R(tk) = R(tk−1)Rx,αkRy,βkRx,γk . (2.36)

This indicates that at tk, each agent implements the shared rotation control R(tk) which is

equivalent to rotating αk about the current local x-axis, then βk about the current y-axis, and

finally rotating γk about the current x-axis.

(a) (b)

Figure 2.7: Representative parameter optimization for controlling three self-propelled agents
in 3D. (a) In open-loop control, path lengths decrease monotonically with the num-
ber of rotation matrices N . (b) Performance comparison of feedback control laws.
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(a) Control of three agents with position noises. (b) Control of ten agents with thrust perturbations.

Figure 2.8: Controlling multiple self-propelled agents in 3D. The solid lines are the average re-
sults of 50 simulations, and the shaded areas represent the corresponding standard
deviation.

2.4.7 Control with State Perturbations

Under ideal conditions, agent motions are assumed to be perfectly implemented without

errors. Up to four agents can be steered to meet simultaneously with a shared control input.

In general, for n > 4 agents, the objective function reaches a local minimum, and the shared

control cannot bring all agents to their target locations simultaneously.

In practice, agent rotations and translations may not be precise due to process noise and

measurement noise. Inspired by the 2D results in [48], it is possible to escape local minima in

3D, if we relax previous assumptions and assume agents are subjected to independent random

disturbances on their thrust vectors after each translation. In the following we show that there

always exist disturbances that enable steering the agents closer to their goal. In simulation, it

shows that randomly perturbing each agent’s thrust vector enables convergence.

Section 2.4.5 shows that τk ≤ 0 if the objective function reaches a local minimum, and

according to Equation (2.33),

n∑
i=1

(x̂i − xi(tk))
>vi(tk) ≤ 0, (2.37)
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where R(tk)vi is replaced by vi(tk). Let δi(tk) ∈ R3 be a perturbation of the ith thrust vector,

such that the perturbed thrust vector v′i(tk) ‖ (x̂i − xi(tk))
>, where

v′i(tk) =
vi(tk) + δi(tk)

‖vi(tk) + δi(tk)‖2

‖vi(tk)‖2. (2.38)

Therefore
n∑
i=1

(x̂i − xi(tk))
>v′i(tk) > 0, (2.39)

except for the case that the total position error is 0.

This example proves the existence of a perturbation that makes the objective function

monotonically decreasing, even if the system is in a local minimum. In this chapter’s simula-

tions, the thrust vector perturbations are sampled from a zero-mean normal distribution.

2.5 Simulation

This section investigates the controllability for self-propelled agents in 3D free-space,

including steering up to three spheres to arbitrary goals with a shared open-loop control (linear

programming) and a shared closed-loop control, and control of four agents to meet. With

perturbations on thrust vectors, it shows the capability of driving ten agents to the origin.

In Figure 2.5, open-loop control with linear programming is implemented with up to

three self-propelled agents and drives them to arbitrary goals. A colored line describes the

trajectory of each sphere. Black arrows indicate the local coordinate frame z-axis for the

subsequent move. According to section 2.4.4, N angles are randomly generated to provide

a large number of rotation matrix candidates, but linear programming selects Nk among N

(Nk � N ) matrices to apply actuation and steer the spheres to goal locations. In the simulation,

a rotation matrix could be generated by R(t) = Rx,αRy,βRx,γ , where α, β, γ ∈ [0, 2π]. N is

set to 200, and usually Nk = 9. Figure 2.7a shows that N can affect the performance of linear

programming: ifN is small, the provided paths to goals might be much longer than the optimal

21



solution. The total path length decreases monotonically with N . The total path length has little

change when N ≥ 200.

Section 2.4.5 introduces a closed-loop control law such that a rotation matrix R(t) is

held constant for each actuation time interval τk. Aptly choosing each τk, the cost function

decreases monotonically along the trajectory. In simulation, R(t) is generated with the fol-

lowing methods: (i) random angle generation, (ii) using the Nk rotation matrices selected by

linear programming, and (iii) minimizing V̇ (t) in Equation (2.32) with respect to αk, βk, γk.

Figure 2.6 shows the trajectories of greedy optimal control with 3 and 4 agents using method

(iii). Not all αk, βk, γk must be non-zero values. For example, let αk, βk = 0, or αk, γk = 0, or

γk = 0 for greedy optimal control. For more simulation results, please refer to the repository

on GitHub [44].

A performance comparison of the above three methods is shown in Figure 2.7b, which

indicates that methods (ii) and (iii) have competitive performance, while method (i) takes about

twice as long to converge.

Section 2.4.3 shows controlling up to nine DOF with no state perturbations. Figure

2.6 gives two examples of controlling up to four self-propelled agents: steering three agents

to predefined goal locations, and moving four spheres to their mean positions, as shown in

Equation (2.28).

When thrust vector perturbations are considered, the shared control is capable of moving

out of local minima and bringing many agents (n > 4) to arbitrary locations, as shown in Figure

2.8b. In addition, the influence of position noises are compared in Figure 2.8a.

2.6 Conclusion

This chapter proves limitations on control for self-propelled agents that all receive the

same rotation commands, but extends the existing literature which focuses on two dimensional

results to show that nine degrees-of-freedom of position can be controlled. In 2D only one
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agent can be steered to an arbitrary position, and two agents have only one possible meeting

point. In 3D up to three agents may be steered to arbitrary positions, and four agents have only

one possible meeting point.

There are many avenues for future work. These include optimal control results and

analytical solutions to the optimal rotations for the controllers in section 2.4. In particular,

calculate the meeting location for two spheres that requires the shortest control sequence. This

problem is trivial in 2D, but potentially hard in 3D.

These controllers have potential insights for real-world systems that are self-propelled

and can be steered by the orientation of a global field. The size of micro-scale robots makes it

difficult to include onboard computation, so they are often steered by external fields. Examples

include steering magnetized single-celled organisms [49–52], magnetotactic bacteria [12, 53–

55] and catalytic Janus particles with magnetic cores [5, 56–58].
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Chapter 3

Path Planning and Aggregation for a Microrobot
Swarm in Vascular Networks Using a Global Input

3.1 Introduction

Microrobots have great potential to be used in non-invasive surgery for drug deliv-

ery. Traditional drug delivery circulates the human body indiscriminatingly, which is why

chemotherapy kills healthy and tumor cells alike. To reduce toxic drug exposure to healthy

cells, targeted drug delivery seeks to steer chemotherapy directly to diseased tissue. Many

methods for drug delivery have been explored, including beaded delivery formulations, lipo-

somal delivery systems, encapsulated chemotherapy in nanoparticles, and magnetic micro-

carriers navigated by magnetic fields [59].

Recent works have investigated many strategies to manipulate a swarm of simple robots

with limited computation and communication [23–26].

(a) (b)

Figure 3.1: (a) The six-coil electromagnetic system with a bottom-view camera. (b) A vascular
network tested in experiments.
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(a) (b) (c) (d)

Figure 3.2: Captured frames from a experiment. The goal location is marked with a red point.
(a) t = 0 min, (b) t = 4 min, (c) t = 19 min, (d) t = 36 min.

Pierson et al. proposed a control strategy that by introducing herders to drive a swarm of

herding animals to the desired location with repelling potential fields [23]. Fine et al. reported

how to actively design environments to assist the process of controlling multiple agents using

shape grammars [24]. This method addresses the automatic generation of environments given

specific swarm objective and a control model of agents. Becker et al. showed particle com-

putation methods to perform permutations between different swarm formations by designing

unit-size obstacles in a grid workspace, where they used mobile particles with maximal motion

(particles moved until they hit an obstacle or an obstructed particle) and a global input [25].

Bobadilla et al. gave another example of exploiting environment, where a state space is par-

titioned into discrete transition systems, and gates are configured to guide a swarm of simple

robots to achieve state transition, and thereby to accomplish high-level tasks [26].

However, many microrobots have limited capabilities for sensing and actuating, so ex-

ternal sensors (e.g. magnetic resonance imaging (MRI), cameras) and actuators (e.g. exter-

nal electric or magnetic fields) must be employed. Experimentally, microrobot swarms such

as paramagnetic microparticles [8], Tetrahymena pyriformis [16], and magnetotactic bacteria

[13, 14] have attracted growing attention in many applications of micro-assembly and targeted

therapies. These microrobots usually are physically simple agents, and are steered by global

fields where every robot receives the same control signal. Many strategies and algorithms have

been developed for navigation and motion control of microrobots in free space [18–20]. Khalil
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et al. demonstrated control of a single microrobot in a micro-fabricated maze [21]. Scheggi et

al. implemented and compared six path planning algorithms using magnetic microrobots [22].

Mahadev et al. explored microrobot swarm aggregation in a planar grid environment, where

microrobots are of different sizes, capable of overlapping, moving in discrete steps and directed

by a share, global, control input [27].

This chapter addresses aggregating a microrobot swarm in vascular networks using only

a global input. This is divided into three challenges: (i) generating swarm trajectories, (ii)

realizing robust swarm transitions, and (iii) constructing swarm-level strategies to reduce task

time complexity. To address (i) and (ii), this chapter uses an augmented rapidly-exploring

random tree (RRT) for path planning. A divide-and-conquer strategy is employed to address

(iii) for swarm aggregation. The problem formulation and modeling are elaborated in 3.2.1.

Section 3.2.2 and 3.2.3 introduce trajectory generation and algorithms for aggregation. Section

3.3 compares performance with different maps, aggregation methods, and swarm populations.

A hardware implementation is described in Section 3.4.

3.2 Methodology

3.2.1 Problem Formulation

Given a bounded 2D space G ⊂ R2, the plane is partitioned by obstacles into free space

(Gfree), obstacle space (Gobs) and contact space (∂Gobs), where ∂Gobs is the set of boundaries of

all obstacles. Gfree is continuous, and connected by paths of width at least w. A population of

n simple microrobots, identified by ri, i ∈ {1, · · · , n}, are randomly distributed in free space

at time t0, with their positions represented by prit0 ∈ Gfree. These microrobots are physically

simple and have no on-board computation or communication. Their bodies are small compared

to w, and interaction between agents is ignored. They are under the control of a global signal,

that is, all units move in the same direction at the same speed until they hit an obstacle. We

assume that microrobots in contact with the wall have zero velocity if the control input has a
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component directed into the wall.

The goal is to quickly collect this swarm at a gathering point qg (Figure 3.3). It can

be inferred from [27] that there exists a solution to the problem. First, this chapter focuses

on trajectory generation for each microrobot, and then presents control strategies for swarm

aggregation.

(a) (b) (c) (d)

Figure 3.3: In simulation, blue polygons represent obstacles, white channels are free space,
and a red dot for the goal location. (a) Simulated aggregation process after 1 step,
(b) 200 steps, (c) 500 steps, and (d) 800 steps.

Define a distance metric d : R × R 7→ R≥0 which denotes the cost to reach pj from pi

via an accessible path in Gfree. A microrobot is modeled by a discrete-time dynamic system,

with a control input vector ut,

prit+1 = prit + δ · ut, (3.1)

where prit ∈ R2 represents the position of robot ri at time t, ‖ut‖� w, and δ is a scale factor

that depends on ut and prit ,

δ =

{
1, if the path is collision-free,
‖prit − px‖2, otherwise.

(3.2)

If ut steers the robot from prit into any obstacle, ri stops at the obstacle boundary px.

An n microrobots swarm has 2n degrees-of-freedom, but a global input has only x and

y components, so the system is under-actuated.
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Let a cost function F (n, t) at time t be the average distance of all robots to the gathering

point qg,

F (n, t) =
1

n

n∑
i=1

d〈prit ,qg〉. (3.3)

The trajectory generation problem is interpreted as determining the single-source shortest paths

in a weighted graph using distance metric d. The aggregation problem finds a deterministic

policy to decrease the cost function, such that as t→∞, F (n, t) < σ, for some small σ ∈ R+.

3.2.2 Swarm Path Planning

This chapter introduces an obstacle-weighted rapidly-exploring random tree (RRT) plan-

ner to explore the environment, and discovers collision-free routes to the goal location qg.

Sampling-based motion planning algorithms have shown great success in exploring collision-

free paths for many scenarios. Probabilistic roadmaps (PRMs) [60] and rapidly-exploring ran-

dom trees (RRTs) [61] are two popular planners. These planners generate random configura-

tions in free space, connect them to create a graph of feasible paths, and link start and goal

locations. This chapter focuses on multi-shot 2D path planning with RRT and its extensions.

Many attempts have shown success in improving the performance of RRTs near obstacles, such

as narrow passage and tight region problems using a retraction strategy [62, 63].

Applying an RRT-based path to a microrobot swarm using a global input can lead to

problems: moving one particular agent may cause all the others to drift away from their initial

locations since all agents receive the same control signal. These locations may not be near

any existing configurations on the tree (T). Hence the RRT planner should have the following

feature: for any robot ri in Gfree,

‖pri − qv‖2≤ ε, (3.4)

for some ε > 0, where qv is the nearest vertex in T. Grow a tree in an unbiased manner,

such that sampling configurations are distributed uniformly. Also sufficient configurations are
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Table 3.1: Variables, and functions used in Algorithm 1 and 2.

V — the set of vertices (configurations) of T.

Vobs — the set of sampling nodes on the boundary of obstacles.

V ∗ — the set of configurations near medial axes of Gfree.

π(qv) — the predecessor of the configuration qv in T.

Adj(qv) — the set of adjacent vertices.

required to guarantee the constraint Equation (3.4).

Start

Goal

Figure 3.4: One swarm (green circles) follows a black solid trajectory near the medial axes.
Another swarm (red triangles) follows the shortest path to the goal, which traps
some microrobots at the corner and slows the aggregation process.

Another issue with microrobot swarms is the environment interference. For example, in

Figure 3.4 a gray dashed line (trajectory 1) is the shortest path to the goal location, and a black

solid line (trajectory 2) represents a near-medial-axis path. Although trajectory 1 is shorter

than 2, such a path significantly slows the aggregation process near obstacles. An approach is

proposed to reroute existing paths towards medial axes of free space. Compared to retraction-

based planners, this approach replans a new route with existing configurations in T instead of

generating biased sampling of tree nodes.

The basic RRT planner builds a connected tree rooted at the goal location, and samples

tree nodes randomly in free space of G to explore the graph. This process (Algorithm 1)

proceeds as follows: to grow the tree, generate a random point qrand in Gfree, and perform the
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Algorithm 1 RRT.
Input: configuration space G, goal location qg, total number of configurations NumNode.
Output: an RRT T

1: V = {qg}, Vobs = ∅,T = {V, Vobs}
2: while |V |≤ NumNode do
3: qrand ← a randomly generated point in G
4: qnear ← the nearest neighbor of qrand in V
5: qnew ← extend qnear towards qrand for unit length
6: if (qnear,qnew) ∩Gobs = ∅ then
7: V = V ∪ {qnew}
8: π(qnew) = qnear

9: d〈qnew,q
g〉 = d〈qnew,qnear〉+ d〈qnear,q

g〉
10: else
11: qobs ← (qnear,qnew) ∩ ∂Gobs

12: Vobs = Vobs ∪ {qobs}
13: end if
14: end while
15: return T

nearest neighbor query (lines 3-4); next, qnear is extended towards qrand with unit length, and

ends with qnew; if the edge (qnear,qnew) is collision-free, which corresponds to a control input

steering robots from qnear to qnew, add the new node to the tree and update the distance metric

(lines 6-9). Since all sampling points are connected to the tree, a robot can reach the goal

location from any tree nodes simply by following their predecessors iteratively.

Note that in Algorithm 1, lines 10-12 are different from the original RRT [61]: if there

is a collision along the path, we retract qnew to the boundary of the obstacle qobs. qobs is not

considered as a valid configuration in T, instead, add it to Vobs to grow an obstacle-weighted

RRT. These obstacle nodes assist in steering paths away from obstacles.

This process is illustrated in Algorithm 2, and compare it with the original RRT in Figure

3.5. The weight of a node qv in T is calculated as

w(qv) = e−a‖qv−q
near
obs ‖2+b, (3.5)

where a, b ∈ R+. Therefore, weight decreases with distance from nearby obstacles. Hence,

the new path tends to proceed near medial axes of free space if it identifies a gradient descent
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Algorithm 2 Obstacle-weighted RRT.
Input: the RRT T of Algorithm 1.
Output: an obstacle-weighted RRT: Tobs

1: V ∗ = {qg},Tobs = {V, Vobs, V
∗}

2: for all qv ∈ V do
3: qnear

obs ← the nearest neighbor of qv in Vobs

4: w(qv) = e−a‖qv−q
near
obs ‖2+b

5: if w(qv) < ζ then
6: V ∗ = V ∗ ∪ {qv}
7: end if
8: end for
9: for all q∗v ∈ V ∗ do

10: d〈q∗v,qg〉 =∞
11: for all q∗u ∈ Adj(q∗v) ∩ V ∗ do
12: if d〈q∗v,qg〉 > d〈q∗v,q∗u〉+ w(q∗u) + d〈q∗u,qg〉 then
13: π(q∗v) = q∗u
14: d〈q∗v,qg〉 = d〈q∗v,q∗u〉+ w(q∗u) + d〈q∗u,qg〉
15: end if
16: end for
17: end for
18: for all qv ∈ V do
19: if π(qv) /∈ V ∗ then
20: q∗near ← the nearest neighbor of qv in V ∗

21: π(qv) = q∗near
22: end if
23: end for
24: return Tobs

path to the goal with minimum-weight nodes. A near-medial-axis set of configurations is

constructed as

V ∗ = {qv ∈ V |w(qv) < ζ}, (3.6)

for some ζ ∈ R+. The trajectory generation (lines 7-16) is shown in Figure 3.5(b). We trim the

tree to remove edges not connecting to vertices in V ∗, and perform adjacent neighbors query to

regrow the tree towards near-medial-axis regions. Section 3.2.3 shows that obstacle-weighted

RRT decreases aggregation time.

31



Goal

(a)

Goal

(b)

Figure 3.5: (a) RRT: yellow dots are configurations of T, and red dots are abandoned exten-
sions within the obstacle. (b) Obstacle-weighted RRT: green dots are near-medial-
axis configurations ∈ V ∗, yellow dots are elements in V affected by the obstacle.

3.2.3 Swarm Aggregation

This section presents a divide-and-conquer aggregation method with heuristic strategies

to improve performance. The motivation behind microrobot swarm aggregation is efficient

control strategies for drug delivery in vascular networks. However, a global input with a highly

under-actuated swarm system makes it difficult constructing an optimal controller. Pioneering

research has proposed different strategies for the aggregation/gathering problem, but most of

them are element-wise algorithms, that is, performing the task in terms of individuals. The

goal of this chapter is to propose a swarm-level strategy to carry out swarm aggregation, and

reduce time complexity compared to element-wise methods.

Benchmark Aggregation

A benchmark heuristic for aggregation is to move one microrobot to the goal, and then

move the next agent. Repeat this till all robots gather near the goal location. In this chapter,

the benchmark heuristic moves the farthest microrobot to the goal.

The benchmark aggregation is presented in Algorithm 3. with the following assump-
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tions: (i) the graph G is connected and bounded, and (ii) the goal location is inside a closed

region (Definition 1) at an end point (Definition 2). The second assumption is inspired by the

concept of discrete system transitions in [26], where gates are constructed to guide transitions

from one region to another. In practice, a closed region indicates that once microrobots reach

this area, it is hard for them to escape, given global inputs driving robots to qg. This is reason-

able and essential, because chemotherapy molecules are designed to release from carriers once

they reach the region of tumor cells [59].

Algorithm 3 Heuristic Aggregation.
Input: Tobs = {V, Vobs, V ∗}, initial positions {prit0} of all robots ri.
Output: ut

1: while F (n, t) > σ do
2: ri ← the farthest robot
3: qriv ← the nearest vertex ∈ V to ri
4: ut ← move ri towards qg via qriv
5: end while

Definition 1. (closed region.) Considering a global input ut that drives all robots to the goal

qg, a closed region is a positive invariant set M ⊂ Gfree, qg ∈ M. Given ut and a robot ri, if

prit0 ∈M at t0, then prit ∈M for all t > t0. M is bounded, so ∀ pri ∈M,∃ c > 0, such that

d〈pri ,qg〉 < cσ. (3.7)

Definition 2. (endpoint.) An endpoint is a set D ⊂M,qg ∈ D, with the following properties:

(1) ∀pri ∈ D, d〈pri ,qg〉 < σ; (2) given that all robots {ri} ∈ Gfree aggregate inside M and a

global input ut moves robots towards D, if pri ∈ D at t0, then pri ∈ D for all t > t0.

Divide-and-Conquer Aggregation

This method recursively aggregates microrobots into a smaller region that contains the

goal. A proper definition of ‘region’ reduces aggregation time. If each microrobot is manipu-

lated all the way to the goal location, the algorithm is transformed into the heuristic aggrega-

tion.
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The divide-and-conquer technique has two stages. it begins by splitting the aggregation

problem into subproblems in smaller regions. Then it recursively performs discrete region

transitions of microrobot swarms.

The first stage ‘divide’ performs map segmentation of vascular systems like Figure 3.9.

In these maps, vessels are connected by junctions, and most of them are T-junctions.

Definition 3. (Region Ri.) Define a partition of a map Gfree as non-overlapping regions

{Ri}i=1,2,···,NR , such that {Ri ∈ Gfree|
NR⋃
i=1

Ri = Gfree, Ri ∩Rj = ∅, ∀i 6= j}.

As shown in Figure 3.6(a), junction nodes (green dots) can be separated from other

nodes in straight vessels (orange dots) by their spatial distributions. Considering the set {qv ∪

adj(qv)}, i.e. a configuration and its adjacent neighbors in Cartesian coordinates, the shape

ratio is defined as the eigenvalue associated with the principal component of the set divided by

the other eigenvalue. If the shape ratio is less than a threshold, such configuration is regarded

as a junction node; otherwise, a vessel node. These junction nodes can determine boundaries

between regions. Here the maximal width of local channels are taken as the range of adjacent

neighbors. With these definitions, perform map segmentation using results from obstacle-

weighted RRT. This process is presented in Algorithm 4, and illustrated in Figure 3.6:

1. use near-medial-axis configurations q∗v ∈ V ∗ to identify junction nodes (lines 1-4);

2. partition the set of junction nodes (VJ ) using Euclidean distance (line 5), and yield NR

junction clusters;

3. split free space into NR regions corresponding to the NR junction clusters (line 6);

4. partition each region into branches {Bj,k}k=1,2,··· by their orientations (lines 7-10), where

Bj,k is the k-th branch in Rj .

In step 3, region segmentation proceeds in three phases. First select a cluster of VJ

and set the junction nodes as seeds. Then grow the region with these seeds by adding their
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Table 3.2: Variables and functions used in Algorithm 4.

Clustering(VJ , ‘distance’) — partition elements of VJ into junction clusters with the
Euclidean distance metric, and returns the centroid of each junction {qdj}.

RegionSeg(V ∗, {qdj}) — partition elements of V ∗ into clusters by junctions, and returns
the region ID: {Rj}. First, assign a unique region ID Rj to the centroid of a junction
(qdj ) and its adjacent neighbors Adj(qdj ). Then, assign all descendants of Adj(qdj ) the

same region ID.

Clustering(S,qdj ‘orientation’) — partition elements si ∈ S into clusters by the orienta-
tion of a directed edge (si,q

d
j ), and returns {qoj,k} the mean orientation..

BranchSeg(S, {qoj,k})— assign a branch ID to each element of S by orientation, where qoj,k
is the orientation of branch Bj,k.

Algorithm 4 Map Segmentation.
Input: The obstacle-weighted RRT Tobs = {V, Vobs, V ∗}.
Output: Map segmentation: M = {VJ , ψ(V ∗), φ(V ∗)}

1: VJ = {qg}
2: for all q∗v ⊂ V ∗ do
3: if q∗v is a junction node then
4: VJ = VJ ∪ {q∗v}
5: end if
6: end for
7: {qdj}j=1,2,···,Nd ← Clustering(VJ ,‘distance’)
8: {Rj}j=1,2,···,NR ← RegionSeg(V ∗, {qdj})
9: for (j = 1; j = j + 1; j ≤ NR) do

10: S ← {q∗v ∈ V ∗ ∩Rj}
11: {qoj,k}k=1,2,··· ← Clustering(S,qdj , ‘orientation’)
12: {Bj,k}k=1,2,··· ← BranchSeg(S, {qoj,k})
13: end for

descendants generation by generation in Tobs. The region expansion stops at the next junction.

In step 4, branch segmentation is a result of clustering. Considering all q∗v in the j-th region,

connect qdj to q∗v, where qdj is the centroid of the j-th junction cluster. Branches can be obtained

by clustering all these directed edges (qdj ,q
∗
v).

The second stage ‘conquer’ is presented in Algorithm 5 and illustrated in Figure 3.7.

A global planner moves a swarm of microrobots from region Rj to Rj.next, where region Rj

and Rj.next share an edge, and region Rj.next is closer to the goal: d〈qdj.next,qg〉 < d〈qdj ,qg〉.

A local planner assigns priorities to microrobots at different branches of region Rj , and leads
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(a) (b)

(c) (d)

Figure 3.6: Algorithm 4 illustration. The goal (red dot) is located at (99,5). (a) represents step
1 and 2. (b) and (c) show step 3, where regions are marked as different colors. (d)
illustrates step 4 in a region, where branches are marked as different colors.

them to the closer region Rj.next.

This divide-and-conquer algorithm consists of three while loops: (i) identify the farthest

region Rj where microrobots exist (Figure 3.7(a)), and d〈qdj ,qg〉 describes the cost from the

j-th junction centroid to goal; (ii) pick a branch with the highest priority, i.e., with more robots

closer to the junction centroid qdj (Figure 3.7(b)); (iii) identify the closest robot ri to qdj , and

drive it to the nearest vertex qriv ∈ V , and then move it towards some vertex in Rj.next (Fig-

ure 3.7(b) and (c)). After moving all robots in Rj to Rj.next, a discrete region transition is

completed.
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(a) (b)

(c) (d)

Figure 3.7: (a) Microrobots (black dots) exist in two regions (purple Ri and orange Rj). Rj

is farther from the goal (red dot). (b) & (c) A control input drives a robot (hollow
circle) to Rj.next (green). Repeat this until transport the swarm from Rj to Rj.next.

To analyze time complexity of the divide-and-conquer recurrence, the following assump-

tions are needed: (i) the map is connected and bounded, (ii) ‘closed region’ and ‘endpoint’

definitions, and (iii) aggregation time is proportional to map area and population. LetG denote

a map with Area(G) = m, Population(G) = n, Density(G) = ρ = n/m. If T (mn) is the

running time for map G, level 0 of recurrence is

T (mn) = T (ξmn) + f((1− ξ)ρm · (1− ξ)m), (3.8)

where f((1 − ξ)2ρm2) denotes the aggregation time in the farthest region (Rj) where mi-

crorobots exist, with (1 − ξ)ρm the population, (1 − ξ)m the area, and ξ a discount factor

(0 < ξ < 1). After we move out all robots of Rj , the aggregation map shrinks.
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Algorithm 5 Divide-and-conquer Aggregation.
Input: Tobs = {V, Vobs, V ∗}, M = {VJ , {Rj}, {Bj,k}}, positions {prit0} of all robots {ri}.
Output: ut

1: while F (n, t) > σ do
2: Rj ← the region with the highest priority
3: while there exists any robot in Rj do
4: Bj,k ← the branch with the highest priority
5: while there exist any robot in Bj,k do
6: ri ← the closest robot to qdj
7: qriv ← the nearest vertex ∈ V to ri
8: ut ← move ri towards Rj.next via qriv
9: end while

10: end while
11: end while

It is easy to derive the recursive form for level i using two models. In the first recurrence

model, it is assumed that the aggregation map shrinks with a constant discount factor ξ each

time, then Area(G(i)) = ξ · Area(G(i− 1)) = ξi+1m, and

T (ξimn) = T (ξi+1mn) + f(ξi(1− ξ)ρm · ξi(1− ξ)m), (3.9)

where the density is assumed to be a constant in f(·). In fact, the density decreases with

aggregation as microrobots overlap. So this assumption does not reduce the difficulty of the

subproblem. The base case is T (n) = f(n) with m = 1. If f(x) is simplified with a linear

model f(x) = kx, then

T (mn) =

log1/ξm∑
i=0

f(ξ2i(1− ξ)2ρm2)

= kρm2(1− ξ)2

log1/ξm∑
i=0

ξ2i.

(3.10)

Assuming log1/ξm is an integer, and m� ξ, then Equation (3.10) can be simplified to

T (mn) = kρm2

(
2

1 + ξ
− 1

)
. (3.11)

In the second model, the map is reduced by a constant area (1 − ξ)m each time, then

38



level i has the form

T ((1− i(1− ξ))mn) = T ((1− (i+ 1)(1− ξ))mn)

+f((1− ξ)2ρm2).
(3.12)

Hence,

T (mn) = kρm2

1/(1−ξ)∑
i=0

(1− ξ)2. (3.13)

Assuming 1
1−ξ is an integer, Equation (3.13) can be written as

T (mn) = kρm2(1− ξ)(2− ξ). (3.14)

The performances of different discount factors ξ are shown in Figure 3.8. As ξ in-

creases, the scaled running time decreases fast, despite some fluctuations in the second model.

This means that the more map size is reduced each time, the less efficient divide-and-conquer

aggregation becomes. As ξ → 0, it becomes the benchmark aggregation instead. This is equiv-

alent to decreasing the map size from m to 1 with one recurrence (ξ = 1
m

). For both models

(Equation (3.11) and (3.14)), as ξ → 1
m

, T (mn)→ O(m2); as ξ → 1− k∗

m
, for some k∗ ∈ R+,

k∗ � m, T (mn) → T (m). Hence, the divide-and-conquer strategy makes it possible to re-

duce time complexity from T (m2) to T (m). Note that k∗ is dependent on junctions in a map:

the finer a map can be split, the smaller k∗ is.

3.3 Simulation

This section reports the simulation results to evaluate path planning approaches, RRT and

obstacle-weighted RRT (OWRRT), compare the divide-and-conquer aggregation (DCA) with

the heuristic aggregation (HRA), and study the impact of map and swarm population. Three

sets of simulations are investigated, and each set presents two algorithms for aggregation and

two methods for path planning.
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Figure 3.8: Running time estimation of the first recurrence model in Equation (3.10) and the
second recurrence model in Equation (3.13).

(a) (b) (c)

Figure 3.9: Blue polygons represent obstacles, and white channels are free space. We place
a red dot at each goal location. These maps increase in size and complexity: (a)
T-junction map, (b) a vascular network I and (c) vascular network II.

Path planning and aggregation are carried out in three simulated maps (Figure 3.9), in-

cluding a T-junction map, and two vascular networks. The obstacles are marked as blue poly-

gons, and free space is white. To initialize, n microrobots are randomly initialized in the free

space, where n ∈ {21, 22, 23, · · · , 210}, and each microrobot is represented by a point with

no area. Given a global input ut at time t, all microrobots will move towards the assigned

direction for one discrete step of unit length (Equation (3.1) and (3.2)). The goal is to gather

microrobots to the goal location. In practice, the task is accomplished if the average posi-

tion of the swarm is near the goal, or F (n, t) < σ (dashed circle in Figure 3.9). Count the

total number of steps to approximate the running time for swarm aggregation in a map. In
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each map, ten different microrobot populations are used. For each population, 30 simulations

are performed for three combinations of aggregation algorithms and path planning methods

respectively: DCA+OWRRT, HRA+OWRRT, and HRA+RRT. The results of simulations are

compared using violin plots in Figure 3.10.

The performance of these algorithms are evaluated by their average running time (num-

ber of steps) and data distributions. DCA+OWRRT outperforms any other combinations in all

these simulation when the swarm population is large enough (n ≥ 23). The average aggrega-

tion time of DCA+OWRRT does not grow as fast as others, and it tends to approach an upper

bound asymptotically in each vascular network. Also, this combination shows reliability and

efficiency with different environments and swarm populations. For each independent trial, the

aggregation time has small standard deviation. Neither HRA+OWRRT nor HRA+RRT can

compete with DCA+OWRRT in average aggregation time when the swarm size is greater than

23. The average running time of HRA+OWRRT and HRA+RRT increases with log n in most

cases with large standard deviation, and the worst case can be extremely inefficient.

3.4 Experiment

The experiments were conducted using ferromagnetic micro-particles steered by a global

magnetic field generated by six electromagnets.

3.4.1 Electromagnetic Platform

The experiment uses a custom-made electromagnetic platform which consists of three

orthogonal pairs of coils with separation distance equivalent to the outer diameter of a coil

(Figure 3.1a). The coils (18 AWG, Custom Coils, Inc) are powered by six SyRen10-25 motor

drivers with Tekpower HY3020E DC power supply. An Arduino Mega 2560 provides six

PWM signals to control the motor drives, and images are acquired using an IEEE 1394 camera

(50 fps) with the region of interest approximate 20 mm2. Each image has 379×366 pixels, and
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(a)

(b)

(c)

Figure 3.10: Particle aggregation in maps (a,b,c). The violin plot shows the probability density
of the simulation data and the black line indicates the mean value. We performed
30 simulations for each combination of methods and swarm populations.
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each pixel represents an area of 40 µm2 of the workspace. Microrobot detection and tracking

are processed in MATLAB using blob analysis and Kalman filters, and the control input ut

(i.e., the orientation of the magnetic field) is sent to the Arduino Mega via USB serial port

communication. In experiments, the electromagnetic platform (with iron cores) can provide

over 300 Gauss magnetic fields along any direction in the 20 mm3 workspace center.

3.4.2 Experiment Setup

The vascular network for experiments is shown in Figure 3.1 (b) and Figure 3.9 (b). This

maze is made of two layers of acrylic cut using a Universal Laser Cutter, one layer as the base,

and the other as the polygonal obstacles. The frame is a 20×20 mm2 square, and the chan-

nel width is 2 mm. In each experiment, the maze is filled with a mixture of microrobots and

vegetable oil (0.45 mL) at the same concentration, and placed in the workspace center. The

microrobots are composed of ferromagnetic particles (30 microns Fe3O4, Alpha Chemicals).

These microparticles aggregate into microrobots that vary in sizes and shapes, with an initial

population of over 300 microrobots. Microrobots align with magnetic fields when the mag-

nitude is larger than 100 Gauss. Because the density of ferromagnetic particles is over seven

times larger than water, gradient fields provided by our electromagnetic platform are not able

to drag microrobots around due to friction. Hence rotational fields are deployed to make the

microrobots roll along the base. Rolling a uniform field in the vertical plane at 5 Hz causes

microrobots to move at an average velocity of 80 µm/s, and their maximum velocity is over

350 µm/s.

3.4.3 Validation of Aggregation Algorithms

The results of the divide-and-conquer aggregation are compared with those of the bench-

mark heuristic aggregation as shown in Figure 3.11. The running time is approximated by

number of processed image frames for each experiment (≈ 45 fps). The swarm population
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is estimated by averaging the number of pixels classified as robots in last 13500 frames (≈ 5

min). With similar swarm populations, the average running time for the benchmark is 93,063

frames (≈ 34.5 min), and 60,628 frames (≈ 22.5 min) for the divide-and-conquer algorithm,

which is a reduction by 34.9%. Hence the divide-and-conquer aggregation outperforms the

benchmark.

(2)
(3)

(1)

(4)

(5)

(3)

(4)

(2)

(5)

(1)

Figure 3.11: Blue diamonds are benchmark data, and red circles are results for divide-and-
conquer aggregation, with an experiment number next to each marker.

3.5 Conclusion

This chapter compares two path-planning methods and two control strategies applied to

the problem of aggregating microrobot swarms in vascular networks using a global input. An

obstacle-weighted RRT is proposed and it steers microrobots towards near-medial-axis regions

to reduce environment interference. A divide-and-conquer strategy is deployed to perform

swarm-level aggregation via discrete region transitions. Compared to the benchmark strategy,

the divide-and-conquer aggregation reduces the task time complexity.

44



Chapter 4

Path Planning Optimization Using Reinforcement Learning

4.1 Introduction

In Chapter chapter 3, online path planning and delivery methods are proposed for a

homogeneous microrobot swarm, which takes as input the binary image of a vascular network

for path planning, and the microrobot positions for real-time control and delivery. Compared

to the benchmark algorithm, divide-and-conquer (D&C) shows considerable improvement in

delivery efficiency (40%–50%). However, there are more difficulties in realism that planners

need to overcome. First, D&C still is a local planning strategy and thus lack of the big picture—

it only focuses on one region at a time while regardless of all others. Second, it is time-

consuming to provide an analytical solution for optimal control given a highly constrained

vascular network, not to mention implementation in different environments. Furthermore, the

delivery targets are set near blocked outlets (endpoints), preventing microrobots from escaping

for simplicity. When it comes to open outlets or branch points, both D&C and the benchmark

algorithm have difficulty bringing microrobots to a target—they get trapped in local minima in

such scenarios.

These challenges consist of three aspects: identical agents (homogeneous microrobots),

a shared and uniform control input, and highly constrained environments. In optimal planning

and control, the first two aspects belong to the area of under-actuated control problem or con-

straints in control input; the third aspect is categorized to unknown system dynamics as the

environmental constraints cannot be easily specified in mathematical forms.

Reinforcement learning (RL) learns optimal or at least near-optimal strategies for se-

quential decision-making problems. The learned strategies are iterated via errors and trials
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when interacting with the environment. RL agents get feedback (rewards) from the environ-

ment and try to maximize the cumulative rewards for an optimal solution. RL is a promising

approach to study the optimal control problem with constraints and unknown system models,

and to overcome the local minima dilemma in planning.

4.1.1 Reinforcement Learning

Reinforcement learning (RL) is an aspect of machine learning that studies the optimiza-

tion of sequential decision-making problems [64]. An RL agent learns to map sensory input

to action space to maximize a reward signal from the environment. Unlike supervised or un-

supervised learning, the training data in RL are collected via interacting with the environment,

there are no instructions (labels) but delayed rewards to tell agents which action to take, and

the objective cannot be set as minimizing the difference between predictions and labels.

RL has a broader research scope and the capability of generalization to non-traditional

control problems. For example, the optimal control theory generally assumes that a system

model is well-defined and agent behavior can be predicted without interactions, each agent has

an individual controller for planning, and the whole system is controllable under the proposed

control law. These prerequisites are not satisfied in the scenario of homogeneous microrobot

swarm path planning.

Well-established theories of path planning, such as breadth-first search, A* and rapidly

random exploring tree (RRT), can provide both efficient and optimal solutions to single-robot

navigation in a complex environment. However, homogeneous microrobot swarm path plan-

ning with a shared and uniform control input can cause problems, as fore-mentioned algo-

rithms fail to see the whole swarm—only one robot is handled at a time. Hence the efficiency

decreases significantly compared to that of a single-robot case.

RL offers a general abstraction for control problems as a Markov decision process, and

formulates the problem as agents optimize cumulative rewards by making decision based on
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the observation in an environment. Generalizable, globally optimal, and model-free are three

significant advantages of RL in the case of homogeneous microrobot swarm navigation. RL

agents use the trial-and-error experience to modify their learned skills and thus do not require

lots of pre-existing knowledge to provide suitable solutions. The model-free property makes

RL adapt to different scenarios easily without changing the algorithm.

4.1.2 Deep Learning

Deep learning is another aspect of machine learning that employs deep neural networks

(number of layers≥3) to learn high-level features from raw data (e.g., image, sound, text, etc.)

and to make prediction on classification and regression problems. Recent development in deep

learning has led to significant development in areas of speech recognition, image classifica-

tion, object detection, semantic segmentation, text generation, etc. [65]. Contrast to conven-

tional machine learning techniques, which heavily rely on hand-crafted features and domain

knowledge to process raw data, deep learning approaches allow end-to-end learning from raw

data directly to training objectives, automatically extracting abstractive representations from

high-dimensional data.

4.1.3 Deep Reinforcement Learning

Deep reinforcement learning (DRL) makes use of deep learning techniques for abstrac-

tive state representations and nonlinear function approximations in RL. This enables RL to

learn from high-dimensional sensory input without artificial feature engineering, and automat-

ically generate complex control laws to direct agents. The recent successes of DRL include

mastering of the game of Go [66], playing Atari 2600 games from pixel input [67, 68], and

learning humanoid parkour and flexible behaviors [69–71].
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4.2 Background

4.2.1 Markov Decision Process

A Markov decision process (MDP) provides the mathematical framework to describe

agent-environment interactions and to model the decision-making process in RL. An agent is

defined as a decision maker which learns to generate actions according to observations from

an environment. The environment is a set of objects outside the agent. An MDP defines a

stochastic control problem composing of five-tuple M = (S,A,P,R, γ), where

• S: a finite set of states (observations);

• A: a finite set of actions (continuous or discrete);

• P: P a
ss′ = P[St+1 = s′|St = s, At = a], is a state transition probability matrix, where

s′, s ∈ S, a ∈ A;

• R: Ra
s = P[St+1 = s′|St = s, At = a], is a scaler reward function provided by the

environment;

• γ: γ ∈ [0, 1] is a scaling factor that discounts the future rewards.

At each time step, the agent take an action a ∈ A with respect to its current state s ∈ S, the

environment dynamics transition the agent to the next state s′ ∈ S and provide a reward r for

reaching the state. A sequential decision-making process is Markov if its state at time step t+1

only depends on its state and action at time step t,

P[St+1 = st+1|St = st, At = at] = P[St+1|s0, a0, s1, a1, . . . , st, at]. (4.1)

4.2.2 Returns, Policy and Value Functions

RL agents try to maximize the cumulative rewards from the environment, where the

rewards of a sequence of states are Rt+1, Rt+2, Rt+3, . . . , RT , the return Gt is defined as the
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weighted sum of rewards from time step t,

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γT−1RT =
T∑
k=0

γkRt+k+1, (4.2)

where T denotes a final time step. If T = ∞, the task never ends; if T is finite, the task ends

after T steps, followed by a reset to a starting point. A finite T defines the total time steps of

an episodic task.

The policy is a mapping from a state to a probability distribution of actions,

π(a|s) = P[At = a|St = s]. (4.3)

The policy describes the behavior model of agents, and MDP policies only depend on the

current state instead of the historical data.

The value function vπ(s) denotes an estimation of the return from a state to evaluate how

goodness the state is

vπ(s) = Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

= Eπ[Rt+1 + γvπ(St+1)|St = s].

(4.4)

The value function can be decomposed into immediate reward Rt+1 and the discounted return

of successor state.

The action-value function qπ(s, a), also known as Q value function, defined as the esti-

mated return by taking action a at state s, to evaluate how goodness an action-state pair is

qπ(s, a) = Eπ[Gt|St = s, At = a]

= Eπ[Rt+1 + γqπ(St+1, At+1)|St = s, At = a].
(4.5)

Again, the action-value function can be decomposed into the current reward by taking action

a, and the discounted successor action value qπ(St+1, At+1).

49



Solving an MDP problem is equivalent to finding an optimal policy that maximizes the

value function/action-value function. The optimal value function v∗(s) and the optimal action-

value function q∗(s, a) are defined as

v∗(s) = max
π

vπ(s) and (4.6)

q∗(s, a) = max
π

qπ(s, a). (4.7)

Define a partial ordering over policies, such that π(s) ≥ π′(s) if and only if v(s) ≥ v′(s),∀s ∈

S. For any MDP, there exists at least one optimal policy π∗ that is better or equal than all others,

and such policy achieves the optimal value function/action-value function.

4.2.3 Problem Formulation

Given a swarm of simple homogeneous (identical) point robots distributed in a 2D

vascular network, they receive a shared, global control input and thus head the same direc-

tion. The goal is to deliver a certain amount of microrobots to a target area with as few

steps as possible. Specifically, consider the standard episodic task, RL agents use discrete

actions to steer microrobots interacting with an environment for a finite number of steps.

The environment is reset once RL agents have reach the maximum number of steps. The

goal is to find a mapping from states to actions, such that cumulative rewards from the en-

vironment are maximized. Here, the set of actions are defined as eight discrete directions:

N(↑), NE(↗), E(→), SE(↘), S(↓), SW (↙),W (←), NW (↖). The states are defined as

sensory inputs such as microrobot positions or an image sequence.

4.3 Related Work

Model-free control is aimed at solving RL problems that are either with unknown system

model, but the data can be sampled from interaction, or with known dynamics, but too compli-

cated to employ except by samples. Both on-policy and off-policy learning methods are widely
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investigated in model-free RL research. The on-policy learning optimizes a policy based on

state-action samples drawn from the most recent policy, i.e., a near-optimal but not optimal

policy. While the off-policy learning periodically updates an outdated target policy based on

experience sampled from a behavior policy where the samples are ‘off’ the target policy [64].

4.3.1 Q-Learning

Q-learning [72] is an off-policy learning method which approximates the optimal action-

value function q∗(s, a) by a learned function Q, and the policy is indirectly derived from the Q

function. The Q function is defined as

Q(s, a)← Q(St, At) + α
[
Rt+1 + γ max

a
Q(St+1, a)−Q(St, At)

]
, (4.8)

where α is the learning rate, γ is the discount factor, and the action a is sampled from A.

Tabular Q-Learning

Tabular Q-learning is deployed in cases of small, finite state spaces, where Q function is

approximated using vectors or tables. The algorithm is briefly described in Figure 4.1a. For

example, consider a 9× 10 maze with 46 obstacle-free grids shown in Figure 4.1b, and a total

of N homogeneous point robots are randomly distributed in the free space. To steer all these

robots to a goal location only with a global control input, a Q-table and a value function table

are constructed as a m× n matrix and a m× 1 vector respectively, where m is the number of

states, and n = 4 is the action space {↑, ↓,←,→}. The required memory is shown in Table

4.1 given all variables are saved in float64 format (8 bytes)—simulating hundreds of robots is

beyond the capability of tabular Q learning.
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Initialize Q-table 

Choose an action from π

Take action a, observe R, S’

Update Q-table

(a) Tabular Q-learning. (b) Q-learning example.

Figure 4.1: The Q-learning example is a 9 × 10 maze with white grids as pathways and black
grids as obstacles. Point robots (red) move in pathways one grid per step, subject-
ing to a global control input.

Table 4.1: Memory required for tabular Q learning.

Number of robots Required memory (GB)
7 5.76
8 31.52
9 148.86

10 10615.06

Deep Q-Network

To solve MDP with a large state space, function approximation is employed to estimate

Q function, and such approximation makes it possible to generalize to unseen states. However,

training RL agents with a nonlinear function approximator such as the neural network causes

instability and divergence, as they are not guaranteed to converge.

A recent breakthrough deep Q-network (DQN) proposed by Mnih et al. achieves human-

level or above control in classic Atari video games, such as Pong, Breakout, and Boxing [67,

68]. DQN learns policies directly from pixels and scores and output actions—such end-to-

end reinforcement learning only requires minimal domain knowledge and thus the network

architecture can be applied to a wide range of scenarios.
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The success of DQN in RL relies on the following key elements: convolutional neural

network (CNN), experience replay, and the target network. CNN captures features in the high-

dimensional space (images) and maps them to a latent vector space, which reduces data dimen-

sion and learns an abstractive representation for similar features. Experience replay provides

a replay buffer that collects a million (or similar) MDP transitions from agent-environment

interactions. At the training stage, a mini batch of samples (e.g., 32 transitions) are randomly

sampled from the replay buffer to update the network. Such randomness in samples removes

correlation in observation sequences and thus brings the data distribution closer to identically

independently distributed (i.i.d.) assumption. DQN keeps two action-value functions, Q and Q̂

for the network, parameterized by θ and θ− respectively. The agent behaviors are generated by

the first network Q, and training targets are provided by the second network Q̂. At the training,

only θ gets updated, and θ− synchronize its weight with θ periodically. Such fixed Q-value

targets reduce data correlations and improve training stability and convergence.

Afterward, there are many succeeding innovations based on deep Q-network, such as

double DQN [73], DQN with prioritized experience replay [74], dueling network structure in

DQN [75], and rainbow DQN [76].

4.3.2 Policy Gradient

Policy gradient is an on-policy RL algorithm which directly maps a state s ∈ S to an

action a ∈ A. Unlike value-based RL, where policy is indirectly generated, for example, via

ε-greedy action selection, policy-based RL approximates the policy directly, and it has better

convergence and is effective in a high-dimensional or continuous action space. Let πθ(a|s) be

a policy function parameterized by θ, and the objective is to find the best policy that maximizes
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the cumulative returns,

J(θ) = Eπθ

[
∞∑
t=0

γtrt

]

=
∞∑
t=0

∑
a

πθ(a|st)qπθ(st, a),

(4.9)

with r(τ) the return at time τ . Hence, the policy gradient is

∇J(θ) =
∞∑
t=0

∑
a

∇θπθ(a|st)qπθ(st, a)

=
∞∑
t=0

∑
a

πθ(a|st)∇θlogπθ(a|st)qπθ(st, a)

= Eπθ

[
∞∑
t=0

∇θlogπθ(a|st)qπθ(st, a)

]

= Eπθ

[
∞∑
t=0

∇θlogπθ(a|st)Gt

]
,

(4.10)

where Gt is defined in Equation (4.2), and this gradient is used to update θ,

θ ← θ + α∇θJ(θ), (4.11)

with α the learning rate.

Baseline Function

Despite the better convergence property, policy gradient may suffer from high variance

which results in slow learning [64]. To reduce the variance, a state-dependent baseline function

b(s) is subtracted from the objective. The baseline function should not be related to the policy
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parameters θ, and thus the gradient becomes

∇J(θ) = Eπθ

[
∞∑
t=0

∇θlogπθ(a|st)(Gt − b(st)) +
∞∑
t=0

∇θlogπθ(a|st)b(st)

]

= Eπθ

[
∞∑
t=0

∇θlogπθ(a|st)(Gt − b(st))

]
+
∞∑
t=0

∑
a

∇θπθ(a|st)b(st)

= Eπθ

[
∞∑
t=0

∇θlogπθ(a|st)(Gt − b(st))

]
+
∞∑
t=0

b(st)∇θ

∑
a

πθ(a|st)

= Eπθ

[
∞∑
t=0

∇θlogπθ(a|st)(Gt − b(st))

]
,

(4.12)

because
∑

a πθ(a|st) = 1 and∇θ1 = 0. Without loss of generality, the value function v(s) can

be chosen as the baseline function, and the advantage function A(s, a) is defined as

Aπ(s, a) = qπ(s, a)− vπ(s), (4.13)

so the gradient is rewritten as

∇J(θ) = Eπθ

[
∞∑
t=0

∇θlogπθ(a|st)Aπ(st, at))

]
. (4.14)

Actor-Critic Methods

Actor-critic methods take advantage of both value function and policy gradient methods,

where the critic and actor are deployed to describe the performance of them. The actor-critic

RL further reduces the variance and makes learning faster via bootstrapping [64]. The loss

function of actor-critic methods consists of the policy loss Lπ and the value function loss Lv,

L = Lπ + Lv, (4.15)

where

Lπ = −
T∑
t=0

∇θlogπθ(at|st)(Rt + γvw(st+1)− vw(st)), (4.16)
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and

Lv =
1

2

T∑
t=0

‖Rt + γvw(st+1)− vw(st)‖2, (4.17)

with T the maximum number of steps taken for each update. Instead of taking all returns into

account, actor-critic methods bootstrap the value with T time steps. Here the critic is used to

update parameters w of the value function vw(s), and the actor is used to update parameters θ

of the policy πθ(a|s) in the direction indicated by the critic.

4.4 Methodology

In Chapter 3, a few examples of vascular networks are given to show how to steer ho-

mogeneous microrobots using online path planning and control algorithms, where the delivery

strategies are planned locally and the controllers only track one robot at each step. Here with

deep reinforcement learning (deep RL), the entire image is taken into account, that is, the mi-

crorobots and the environment. This large sensory space brings the first challenge: the curse

of dimensionality. For example, given N = 100 microrobots randomly distributed in a 50×50

obstacle-free pixel space within a 100× 100 image, with each microrobot occupies a pixel, the

number of the possible states is
∑100

n=1

(
2500
n

)
, approximately 10181 states. Random exploration

in such a vast state space is unlikely, or least efficient to bring all microrobots to a target.

Another challenge that needs addressing is the sparse reward problem with the delivery

task. Unlike supervised learning where all data are labeled, RL agents have to deal with long-

horizon tasks when exploring various states and only get rewarded for important achievements,

but not for every action. This problem occurs because the positive rewards for meaningful

tasks are provided at a much larger time-scale than that of an RL agent operate at, e.g., every

step the agent choose a direction to steer the microrobot swarm, while the outcome of each

action cannot be justified until it finishes the delivery task. In Breakout, Pong, and similar

Atari games, the environment produces positive rewards every a few actions. Contrast to Atari
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games, an RL agent takes every 20 actions or more to get a positive reward for a simple delivery

task within a vascular network, even if it follows an optimal policy.

To overcome the curse of dimensionality and sparse rewards, curiosity-driven mecha-

nism and reward shaping are introduced in this section. First, advantage actor-critic (A2C)

RL framework with proximal policy optimization (PPO) provides the benchmark results for

microrobot swarm delivery; then RL auxiliary tasks for motivating exploration are presented

and compared with the benchmark, including intrinsic curiosity mechanism (ICM) and random

network distillation (RND); third, a general reward function is proposed for the delivery task

to accelerate learning.

4.4.1 Reinforcement Learning Framework

Advantage Actor-critic (A2C)

Synchronous Advantage Actor-Critic (A2C) method and proximal policy optimization

(PPO) are deployed as the benchmark RL algorithm for microrobot swarm delivery task. A2C

is a synchronous variant of Asynchronous Advantage Actor-Critic (A3C) [77], and both A2C

and A3C employ multiple agents to collect experience. While A3C agents keep their copies of

environment and network weights running in parallel, A2C agents synchronize their experience

and weights once all of them finish their playing for each update. In this chapter, an OpenAI

implementation of A2C is used (code available on GitHub [78]). According to OpenAI, A2C

is more cost-effective than A3C on machines with a single GPU [79].

As a variant of actor-critic method, there is a small difference in the loss function be-

tween A2C and Equation (4.15), (4.16), and (4.17),

Lπ = −
T∑
t=0

∇θlogπθ(at|st)(Rt + γvw(st+1)− vw(st))− ηH(πθ(at|st)), (4.18)

where η = 0.001 is the entropy coefficient, and the entropy term H is added to encourage

agents for exploration and to bootstrap from local minima.
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Algorithm 6 Synchronous Advantage Actor-Critic (A2C).
1: Initialize N parallel environments
2: Initialize network parameters θ and w
3: Number of rollouts n = 0, max number of rollouts nmax = 1e9
4: Number of rollouts per update nseg = 2048
5: while n ≤ nmax do
6: Collect nseg rollouts for each agent
7: Calculate nseg-step returns and advantages
8: Calculate the loss LA2C and the gradient with respect to θ and w
9: Update network weights with nsegN rollouts

10: n = n+ 1
11: end while

Many optimization methods can be used to update the actor part, such as natural pol-

icy gradient, trust-region policy optimization (TRPO) [80], and proximal policy optimization

(PPO) [81]. The objective is to maximize the advantage function defined as

max
θ

Êt
[
πθ(at|st)
πθold(at|st)

Ât

]
, such that

Êt
[
KL
[
πθold(·|st), πθ(·|st)

]
≤ δ
]
,

(4.19)

where πθ is the current policy being updated, πold is used to interact with the environment and

to collect rollouts, and the KL-divergence measures the differences in these policies.

In general, natural policy gradient is sensitive to step size, as too large size would be

challenging to train and too small size leads to slow progress. Furthermore, the natural pol-

icy gradient does poor in sampling efficiency, which requires too many interactions to get

updates. The idea of TRPO is that by constraining each update of the policy within a trust

region, not too far away from previous policy, it brings more robust in training, less depen-

dent on hyperparameter tuning, and better efficiency in sampling. TRPO takes KL-divergence

into consideration and solves the optimization problem using conjugate gradients. Still, the

implementation of TRPO with conjugate gradients is more complicated and less cost-effective

compared to stochastic gradient descent (SGD). Practically, TRPO does not work well on deep

convolutional network training.
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PPO offers similar performance as TRPO does, but is compatible with first-order opti-

mizers such as SGD. The clipped objective of PPO is defined as

Lπθ = Êt
[
min(rt(θ)Â

πold
t , clip(rt(θ), 1− ε, 1 + ε)Â

πold
t )

]
, (4.20)

with the ratio rt(θ) = πθ(at|st)/πθold(at|st) measuring the changes in the policy. Typically,

policy πold synchronizes with policy πθ every four updates to prevent the difference from get-

ting too large, and the clip portion is set to ε = 0.1 in this thesis. The clipped objective

stabilizes the training by preventing the policy changing too much of its gradient direction,

which achieves similar performance as using KL-divergence metric, while largely simplifying

the computation complexity because the gradients now can be approximated with first-order

terms only.

Intrinsic Curiosity Mechanism (ICM)

RL agents using A2C and PPO can deliver microrobot swarm to a target in vascular

networks, but limited to simple cases. As the complexity increases, it takes A2C long time

to converge or even fails to complete the delivery because the state space grows to a scale

that A2C can barely handle given the sparse reward function. So it is possible to produce

intrinsic reward in addition to the extrinsic reward from the environment, such that RL agents

are motivated to travel towards unvisited states? Pathak et al, [82], Burda et al [83] introduce

intrinsic curiosity mechanism (ICM) as an auxiliary task to solve the problem of insufficient

exploration.

The idea of ICM is illustrated in Figure 4.2. Within the ICM module, the RL agent

predicts the next state in a feature space, given the current state and action; the intrinsic reward

Ri
t is defined as the Euclidean distance between the predicted state and the actual state in the

feature space,

Ri
t =

1

2
‖φ̂(st+1))− φ(st+1)‖2. (4.21)
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action 𝒂𝒂𝑡𝑡

state 𝒔𝒔𝑡𝑡

state 𝒔𝒔𝑡𝑡+1

ICM

intrinsic 
reward 𝑅𝑅𝑡𝑡𝑖𝑖

𝒔𝒔𝑡𝑡+1

𝑅𝑅𝑡𝑡+1𝑒𝑒

Σ

extrinsic 
reward 𝑅𝑅𝑡𝑡𝑒𝑒

state 𝒔𝒔𝑡𝑡

𝑅𝑅𝑡𝑡 = 𝑅𝑅𝑡𝑡𝑖𝑖 + 𝑅𝑅𝑡𝑡𝑒𝑒

action 𝒂𝒂𝑡𝑡

Figure 4.2: Illustration of intrinsic curiosity mechanism (ICM).

Hence the total rewards are the summation of intrinsic and extrinsic rewards,

Rt = Ri
t +Re

t . (4.22)

In other words, when the RL agent visits some unfamiliar states, the prediction error is large

and thus the intrinsic reward encourages the RL agent to visit this state over-and-over again,

till it gets more familiar with the transition and produces fewer errors.

Specifically, ICM includes a forward dynamic model and an inverse dynamic model.

The forward model provides the prediction loss to the RL agent as intrinsic rewards. First, the

state st is mapped from pixel space to a feature space φ(st) using a deep neural network. Then

the RL agent learns an encoding that takes inputs φ(st) and the action at and projects them to

the feature space,

φ̂(st+1) = fθf (φ(st), at), (4.23)

where the neural network is parameterized by θf . The corresponding auxiliary loss function is

denoted as

L
θf
fwd =

1

2
‖φ̂(st+1))− φ(st+1)‖2. (4.24)

The inverse model learns a function gθi(·) that predicts the action which transitions state st to

st+1,

ât = gθi(φ(st), φ(st+1)), (4.25)
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where ât is the estimation of the action at, and the network is parameterized by θi. The corre-

sponding auxiliary loss function is defined as the cross-entropy between the prediction ât and

the label at,

Lθi
inv = −

dim(A)∑
i=1

atlog(ât), (4.26)

where at is one-hot encoded defined in a discrete action space A, and ât is a vector of the same

dimension after soft-max operation. Therefore the loss function for ICM is denoted as

L = Lπ + Lv + β1Lfwd + β2Linv

= Êt
[
min(rt(θ)Â

πold
t clip(rt(θ), 1− ε, 1 + ε)Â

πold
t )

]

− ηH(πθ(at|st)) +
1

2

T∑
t=0

‖Rt + γvw(st+1)− vw(st)‖2

+ β1
1

2
‖φ̂(st+1))− φ(st+1)‖2−β2

dim(A)∑
i=1

atlog(ât).

(4.27)

Random Network Distillation (RND)

Random network distillation (RND) shares a similar idea with ICM, relying on self-

supervised learning to motivate the exploration towards infrequently visited states [84]. Burda

et al. pointed that ICM might potentially suffer from incomplete feature representation, and the

learned features are unstable as the data distribution changes along with the evolution of the

target network [83]. RND selects a constant feature embedding by fixing the target network

once initialized, and thus the target features are stable to learn. Still, RND cannot guarantee

the completeness of the feature space.

Specifically, the target network maps the state into a feature space ψθ∗(st), with a neural

network parameterized by θ∗ with fixed, randomized weights. Hence the mapping of any state

is constant and unique throughout the whole learning. The prediction network learns mapping
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from a state to a feature space ψ̂θ(st) of the same dimension as the ψθ∗ , and the objective is to

minimize the Euclidean distance between the predicted feature and the target,

Laux = ‖ψθ(st)− ψθ∗(st)‖2. (4.28)

Similar to ICM, the agent learns to predict more accurately given a frequently visited state, and

once it reaches a new state, the resultant prediction error gives a large reward to encourage the

agent to reach this state again. Unlike ICM, RND tries to predict a state in the feature space

ψθ(st+1) based on the state st+1 itself, rather than including information of the previous state st

and the action at. The RND loss function resembles Equation (4.27), except for the auxiliary

losses Lfwd and Linv replaced by Laux in Equation (4.28).

Implementation Details

The data preprocessing and hyperparameter settings in this dissertation are slightly dif-

ferent from the original code on GitHub [85]. The environment wrapper is similar to those of

Atari games: first, apply sticky actions and max pooling, and then resize the gray-scale image

into a 84 × 84 format, and feed the network with a stack of four successive frames which are

normalized with states mean and standard deviation from 10,000 random samples.

The network architecture remains unmodified as shown in Figure 4.3. The feature ex-

traction uses four convolutional layers with 32 (8 × 8, s = 4), 64 (4 × 4, s = 2), and 64

(2 × 2, s = 1) filters, respectively. The output of each layer is activated by a leaky rectified

linear unit (Leaky ReLU). After flattening, the output of the last convolutional layer is mapped

to the policy (dimension= 4 or 8, depending on available actions) via a fully connected layer

(512 units). The value function is also mapped from the last convolutional layer, and the output

dimension is 1.

A2C employs 128 parallel agents with different microrobot distributions to collect expe-

rience. The learning rate is set to 0.0001. Each agent collects 2048 rollouts (steps) before the

four-epoch update in network weights. During each update, the mini batch size is set to 32.
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The clip range of PPO is [-0.9, 1.1]. Other changes in hyperparameters are listed in Table 4.2.

Input: stacked four frames

4x84x84

channel=32 
kernel=8x8 
stride=4

channel=64 
kernel=4x4 
stride 2

channel=64 
kernel=3x3 
stride=1

512 units

Policy (Actor)

Value function
(Critic)

Figure 4.3: Illustration of A2C neural network architecture.

Table 4.2: Hyperparameter table for A2C framework and ICM/RND.

Hyperparamter/Operation Default value
Extrinsic reward clipping False

Extrinsic reward normalization False
Intrinsic reward clipping False

Intrinsic reward normalization True
Max frames per episode environment dependent

Stacked frame normalization x→ (x− µ)/σ
Rollout length 2048

Total number of rollouts ∞
Number of mini batches 16

Number of optimization epochs 4
Coefficient of extrinsic reward 1.0
Coefficient of intrinsic reward 0.5

Number of environments 128
Learning rate 0.0001

Entropy coefficient 0.001
Clip range [0.9, 1.1]

4.4.2 Reward Shaping

The reward function design plays a key role in successful RL training [64]. Although the

RL agent does not require the instructional information during learning, a well-designed reward

signal helps divide a task into sub-goals and produces intermediate rewards for meaningful

accomplishment at each stage. The reward signal leads the agent to the ultimate target and
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reduces the time spent on less relevant states. The choice of subgoals can be tricky, as too

many intermediate rewards may not necessarily benefit the learning process, but mislead the

agent to sit on these rewards and to deviate from the target.

In general, the environment produces a reward at some milestone state/observation di-

rectly leading to the target, frew : S→ R. This works well for many single-robot environments,

as one state can be easily distinguished from the other using coordination, orientation, or simi-

lar sensory information. However, the state of a swarm of N microrobot, which should include

all microrobot coordinate information, does not explicitly show the ‘milestone’ property to the

human as the state is in a high dimensional space and beyond our common sense. In other

words, the sub-goals can be hard to describe if only the sensory information is given.

(a) (b)

Figure 4.4: Cost-to-go map with the target region around (a) [130, 61] and (b) [75, 100], shown
as red circles.

This dissertation provides guidance for reward signal design, especially for environments

with high-dimensional states. Starting from a single-robot case, the state space S is mapped

to scalar function, such as a cost-to-go function j : S → J, where J ⊂ R. Next, collecting

cost-to-go functions from the swarm, a mapping to the reward can be constructed based on the

mean and maximum of the collection: frew : J→ R.
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Considering a vascular network shown in Figure 4.4a and 4.4b, where the ‘viridis’ color

regions are obstacle-free pathways. Two targets are selected, and the breadth-first search is

used to assign a cost to each pixel coordinate in pathways based on the Manhattan distance.

The corresponding cost-to-go maps are visualized in Figure 4.4a and 4.4b, respectively. Let

u, v be the average cost and the maximum cost to the target of all microrobots. If the task is

to deliver the swarm to a target region such that v < 10, a discrete reward function can be

designed as Table 4.3. Note that each reward can only be granted once until the task completed

or environment reset when exceeding the time limit.

Table 4.3: Reward function design example.

(a)

Average cost u Reward Completed
< 10 8 False
< 20 8 False
< 40 4 False
< 80 4 False
< 120 2 False
< 160 2 False

...
...

...

(b)

Maximum cost v Reward Completed
< 10 100 True
< 20 8 False
< 40 8 False
< 80 4 False
< 120 4 False
< 160 2 False

...
...

...

4.5 Simulation

This section includes the training results of different vascular networks (mazes), with in-

creasing complexity in targets and maze structures as shown in Figure 4.5. The performance of

the heuristic (online) planner and RL (offline) planners are compared to evaluate improvement

in delivery efficiency.

4.5.1 Comparison of Online and Offline Planners

RL planning (ICM) shows a significant improvement in delivery efficiency compared to

heuristic planning (D&C, a.k.a divide-and-conquer). Figure 4.7a and 4.7b show screenshots of
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(a) Vascular network I, 100× 100. (b) Vascular network II, 180× 150.

(c) Vascular network III, 180× 120. (d) Vascular network IV, 380× 300.

Figure 4.5: (a) Target 1 (red): [82, 82], target 2 (blue): [42, 48]. (b) Target 1 (red): [130, 61],
target 2 (blue): [75, 100]. (c) Target (red): [107, 122]. (d) Target (red): [204, 96].

delivery for ICM and D&C within the vascular network I, the easy target assigned, as it is at an

endpoint that prevents microrobots escaping. Both of them complete their tasks, where ICM

takes 1070 steps to finish the task, and 2886 steps for D&C. Note that ICM results are scaled

for proper comparison with D&C. Figure 4.9a and 4.9b illustrate their strategies of delivery in

terms of the cost-to-go function, where D&C (Figure 4.9b) has a more jittering curve compared

to ICM (Figure 4.9a).

Figure 4.8a and 4.8b show screenshots of delivery for ICM and D&C within the vascular

network I, the hard target assigned, as it is at a branch point that can barely keep microrobot

staying. Only ICM completes its task, taking 1070 steps. D&C fails to finish the delivery

within 6000 steps, and as revealed in Figure 4.10a and 4.10b, D&C has been trapped in a local
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minimum after 2000 steps, while ICM is capable of decreasing both the average cost and the

maximum cost to the target range.

In the vascular network II, two targets are assigned, with target 1 (red) an easy one, and

target 2 (blue) a hard one. The screenshots of delivery are compared in Figure 4.11a, 4.11b,

4.12a, and 4.12b. Figure 4.13a, 4.13b, 4.14a, and 4.14b illustrate their strategies of delivery

in terms of the cost-to-go function. The goals of two tasks are to decrease both average and

maximum cost-to-go to a small range around zero. ICM completes two tasks, while D&C fails

on the second task.

The overall performances of two online algorithms (the benchmark and D&C) and the

offline algorithm (ICM) are compared in vascular network I, II, and IV with the easy targets as

shown in Figure 4.6. It can be concluded that ICM outperforms the online algorithms in terms

of the delivery efficiency (time steps). Compared to D&C, ICM takes 62% less time (steps) in

the first two networks, and 70% less time (steps) in the third network.

ICM
D&C
Benchmark

Figure 4.6: Simulation results of online and offline algorithms in vascular network I, II and
IV, given the easy targets. Each data point represents the average steps of 128 trials
initialized with 1000 microrobots.
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(a) ICM delivery (Python): 1070 steps, task completed. https://youtu.be/A8nyssHIVsI.

(b) D&C delivery (MATLAB): 2886 steps, task completed. https://youtu.be/MdyucazgDcU.

Figure 4.7: Screenshots of ICM and D&C demonstrations in vascular network I with the easy
target, initialized with 1024 microrobots uniformly distributed. Each screenshot is
taken every 1/7 total steps.
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(a) ICM delivery (Python): 917 steps, task completed. https://youtu.be/JV7O3zIyFR8.

(b) D&C delivery (MATLAB): 6000 steps, task failed. https://youtu.be/oHItYu8vXZ0.

Figure 4.8: Screenshots of ICM and D&C demonstrations in vascular network I with the hard
target, initialized with 1024 microrobots uniformly distributed. Each screenshot is
taken every 1/7 total steps.
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(a) (b)

Figure 4.9: Cost function plots of (a) ICM and (b) D&C in vascular network I with the easy
target. The ‘avg cost’ and ‘max cost’ indicate the group mean and the maximum
of cost-to-go of all microrobots.

(a) (b)

Figure 4.10: Cost function plots of (a) ICM and (b) D&C in vascular network I with the hard
target. The ‘avg cost’ and ‘max cost’ indicate the group mean and the maximum
of cost-to-go of all microrobots.
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(a) ICM delivery (Python): 1079 steps, task completed. https://youtu.be/nZLgNM4SxMo.

(b) D&C delivery (MATLAB): 2900 steps, task completed. https://youtu.be/uMvX2pByLcI.

Figure 4.11: Screenshots of ICM and D&C demonstrations in vascular network II with the easy
target, initialized with 1024 microrobots uniformly distributed. Each screenshot
is taken every 1/7 total steps.
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(a) ICM delivery (Python): 1300 steps, task completed. https://youtu.be/ERtfXlev1u4.

(b) D&C delivery (MATLAB): 8100 steps, task failed. https://youtu.be/zKMN23HDBHE.

Figure 4.12: Screenshots of ICM and D&C demonstrations in vascular network II with the hard
target, initialized with 1024 microrobots uniformly distributed. Each screenshot
is taken every 1/7 total steps.
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(a) (b)

Figure 4.13: Cost function plots of (a) ICM and (b) D&C in vascular network II with the easy
target. The ‘avg cost’ and ‘max cost’ indicate the group mean and the maximum
of cost-to-go of all microrobots.

(a) (b)

Figure 4.14: Cost function plots of (a) ICM and (b) D&C in vascular network II with the hard
target. The ‘avg cost’ and ‘max cost’ indicate the group mean and the maximum
of cost-to-go of all microrobots.
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4.5.2 Comparison of Reinforcement Learning Algorithms

PPO, ICM, and RND algorithms are evaluated in vascular networks I, II, III, and IV, as

shown in Figure 4.5. PPO agents are only rewarded by the environment (extrinsic), while both

ICM and RND generate intrinsic rewards by self-learning in addition to extrinsic rewards.

The performance of PPO and ICM are compared in vascular network I task 1 in Figure

4.15a and 4.15b. The ‘PPO best’ or ‘ICM best’ indicates the best results so far. Both PPO

and ICM converge to the same level of the performance plateau, which indicates an optimal

strategy for delivery. However, the difference is substantial in terms of cost-effective—PPO

takes much longer and more samplings to achieve the similar performance as ICM does. These

comparisons show that ICM agents get motivated by intrinsic rewards and thus explore more

states than PPO agents who only receive extrinsic rewards.

Next, the results of target 2 in the same maze are compared in Figure 4.16a and 4.16b.

This time, as it is considerably harder to deliver all microrobots to the target at a branch point,

even the best of PPO agents fails to reach the goal. In vascular network II, ICM agents suc-

cessfully deliver all microbots to the targets in two tasks, while PPO agents complete none of

them, as shown in Figure 4.17a, 4.17b, 4.18a, and 4.18b.

ICM and RND algorithms are investigated in vascular networks II, III, and IV, with only

one task for each. Both ICM and RND have similar learning process and converge to the

optimal strategies (metric: number of steps for delivery) in the first two networks, as shown in

Figure 4.19a, 4.19b, 4.20a, and 4.20b. However, in maze IV, ICM ends up with a suboptimal

strategy, and takes longer to converge compared to RND, as shown in Figure 4.21a and 4.21b.
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(a)

(b)

Figure 4.15: Vascular network I, target 1, comparisons of PPO and ICM. This evaluation shows
(a) episode length and (b) episode reward versus the training time (left) and the
number of rollouts (right). https://youtu.be/A8nyssHIVsI.
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(a)

(b)

Figure 4.16: Vascular network I, target 2, comparisons of PPO and ICM. This evaluation shows
(a) episode length and (b) episode reward versus the training time (left) and the
number of rollouts (right). https://youtu.be/JV7O3zIyFR8.
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(a)

(b)

Figure 4.17: Vascular network II, target 1, comparisons of PPO and ICM. This evaluation
shows (a) episode length and (b) episode reward versus the training time (left)
and the number of rollouts (right). https://youtu.be/nZLgNM4SxMo.
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(a)

(b)

Figure 4.18: Vascular network II, target 2, comparisons of PPO and ICM. This evaluation
shows (a) episode length and (b) episode reward versus the training time (left)
and the number of rollouts (right). https://youtu.be/ERtfXlev1u4.
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(a)

(b)

Figure 4.19: Vascular network II, comparisons of ICM and RND. This evaluation shows (a)
episode length and (b) episode reward versus the training time (left) and the num-
ber of rollouts (right). https://youtu.be/nZLgNM4SxMo.
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(a)

(b)

Figure 4.20: Vascular network III, comparisons of ICM and RND. This evaluation shows (a)
episode length and (b) episode reward versus the training time (left) and the num-
ber of rollouts (right). https://youtu.be/gLIfxsYF1yY.
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(a)

(b)

Figure 4.21: Vascular network IV, comparisons of ICM and RND. See videos at
https://youtu.be/DAgtSBvDgpA and https://youtu.be/mSyXgN-ycsA.
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4.5.3 Comparison of Targeted Delivery Rates

Delivering all microrobots to a target region might not be most cost-effective, as planning

needs to take account corner cases which might involves a small population but takes plenty of

extra time. The influence of targeted delivery rates are investigated in vascular network II, III

and IV using ICM algorithm. Considering 80% as the targeted delivery rate, the RL agent can

either learn particular strategies for different delivery rates, or learns a strategy aimed at 100%

delivery and executes early stop when 80% of the microrobots reach the goal. This section

investigates three delivery rates: 100%, 80%, and 60% and the two scenarios mentioned above.

In Figure 4.22a, RL agents are trained for 100% delivery rate, and applied to 80% and

60% cases. The results imply a minimal difference in the average episode length. While in

Figure 4.22b, RL agents deploy particular strategies for each delivery rate. It indicates linear

increase in the episode length as the targeted delivery rate increases for two easier environ-

ments, vascular network II and III. In the harder case, vascular network IV, the required episode

length increases exponentially when the targeted delivery rate changes from 80% to 100%.
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(b) One paticular strategy for each delivery rate.

Figure 4.22: The influence of delivery rates to the episode length (the steps for delivery).

The learning processes in three vascular networks are illustrated in Figure 4.23, 4.24 and

4.25. The learning curves show that a lower targeted delivery rate leads to faster convergence,
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and thus it requires less experience sampling and neural network updating. This is because RL

agents learn to give up corner cases for a lower targeted delivery rate. It implies that to satisfy

the dosage requirement for microrobots, a less demanding delivery goal with increasing swarm

population have faster convergence for optimal strategies.

(a)

(b)

Figure 4.23: Vascular network II: a comparison of 100%, 80%, and 60% delivery rates. See
videos at https://youtu.be/nZLgNM4SxMo, https://youtu.be/InqZljlfYOs, and
https://youtu.be/odeTMIdBbdI.
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(a)

(b)

Figure 4.24: Vascular network III: a comparison of 100%, 80%, and 60% delivery rates. See
videos at https://youtu.be/gLIfxsYF1yY, https://youtu.be/ePby3fsmeTo, and
https://youtu.be/g6qBPQyZ7V8.
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(a)

(b)

Figure 4.25: Vascular network IV: a comparison of 100%, 80%, and 60% delivery rates. See
https://youtu.be/DAgtSBvDgpA, https://youtu.be/OmLhsxqyGsU, and
https://youtu.be/AIun5uES8LI.
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4.6 Conclusion

This chapter presents reinforcement learning (RL) algorithms aimed at optimizing the ef-

ficiency of delivering microrobots in vascular networks given a global control input. Curiosity-

driven algorithms are implemented to overcome the delivery challenges such as the sparse re-

wards, the high-dimensional sensory space, and local minima dilemmas. RL (offline) strategies

outperform the heuristic (online) planning methods in the simulations, capable of navigating

microrobots to hard targets such as a branch point efficiently, and adapted to different envi-

ronments without changing the neural network structures. This chapter also investigates the

influence of different targeted delivery rates to the delivery efficiency and the RL learning pro-

cess. It reveals that a lower targeted delivery rate requires fewer steps for a delivery task and

brings faster convergence in training.

As for future work, more realistic scenarios would be considered to approach the ultimate

goal of MRI-guided drug delivery, including adding physics-based microrobot dynamics to the

simulation, introducing flow dynamics, and control limitations. RL strategies can provide

instructions for future improvement in online planning algorithms. Besides, implementing

these RL algorithms in hardware experiments would be an essential step for future research.
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Chapter 5

Steering Microrobots in Multi-branch Vessels
Using a Global Control Input

5.1 Introduction

In Chapter 3 and 4, heuristic and reinforcement learning path planners are proposed to

steer a swarm of homogeneous microrobots in vascular networks with the following assump-

tions: (1) closed outlets (endpoints) prevent microrobots from escaping; (2) the environment

is static without dynamic flows, so that microrobot motion along any directions is allowed; (3)

microrobots follow deterministic motion without disturbances. This chapter addresses path-

planning problems in multi-branch vessels with more realistic configurations. It simulates a

magnetically guided drug delivery process similar to recent progress in hardware experiments,

including dynamic flows, randomness in microrobot motion, and limited steering capabilities

for a global controller.

In previous chapters, the global control input is capable of actuating microrobots and

moving them in any directions regardless of the flow. However, this is not realistic in blood

vessels. The average blood flow rates vary in the circulation system, for example, it is 450

mm/s in arteries (4 mm diameter), 50 mm/s in arterioles (0.05 mm diameter), 1 mm/s in capil-

laries (0.008 mm diameter), 3 mm/s in venules (0.02 mm diameter), and 5 mm/s in veins (5 mm

diameter) [21,86]. The microrobot velocity is at least an order of magnitude smaller compared

to the blood flow except within capillaries. For example, Martel et al. reported several can-

didates of homogeneous microrobots, with the Magnetospirillum gryphiswaldense bacterium

about 0.001-0.003 mm long and the speed in the range of 0.04-0.08 mm/s, MC-1 about 0.002

mm long, and the speed of 0.223 mm/s without wall effect, 0.18 mm/s within a 0.01 mm
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microchannel, and 0.048 mm/s within a 0.004 mm microchannel [12]. Since the blood flow

propels microrobots, such a scenario needs a steering input to direct microrobots towards the

desired branch at a bifurcation, instead of a controller moving them without constraints [3].

This is illustrated in Figure 5.1, where blood flow propels microrobots towards downstream.

A global control input, such as a magnetic gradient field applied at each bifurcation can direct

microrobots to the desired branch.

Desired 
trajectory of 
microrobots

Global control input

Blood flow direction

Figure 5.1: A global control input is used to direct microrobots in vessels with flow.

This chapter introduces two automatic steering (control) methods for microrobot nav-

igation in multi-branch vessels with flow. For comparison, reinforcement learning (RL) is

implemented to inspire the future development of the automatic steering methods.

5.2 Related Work

Mathieu et al. proved the concept of microparticle steering using a clinic MRI scanner

for applications in the human blood vessels [87]. They have achieved 60% delivery rate in a

Y-shape in vitro environment using ferromagnetic particles. Later, they increased the delivery

rate up to 99% [86]. Bigot et al. successfully navigated a magnetic bead through multi-branch

vasculature inside an MRI [88].

Martel et al. implemented the first feedback navigation control of a 1.5-mm ferromag-
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netic bead in a live swine inside an MRI scanner [1]. They showed that the minimum time to

acquire the coordinates of the bead was 16 ms. Pouponneu et al. demonstrated MRI-guided

microparticle delivery in live rabbits. Both of these in vivo experiments were conducted in

simple vessels [89].

Hoshiar et al. discussed a scheme of electromagnetic actuation to steer magnetic nanopar-

ticles in a multi-channel vessel while reducing aggregation [90]. The scheme was demonstrated

in a 3D vessel simulation, showing success in steering and disaggregation. Hoshiar et al. de-

veloped a simulation platform and an aggregation model to investigate steering magnetic mi-

croparticles in a Y-shape bifurcation [91]. The results help design magnetic actuation schemes

with potential applications for improving drug delivery efficiency.

Hamdipoor et al. proposed a haptic guided scheme for human-in-the-loop targeted drug

delivery, which is closely related to this chapter [92]. They developed a virtual environment to

simulate multiple magnetic nanoparticles in multi-branch vessels with physics-based models.

The haptic feedback was designed to assist the human with manipulating microparticles for

efficient drug delivery. However, there are several limitations in their demonstration: (1) only

one bolus of nano-/microparticles is released from the inlet, where the dose of drugs might

not be sufficient; (2) the desired magnetic fields at all bifurcations are approximately along

the same direction, which is a simple case; (3) the scheme needs a human operator, not fully

automatic control.

Many works on microparticles steering are aimed at improving targeting/steering effi-

ciency, including [3, 12, 21, 93, 94]. Larimi et al. reported CFD simulation of magnetic parti-

cles distribution within blood flow under the influence of the magnetic field in a bifurcation

vessel [95]. Several related works investigate the behaviors of in blood flow under an external

magnetic field, such as [96–101].
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5.3 Methodology

This section proposes two automatic steering methods to deliver homogeneous micro-

robots to a targeted outlet in multi-channel vessels given the following challenges: (1) a virtual

dynamic flow is introduced to propel microrobots; (2) the flow also causes randomness in

microrobot motion; (3) the global control input has limited power and thus cannot pull mi-

crorobots backward; (4) the outlets (endpoints) are absorbing, so microrobots cannot escape.

For comparison, this section implements deep reinforcement learning to investigate optimal

steering strategies.

5.3.1 Data Preprocessing

Three multi-branch vessels are designed to demonstrate microrobot delivery, originated

by [102–104], as shown in Figure 5.2a, 5.3a, and 5.4a, with an increasing number of branches

and steering complexity. The map preprocessing (code available on GitHub [105]) is required

before proceeding to automatic control, including target assignment, map skeletonizaion, cost-

to-go map calculation, detection region construction, and steering direction identification.

The centerline of each vessel is extracted via skeletonization (scikit-image, Skeletonize,

[106]), and each branch is marked as an orange dot. For simplicity, the flow leads to a sta-

tistically symmetric splitting of a swarm of microrobots at each bifurcation. The cost-to-go

at each location is determined by the distance to the inlet. The centerline, branch points, and

cost-to-go visualization are shown in Figure 5.2b, 5.3b, and 5.4b. Based on the cost-to-go map,

each bifurcation is assigned with a detection region for microrobots as shown in Figure 5.5a.

A detection region is identified by a branch point and its upstream coordinates within certain

range of cost-to-go. The branch point together with the centerline are used to identify the flow

direction at each bifurcation as shown in Figure 5.5b. According the local flow vector and the

desired branch at a bifurcation, the steering direction is chosen to maximize the steering effect

as shown in Figure 5.5b.
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(a)

Target 1

Target 2
Inlet

(b)

Figure 5.2: (a) Vessel I with 10 outlets and 9 bifurcations, size 200 × 200. (b) Cost-to-go
map based on the distance to the inlet. Each branch is marked by an orange dot.
Targeted outlets for two tasks are marked by a red and a blue circle.
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(a)

Target 1

Target 2

Inlet

(b)

Figure 5.3: (a) Vessel II with 16 outlets and 15 bifurcations, size 200 × 200. (b) Cost-to-go
map based on the distance to the inlet. Each branch is marked by an orange dot.
Targeted outlets for two tasks are marked by a red and a blue circle.
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(a)

Target 2

Target 1

Inlet

(b)

Figure 5.4: (a) Vessel III with 20 outlets and 19 bifurcations, size 300 × 360 (b) Cost-to-go
map based on the distance to the inlet. Each branch is marked by an orange dot.
Targeted outlets for two tasks are marked by a red and a blue circle.
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(a) (b)

Figure 5.5: (a) Detection regions are denoted as gray bands. (b) The flow directions and steer-
ing directions are marked as red and blue arrows respectively at each bifurcation.
The steering directions are chosen from {←,→, ↑, ↓,↗,↘,↙,↖}.

Section 5.2 introduces many works that have developed simulation platforms using physics-

based model. The microrobot kinematics in blood flow are simplified here, as the primary

concern is to provide automatic steering methods for microrobot navigation in multi-branch

vessels. A bolus of microrobots released at the inlet follows the cost-to-go gradient ascent

with probability p, where 0 < p ≤ 1, and might drift along the contour line, i.e. nearby loca-

tions with the same cost-to-go, with probability 1− p. Statistically, the bolus is symmetrically

divided at each bifurcation, so that no bias is created due to the flow.

One of the key factors that affects steering effectiveness is the velocity ratio between the

flow and the microrobot. Given a capillary of 0.005 mm wide, 1 mm long, with 0.5 mm/s flow,

a microparticle (0.0021 mm) must accelerate to 0.003 mm/s at least, to swim into the desired

branch before reaching the vessel bifurcation [87]. These examples are listed in Table 5.1, and

the ratio κ, defined as (l1v2)/(d1v1), falls in the range of [1.0, 2.0]. The properties of simulated

vessels in this chapter are listed in Table 5.2, where the microrobot is assumed to move at 1

pixel/step. The flow velocity v1 is derived from κ in Table 5.1, and it falls into the range [1.0,
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3.1]. So the simulated flow is simplified to 3 pixel/step.

Table 5.1: Profiles of microchannels and microparticles.

Variable Microchannel 1 2 3
l1 Length (mm) 1.0e+0 1.0e+0 5.0e+2
d1 Diameter (mm) 5.0e-3 1.0e-2 1.0e-1
v1 Flow velocity (mm/s) 5.0e-1 5.0e-1 5.0e+1

Microparticle
d2 Diameter (mm) 2.1e-3 4.2e-3 1.1e-2
v2 Velocity (mm/s) 3.0e-3 1.0e-3 1.0e-1

Ratio
κ (l1v2)/(d1v1) 1.2 2.0 1.0

Table 5.2: Profiles of microchannels and microparticles in this chapter. Note κ value inherits
from Table 5.1, and the flow velocity is derived from κ.

Variable Microchannels 1 2 3
l1 Length (pixel) 101.0 68.9 78.7
d1 Diameter (pixel) 32.6 33.1 31.0
v1 Flow velocity (pixel/step) [1.6, 3.1] [1.0, 2.1] [1.3, 2.5]

Microrobot
v2 Velocity (pixel/step) 1.0 1.0 1.0

Ratio
κ (l1v2)/(d1v1) [1.0, 2.0] [1.0, 2.0] [1.0, 2.0]

5.3.2 Automatic Control Method

Figure 5.1 briefly illustrates the steering idea—the control input should be applied at

the upstream of a bifurcation when there are microrobots approaching. This includes three

steps: (1) microrobot detection near bifurcations; (2) steering direction identification based on

the targeted outlet; (3) priority assignment if microrobots are detected at multiple bifurcations.

These steps are illustrated in Figure 5.6. From the inlet to a targeted outlet, microrobots may

travel through multiple bifurcations, and each bifurcation is assigned with a weight. There

are five bifurcations along the desired trajectory in Figure 5.6. Their weights are denoted as

wi, i ∈ {1, 2, 3, 4, 5}, and the number of microrobots within each detection region is ni. A

bifurcation with the highest priority is determined by arg maxwi(wini), and this bifurcation is
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in charge of the steering direction. In case wiai = 0 ∀i, no control is applied.

Desired trajectory

Target

Bifurcations

Desired control

B1

B2

B3

B4 B5

Figure 5.6: Illustration of map processing and automatic steering in Vessel II.

The default control assigns equal weight to each bifurcation, wi = 1. Martel et al.

suggested a learning-based scheme to navigate microparticles [107]. It relies on the injection

of small amounts of magnetic microparticles to determine the optimal control sequences that

maximize the steering effect. Then apply the control scheme to significant amounts of mi-

croparticles. Hence the priority control learns weights through trial and error, and selects the

weights with the top delivery rate. This chapter chooses weights from a finite set {1, 2, 4, 8}.

5.3.3 Reinforcement Learning

Reinforcement learning ICM algorithm (Chapter 4) is implemented to improve the de-

livery efficiency. The implementation details are reported in 4.4.1, except that only 32 parallel

agents are used in this chapter, instead of 128. The RL agents are rewarded for any increase

of the delivery rate. So maximizing the cumulative rewards is equivalent to maximizing the

delivery rate.
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5.4 Simulation

This section includes simulation results in different multi-channel vessels, microrobot

distributions, and number of vessel bifurcations. The performance of automatic control meth-

ods and reinforcement learning are compared to evaluate their delivery efficiency.

In each vessel, two targeted outlets are evaluated. Microrobots are released from the

inlets at three intervals: long interval (64 time steps for Vessel I and II, 100 time steps for

Vessel III), short interval (36 time steps for Vessel I and II, 60 time steps for Vessel III), and

continuous. The total number of microrobots are 128 in Vessel I and II, or 256 in Vessel III,

released in four times at intervals or continuously. The targets were selected such that the

steering direction must change multiple times because the desired branch at each bifurcation

alternates. A target reachable by a constant control input is just a corner case.

There are four steering strategies are evaluated in each vessel: RL, the priority control,

the default control, and non-control. For each case, the priority control learns a set of weights

defined in Section 5.3 through trial and error, and takes the weights with the maximum delivery

rate. In the default control all weights are equal, and thus the bifurcation priority is decided by

the number of microrobots detected. RL control refers to the strategies learned from training,

and non-control receives no input.

(a) (b)

Figure 5.7: Vessel I: comparison of delivery efficiency in two tasks (a) target 1 and (b) target
2, four steering methods, and three intervals of microrobot release.
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(a) (b)

Figure 5.8: Vessel II: comparison of delivery efficiency in two tasks (a) target 1 and (b) target
2, four steering methods, and three intervals of microrobot release.

(a) (b)

Figure 5.9: Vessel III: comparison of delivery efficiency in two tasks (a) target 1 and (b) target
2, four steering methods, and three intervals of microrobot release.

The results are shown in Figure 5.7–5.9, with each data point based on 128 trials. It can

be inferred that RL method achieves the maximum delivery rate in each scenario. Listed in

Table 5.3, RL delivers 52.0% more microrobots on average compared to the average perfor-

mance of the priority control, with the best performance of 163.4% more and the worst one

11.0% more. The default control delivers an average of 28.3% fewer microrobots compared

to the average performance of the priority control, with the best performance 1.9% less and

the worst 78.7% less. Table 5.4 indicates that a longer interval between microrobot releases

significantly improves the delivery rate.

As shown in Figure 5.10–5.12, every RL training converges after 1e6 to 1e7 rollouts,

despite the gaps between the average and the best performance. Such gaps may be caused by
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Table 5.3: Comparison of the delivery efficiency.

ratio mean max min
RL/priority 152.0% 263.4% 111.0%

default/priority 71.7% 98.1% 21.3%

Table 5.4: Comparison of the delivery efficiency with respect to release intervals.

Control long-interval short-interval continuous
RL 64.04% 57.22% 35.58%

priority 43.07% 38.05% 26.31%
default 38.32% 29.84% 15.62%
none 4.35% 4.94% 5.03%

the stochastic motion in microrobots or random initializations.

5.5 Conclusion

This chapter presents automatic control and reinforcement learning (RL) methods for mi-

crorobot swarm navigation in multi-branch vessels with flow. The automatic control methods,

including the priority control and the default control, significantly improve the delivery rate

to targets compared to non-control case. RL training results indicate there is space for future

work aimed at increasing delivery efficiency. Both the priority control and RL control rely on

offline training to achieve high delivery efficiency. The default control is provided for online

planning, where the algorithm can be implemented in real-time operations. There are many

aspects to explore for future work, such as extending the control input from the discrete space

to the a continuous space, implementing the control algorithms on a more realistic simulation

platform to demonstrate the effectiveness, where wall effects, Poiseuille flow, and microrobot

interactions, and limited control power are considered, and demonstrating the control methods

in hardware experiments.

99



(a) Long intervals, target 1.
https://youtu.be/MVTredSna1M.

(b) Long intervals, target 2.
https://youtu.be/5UBUsMGSzH8.

(c) Short intervals, target 1.
https://youtu.be/XFc9DFQji-0.

(d) Short intervals, target 2.
https://youtu.be/oz6sf6XSZ7A.

(e) Continuous, target 1.
https://youtu.be/PsoZMoTAHa4.

(f) Continuous, target 2.
https://youtu.be/zzWWJ4WnlbM.

Figure 5.10: Vessel I: RL training results of different microrobot release intervals and targets.
‘mean’ and ‘max’ refer to the average and the best performance during updates.
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(a) Long intervals, target 1.
https://youtu.be/YFv5bHS9DWQ.

(b) Long intervals, target 2.
https://youtu.be/1J9F-1cdJDo.

(c) Short intervals, target 1.
https://youtu.be/tp0nOTjSl1Y.

(d) Short intervals, target 2.
https://youtu.be/A2pG2hnZjh0.

(e) Continuous, target 1.
https://youtu.be/Oe68t9SVP18.

(f) Continuous, target 2.
https://youtu.be/4Ko-YkDPU0U.

Figure 5.11: Vessel II: RL training results of different microrobot release intervals and targets.
‘mean’ and ‘max’ refer to the average and the best performance during updates.
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(a) Long intervals, target 1.
https://youtu.be/edF-DivriCo.

(b) Long intervals, target 2.
https://youtu.be/nH7XXKMXD-U.

(c) Short intervals, target 1.
https://youtu.be/PPdxDHXkw3Q.

(d) Short intervals, target 2.
https://youtu.be/gqOcwhKg7SM.

(e) Continuous, target 1.
https://youtu.be/g0jpCXZdnJs.

(f) Continuous, target 2.
https://youtu.be/X4liqfdvIBE.

Figure 5.12: Vessel III: RL training results of different microrobot release intervals and targets.
‘mean’ and ‘max’ refer to the average and the best performance during updates.
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Chapter 6

Conclusion

Microrobots are of great potential to be deployed in medical applications such as non-

invasive surgeries and targeted drug delivery. These microrobots have the limited onboard

source for actuation, communication, or computation, and thus an external, global control in-

put is often required. Early-stage research, like path planning and control in the micro-scale,

is essential for cost-effective medical applications. The goal of this dissertation is designing

these strategies of navigating homogeneous microrobot swarm through vascular networks us-

ing a global control input. Chapter 2 proves limitations on the control for self-propelled agents

(heterogeneous) that all receive the same rotation commands but extended the existing liter-

ature which focused on 2D results to show that nine degrees-of-freedom of position can be

controlled in 3D. In 2D only one agent can be steered to an arbitrary position, and two agents

have only one possible meeting point. In 3D up to three agents may be steered to arbitrary posi-

tions, and four agents have only one possible meeting point. Chapter 3 addresses path-planning

and control problems in 2D vascular networks. Two path-planning methods and two control

strategies are proposed to research the problem of homogeneous microrobot swarm delivery

using a global input. The divide-and-conquer method reduces the delivery time and achieves

considerable progress compared to the benchmark algorithm. Chapter 4 introduces deep rein-

forcement learning methods to improve further the delivery efficiency, where the reinforcement

learning methods outperforms divide-and-conquer by 60% percent in terms of time steps for

delivery. The reinforcement learning methods can quickly adapt to other environments without

changing the algorithm, serving as a useful tool to direct optimization in the delivery strategy

development. Chapter 5 proposes automatic steering methods to deliver microrobots in multi-

channel vessels with flow. These methods help increase the delivery rate for microrobots in

103



a dynamic environment. Reinforcement learning methods are compared with the automatic

control methods, and used to indicate directions for future work.

6.1 Future Work

This dissertation performs early-stage research for two primary scenarios in targeted

drug delivery: static vascular networks and multi-channel vessels with flow. Multiple path-

planning and control algorithms are designed to overcome challenges such as the global control

input, identical microrobot swarm, and highly-constrained workspace. There are many direc-

tions to explore for future works. For automatic control, a more realistic simulation platform

can be developed for accurate results, and thus making it more applicable to future clinic stud-

ies. Currently, the action space (control directions) only has up to eight discrete directions—

this can be extended to continuous control space for flexible applications. Implementing these

algorithms to hardware experiments is exciting, and can provide feedback for future algorithm

design and optimization. There is still space for automatic control methods to catch up with

the performance of reinforcement learning in delivery efficiency. For reinforcement learning,

it is expected that hierarchical learning or transfer learning can be explored such that training

in one vascular network can provide experience to learn strategies in other environments faster.
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