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Abstract
We present algorithmic results for the parallel assembly of many micro-scale objects in two and

three dimensions from tiny particles, which has been proposed in the context of programmable
matter and self-assembly for building high-yield micro-factories. The underlying model has par-
ticles moving under the influence of uniform external forces until they hit an obstacle; particles
can bond when being forced together with another appropriate particle.

Due to the physical and geometric constraints, not all shapes can be built in this manner;
this gives rise to the Tilt Assembly Problem (TAP) of deciding constructibility. For simply-
connected polyominoes P in 2D consisting of N unit-squares (“tiles”), we prove that TAP can be
decided in O(N logN) time. For the optimization variant MaxTAP (in which the objective is
to construct a subshape of maximum possible size), we show polyAPX-hardness: unless P=NP,
MaxTAP cannot be approximated within a factor of N 1

3 ; for tree-shaped structures, we give an
N

1
2 -approximation algorithm. For the efficiency of the assembly process itself, we show that any

constructible shape allows pipelined assembly, which produces copies of P in O(1) amortized time,
i.e., N copies of P in O(N) time steps. These considerations can be extended to three-dimensional
objects: For the class of polycubes P we prove that it is NP-hard to decide whether it is possible
to construct a path between two points of P ; it is also NP-hard to decide constructibility of a
polycube P . Moreover, it is expAPX-hard to maximize a path from a given start point.
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1 Introduction

In recent years, progress on flexible construction at micro- and nano-scale has given rise
to a large set of challenges that deal with algorithmic aspects of programmable matter.
Examples of cutting-edge application areas with a strong algorithmic flavor include self-
assembling systems, in which chemical and biological substances such as DNA are designed
to form predetermined shapes or carry out massively parallel computations; and swarm
robotics, in which complex tasks are achieved through the local interactions of robots with
highly limited individual capabilities, including micro- and nano-robots.

One particular difficulty when trying to assemble tiny particles to an overall shape is to
move the individual components to their appropriate locations, where they can be attached,
as individual navigation of tiny robotic devices suffers from lack of energy and control. One
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27:2 Tilt Assembly: Algorithms for Micro-Factories

successful approach to dealing with this challenge is to use molecular diffusion in combination
with cleverly designed sets of possible connections: in DNA tile self-assembly, the particles
are equipped with sophisticated bonds that ensure that only a predesigned shape is produced
when mixing together a set of tiles. The resulting study of algorithmic tile self-assembly
has given rise to an extremely powerful framework and produced a wide range of impressive
results. However, the required properties of the building material (which must be specifically
designed and finely tuned for each particular shape) in combination with the construction
process (which is left to chemical reactions, so it cannot be controlled or stopped until it
has run its course) make DNA self-assembly unsuitable for some applications.

An alternative method for controlling the eventual position of particles is to apply a
uniform external force, causing all particles to move in a given direction until they hit
an obstacle or another blocked particle. As two of us (Becker and Fekete) have shown in
the past, combining this approach with custom-made obstacles (instead of custom-made
particles) allows complex rearrangements of particles, even in grid-like environments with
axis-parallel motion. The appeal of this approach is that it shifts the design complexity from
the building material (the tiles) to the machinery (the environment). As recent practical
work by Manzoor et al. [14] shows, it is possible to apply this to simple “sticky” particles
that can be forced to bond, see Fig. 1: the overall assembly is achieved by adding particles
one at a time, attaching them to the existing sub-assembly.
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Figure 1 A practical demonstration of Tilt Assembly based on alginate particles [14]. (a) Al-
ginate particles in initial positions. (b) After force moves of 〈e, s, w, n, e, s〉 (for east, south, west,
north), the alginate microrobots move to the shown positions. (c) After 〈w, n〉 inputs, the system
produces the first multi-microrobot polyomino. (d) The next three microrobot polyominoes are
produced after applying multiple 〈e, s, w, n〉 cycles. (e) After the alginate microrobots have moved
through the microfluidic factory layout, the final 4-particle polyomino is generated.

Moreover, pipelining the production process may result in efficient rates, see Fig. 2 [14].
One critical issue of this approach is the requirement of getting particles to their desti-

nation without being blocked by or bonding to other particles. As Fig. 3 shows, this is not
always possible, so there are some shapes that cannot be constructed by Tilt Assembly.

This gives rise to a variety of algorithmic questions: (1) Can we decide efficiently whether
a given polyomino can be constructed by Tilt Assembly? (2) Can the resulting process
be pipelined to yield low amortized building time? (3) Can we compute a maximum-size
subpolyomino that can be constructed? (4) What can be said about three-dimensional
versions of the problem?
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Figure 2 (Top left) Initial setup of a seven-tile polyomino assembly; the composed shape is
shown enlarged on the lower left. The bipartite decomposition into blue and red particles is shown
for greater clarity, but can also be used for better control of bonds. The sequence of control moves
is 〈e, s, w, n〉, i.e., a clockwise order. (Bottom left) The situation after 18 control moves. (Right)
The situation after 7 full cycles, i.e., after 28 control moves; shown are three parallel “factories”.

Figure 3 A polyomino (black) that cannot be constructed by Tilt Assembly: the last tile cannot
be attached, as it gets blocked by previously attached tiles.

1.1 Our Contribution
We present the following results.

TAP is decidable in O(N logN) time for simple (i.e., hole-free) polyominoes (Section 3).
Any constructible polyomino can be built in a pipelined process, resulting in an amortized
construction time of O(1) (Section 3).
The optimization variant of finding a maximum cardinality constructible subpolyomino
is polyAPX -hard, i.e., MaxTAP cannot be approximated within a factor of N 1

3 , unless
P=NP (Section 4).
There is an N

1
2 -approximation for MaxTAP if the polyomino P has a tree-shaped

structure or is hole-free (Section 4).
In 3D it is NP-hard to decide whether there is a constructible path between two given
points of a polycube shape P (Section 5).
Deciding whether a given polycube is constructible is NP-hard (Section 5).
Maximizing a path from a given start point in a given polycube is expAPX -hard (Sec-
tion 5).

1.2 Related Work
Assembling polyominoes with tiles has been considered intensively in the context of tile
self-assembly. In 1998, Erik Winfree [17] introduced the abstract tile self-assembly model
(aTAM), in which tiles have glue types on each of the four sides and two tiles can stick
together if their glue type matches and the bonding strength is sufficient. Starting with
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a seed tile, tiles will continue to attach to the existing partial assembly until they form
a desired polyomino; the process stops when no further attachments are possible. Apart
from the aTAM, there are various other models like the two-handed tile self-assembly model
(2HAM) [7] and the hierarchical tile self-assembly model [8], in which we have no single
seed but pairs of subassemblies that can attach to each other. Furthermore, the staged self-
assembly model [9, 10] allows greater efficiency by assembling polyominoes in multiple bins
which are gradually combined with the content of other bins.

All this differs from the model in Tilt Assembly, in which each tile has the same glue
type on all four sides, and tiles are added to the assembly one at a time by attaching them
from the outside along a straight line. This approach of externally movable tiles has actually
been considered in practice at the microscale level using biological cells and an MRI, see
[11], [12], [4]. Becker et al. [6] consider this for the assembly of a magnetic Gauß gun, which
can be used for applying strong local forces by very weak triggers, allowing applications such
as micro-surgery.

Using an external force for moving the robots becomes inevitable at some scale because
the energy capacity decreases faster than the energy demand. A consequence is that all
non-fixed robots/particles perform the same movement, so all particles move in the same
direction of the external force until they hit an obstacle or another particle. These obstacles
allow shaping the particle swarm. Designing appropriate sets of obstacles and moves gives
rise to a range of algorithmic problems. Deciding whether a given initial configuration of
particles in a given environment can be transformed into a desired target configuration
is NP-hard [1], even in a grid-like setting, whereas finding an optimal control sequence is
shown to be PSPACE-complete by Becker et al. [2]. However, if it is allowed to design the
obstacles in the first place, the problems become much more tractable [1]. Moreover, even
complex computations become possible: If we allow additional particles of double size (i.e.,
two adjacent fields), full computational complexity is achieved, see Shad et al. [15]. Further
related work includes gathering a particle swarm at a single position [13] and using swarms
of very simple robots (such as Kilobots) for moving objects [5]. For the case in which human
controllers have to move objects by such a swarm, Becker et al. [3] study different control
options. The results are used by Shahrokhi and Becker [16] to investigate an automatic
controller.

Most recent and most closely related to our paper is the work by Manzoor et al. [14],
who use global control to assembly polyominoes in a pipelined fashion: after constructing
the first polyomino, each cycle of a small control sequence produces another polyomino.
However, the algorithmic part is purely heuristic; providing a thorough understanding of
algorithms and complexity is the content of our paper.

2 Preliminaries

Polyomino. For a set P ⊂ Z2 of N grid points in the plane, the graph GP is the induced
grid graph, in which two vertices p1, p2 ∈ P are connected if they are at unit distance. Any
set P with connected grid graph GP gives rise to a polyomino by replacing each point p ∈ P
by a unit square centered at p, which is called a tile; for simplicity, we also use P to denote
the polyomino when the context is clear, and refer to GP as the dual graph of the polyomino;
P is tree-shaped, if GP is a tree.

A polyomino is called hole-free or simple if and only if the grid graph induced by Z2 \ P
is connected.
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Blocking sets. For each point p ∈ Z2 we define blocking sets Np, Sp ⊆ P as the set of
all points q ∈ P that are above or below p and |px − qx| ≤ 1. Analogously, we define the
blocking sets Ep, Wp ⊆ P as the set of all points q ∈ P that are to the right or to the left
of p and |py − qy| ≤ 1.
Construction step. A construction step is defined by a direction (north, east, south, west,
abbreviated by n, e, s, w) from which a tile is added and a latitude/longitude l describing a
column or row. The tile arrives from (l,∞) for north, (∞, l) for east, (l,−∞) for south, and
(−∞, l) for west into the corresponding direction until it reaches the first grid position that
is adjacent to one occupied by an existing tile. If there is no such tile, the polyomino does
not change. We note that a position p can be added to a polyomino P if and only if there
is a point q ∈ P with ||p− q||1 = 1 and one of the four blocking sets, Np, Ep, Sp or Wp, is
empty.
Constructibility. Beginning with a seed tile at some position p, a polyomino P is con-
structible if and only if there is a sequence σ = ((d1, l1), (d2, l2), . . . , (dN−1, lN−1)), such that
the resulting polyomino P ′, induced by successively adding tiles with σ, is equal to P . We
allow the constructed polyomino P ′ to be a translated copy of P .

3 Constructibility of Simple Polyominoes

In this section we focus on hole-free (i.e., simple) polyominoes. We show that the problem
of deciding whether a given polyomino can be constructed can be solved in polynomial time.
This decision problem can be defined as follows.

I Definition 3.1 (Tilt Assembly Problem). Given a polyomino P , the Tilt Assembly
Problem (TAP) asks for a sequence of tiles constructing P , if P is constructible.

3.1 A Key Lemma
A simple observation is that construction and (restricted) decomposition are the same prob-
lem. This allows us to give a more intuitive argument, as it is easier to argue that we do not
lose connectivity when removing tiles than it is to prove that we do not block future tiles.

I Theorem 3.2. A polyomino P can be constructed if and only if it can be decomposed in
reversible tile removal steps that preserve connectivity. A construction sequence is a reversed
decomposition sequence.

Proof. To prove this theorem, it suffices to consider a single step. Let P be a polyomino and
t be a tile that is removed from P into some direction l, leaving a polyomino P ′. Conversely,
adding t to P ′ from direction l yields P , as there cannot be any tile that blocks t from
reaching the correct position, or we would not be able to remove t from P in direction l. J

For hole-free polyominoes we can efficiently find a construction/decomposition sequence
if one exists. The key insight is that one can greedily remove convex tiles, i.e., tiles having
as one of their corners a convex corner of the polyomino; see Fig. 4. If a convex tile is not a
cut tile, i.e., it is a tile whose removal does not disconnect the polyomino, its removal does
not interfere with the decomposability of the remaining polyomino.

This is based on the observation that a minimal cut (i.e., a minimal set of vertices
whose removal leaves a disconnected polyomino) of cardinality two in a hole-free polyomino
consists of two (possibly diagonally) adjacent tiles. Furthermore, we can always find such a
removable convex tile in any decomposable hole-free polyomino. This allows us to devise a
simple greedy algorithm.
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t

(a) Removing t destroys decomposabil-
ity. The polyomino can be decomposed
by starting with the three tiles above t.

(b) Removing the red convex tile leaves
the polyomino non-decomposable; it
can be decomposed by starting from the
bottom or the sides.

Figure 4 Two polyominoes and their convex tiles (white). (a) Removing non-convex tiles may
destroy decomposability. (b) In case of non-simple polygons we may not be able to remove convex
tiles.

We start by showing that if we find a non-blocked convex tile that is not a cut tile, we can
simply remove it. It is important to focus on convex tiles, as the removal of non-convex tiles
can harm the decomposability: see Fig. 4a for an illustration. In non-simple polyominoes,
the removal of convex tiles can destroy decomposability, as demonstrated in Fig. 4b.

I Lemma 3.3. Consider a non-blocked non-cut convex tile t in a hole-free polyomino P .
The polyomino P − t is decomposable if and only if P is decomposable.

Proof. The first direction is trivial: if P − t is decomposable, P is decomposable as well,
because we can remove the non-blocked tile t first and afterwards use the existing decom-
position sequence for P − t. The other direction requires some case distinctions. Suppose
for contradiction that P is decomposable but P − t is not, i.e., t is important for the later
decomposition.

Consider a valid decomposition sequence for P and the first tile t′ we cannot remove if we
were to remove t in the beginning. W.l.o.g., let t′ be the first tile in this sequence (removing
all previous tiles obviously does not destroy the decomposability). When we remove t first,
we are missing a tile, hence t′ cannot be blocked but has to be a cut tile in the remaining
polyomino P − t. The presence of t preserves connectivity, i.e., {t, t′} is a minimal cut on P .
Because P has no holes, then t and t′ must be diagonal neighbors, sharing the neighbors a
and b. Furthermore, by definition neither of t and t′ is blocked in some direction. We make
a case distinction on the relation of these two directions.
The directions are orthogonal (Fig. 5a). Either a or b is a non-blocked convex tile, because

t and t′ are both non-blocked; w.l.o.g., let this be a. It is easy to see that independent
of removing t or t′ first, after removing a we can also remove the other one.

The directions are parallel (Fig. 5b). This case is slightly more involved. By assumption,
we have a decomposition sequence beginning with t′. We show that swapping t′ with our
convex tile t in this sequence preserves feasibility.
The original sequence has to remove either a or b before it removes t, as otherwise
the connection between the two is lost when t′ is removed first. After either a or b is
removed, t becomes a leaf and can no longer be important for connectivity. Thus, we
only need to consider the sequence until either a or b is removed. The main observation
is that a and b block the same tiles as t or t′, except for tile c as in Fig. 5b. However,
when c is removed, it has to be a leaf, because a is still not removed and in the original
decomposition sequence, t′ has already been removed. Therefore, a tile d 6= t′ would have
to be removed before c. Hence, the decomposition sequence remains feasible, concluding
the proof. J

Next we show that such a convex tile always exists if the polyomino is decomposable.
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t
t
0
b

a

(a) If the unblocked directions of t and t′

are orthogonal, one of the two adjacent tiles
(w.l.o.g. a) cannot have any further neigh-
bors. There can also be no tiles in the up-
per left corner, because the polyomino can-
not cross the two free directions of t and t′

(red marks).

t
t
0
b

c
d
a

(b) If the unblocked directions of t and t′

are parallel, there is only the tile c for which
something can change if we remove t before
t′.

Figure 5 The red marks indicate that no tile is at this position; the dashed outline represents
the rest of the polyomino.

I Lemma 3.4. Let P be a decomposable polyomino. Then there exists a convex tile that is
removable without destroying connectivity.

t

(a) If the removal direction of t is not crossed,
the last blocking tile has to be convex (and
has to be removed before).

t

t
0

A
B

(b) If the removal direction of t crosses P ,
then P gets split into components A and B.
Component B has a convex tile t′ that needs
to be removed before t.

Figure 6 Polyominoes for which no convex tile should be removable, showing the contradiction
to t being the first blocked convex tile in P getting removed.

Proof. We prove this by contradiction based on two possible cases.
Assume P to be a decomposable polyomino in which no convex tile is removable. Because

P is decomposable, there exists some feasible decomposition sequence S. Let Pconvex denote
the set of convex tiles of P and let t ∈ Pconvex be the first removed convex tile in the
decomposition sequence S. By assumption, t cannot be removed yet, so it is either blocked
or a cut tile.
t is blocked. Consider the direction in which we would remove t. If it does not cut the

polyomino, the last blocking tile has to be convex (and would have to be removed before
t), see Fig. 6a. If it cuts the polyomino, the component cut off also must have a convex
tile and the full component has to be removed before t, see Fig. 6b. This is again a
contradiction to t being the first convex tile to be removed in S.

t is a cut tile. P − t consists of exactly two connected polyominoes, P1 and P2. It is easy
to see that P1 ∩Pconvex 6= ∅ and P2 ∩Pconvex 6= ∅, because every polyomino of size n ≥ 2
has at least two convex tiles of which at most one becomes non-convex by adding t. (A

ISAAC 2017
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Figure 7 When removing the red tile, only the orange tiles can become unblocked or convex.

polyomino of size 1 is trivial.) Before being able to remove t, either P1 or P2 has to be
completely removed, including their convex tiles. This is a contradiction to t being the
first convex tile in S to be removed. J

3.2 An Efficient Algorithm
An iterative combination of these two lemmas proves the correctness of greedily removing
convex tiles. As we show in the next theorem, using a search tree technique allows an
efficient implementation of this greedy algorithm.

I Theorem 3.5. A hole-free polyomino can be checked for decomposability/constructibility
in time O(N logN).

Proof. Lemma 3.3 allows us to remove any convex tile, as long as it is not blocked and does
not destroy connectivity. Applying the same lemma on the remaining polyomino iteratively
creates a feasible decomposition sequence. Lemma 3.4 proves that this is always sufficient.
If and only if we can at some point no longer find a matching convex tile (to which we refer
as candidates), the polyomino cannot be decomposable.

Let B be the time needed to check whether a tile t is blocked. A naïve way of doing this
is to try out all tiles and check if t gets blocked, requiring time O(N). With a preprocessing
step, we can decrease B to O(logN) by using O(N) binary search trees for searching for
blocking tiles and utilizing that removing a tile can change the state of at most O(1) tiles.
For every vertical line x and horizontal line y going through P , we create a balanced search
tree, i.e., for a total of O(N) search trees. An x-search tree for a vertical line x contains
tiles lying on x, sorted by their y-coordinate. Analogously define a y-search tree for a
horizontal line y containing tiles lying on y sorted by their x-coordinate. We iterate over
all tiles t = (x, y) and insert the tile in the corresponding x- and y-search tree with a total
complexity of O(N logN). Note that the memory complexity remains linear, because every
tile is in exactly two search trees. To check if a tile at position (x′, y′) is blocked from above,
we can simply search in the (x′ − 1)-, x′- and (x′ + 1)-search tree for a tile with y > y′. We
analogously perform search queries for the other three directions, and thus have 12 queries
of total cost O(logN).

We now iterate on all tiles and add all convex tiles that are not blocked and are not a
cut tile to the set F (cost O(N logN)). Note that checking whether a tile is a cut tile can
be done in constant time, because it suffices to look into the local neighborhood. While F
is not empty, we remove a tile from F , from the polyomino, and from its two search trees
in time O(logN). Next, we check the up to 12 tiles that are blocked first from the removed
tile for all four orientations, see Fig. 7. Only these tiles can become unblocked or a convex
tile. Those that are convex tiles, not blocked and no cut tile are added to F . All tiles
behind those cannot become unblocked as the first tiles would still be blocking them. The
cost for this is again in O(logN). This is continued until F is empty, which takes at most
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Figure 8 (Left) A polyomino P . Shown is the assembly order and the direction of attachment to
the seed (tile 0). (Right) A maze environment for pipelined construction of the desired polyomino
P . After the fourth cycle, each further cycle produces a new copy of P .

O(N) loops each of cost O(logN). If the polyomino has been decomposed, the polyomino
is decomposable/constructible by the corresponding tile sequence. Otherwise, there cannot
exist such a sequence. By prohibiting to remove a specific tile, one can force a specific start
tile. J

3.3 Pipelined Assembly
Given that a construction is always possible based on adding convex corners to a partial
construction, we can argue that the idea of Manzoor et al. [14] for pipelined assembly can
be realized for every constructible polyomino: We can transform the construction sequence
into a spiral-shaped maze environment, as illustrated in Fig. 8. This allows it to produce D
copies of P in N +D cycles, implying that we only need 2N cycles for N copies. It suffices
to use a clockwise order of four unit steps (west, north, east, south) in each cycle.

The main idea is to create a spiral in which the assemblies move from the inside to the
outside. The first tile is provided by an initial south movement. After each cycle, ending
with a south movement, the next seed tile of the next copy of P is added. For every direction
corresponding to the direction of the next tile added by the sequence, we place a tile depot
on the outside of the spiral, with a straight-line path to the location of the corresponding
attachment.

I Theorem 3.6. Given a construction sequence σ := ((d1, l1), . . . , (dN−1, lN−1)) that con-
structs a polyomino P , we can construct a maze environment for pipelined tilt assembly,
such that constructing D copies of P needs O(N +D) unit steps. In particular, constructing
one copy of P can be done in amortized time O(1).

A more detailed proof can be found in the appendix, Section A.

4 Optimization Variants in 2D

For polyominoes that cannot be assembled, it is natural to look for a maximum-size sub-
polyomino that is constructible. As it turns out, this optimization variant is polyAPX-hard,

ISAAC 2017
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i.e., we cannot hope for an approximation algorithm with an approximation factor within
Ω(N 1

3 ), unless P = NP.

I Definition 4.1 (Maximum Tilt Assembly Problem). Given a polyomino P , the Maximum
Tilt Assembly Problem (MaxTAP) asks for a sequence of tiles building a cardinality-
maximal connected subpolyomino P ′ ⊆ P .

I Theorem 4.2. MaxTAP is polyAPX-hard, even for tree-shaped polyominoes.

The proof is based on a reduction from Maximum Independent Set (MIS) to Max-
TAP. See Appendix B for details. One consequence is a lower bound on the achievable
approximation factor.

I Corollary 4.3. Unless P = NP , MaxTAP cannot be approximated within a factor of
Ω(N 1

3 ).

See Appendix B for details of the construction. On the positive side, we can give an
O(
√
N)-approximation algorithm.

I Theorem 4.4. The longest constructible path in a tree-shaped polyomino P is a
√
N -

approximation for MaxTAP, and we can find such a path in polynomial time.

Proof. Consider an optimal solution P ∗ and a smallest enclosing box B containing P ∗.
Then there must be two opposite sides of B having at least one tile of P ∗. Consider the
path S between both tiles. Because the area AB of B is at least the number of tiles in P ∗,
|S| ≥

√
AB and a longest, constructible path in P has length at least |S|, we conclude that

the longest constructible path is a
√
N -approximation.

To find such a path, we can search for every path between two tiles, check whether we
can build this path, and take the longest, constructible path. J

Checking constructibility for O(N2) possible paths is rather expensive. However, we can
efficiently approximate the longest constructible path in a tree-shaped polyomino.

I Theorem 4.5. We can find a constructible path in a tree-shaped polyomino in O(N2 logN)
time that has a length of at least half the length of the longest constructible path.

Proof. Instead of searching for all constructible paths, we only search for paths that can
be built sequentially, i.e., the initial tile is a leaf in the final path. Clearly, the longest such
path is at least half as long as the longest path that can have its initial tile anywhere. We
use the same search tree technique as before to look for blocking tiles. Select a tile of the
polyomino as the initial tile. Do a depth-first search and for every tile in this search, check if
it can be added to the path. If it cannot be added, skip all deeper tiles, as they also cannot
be added. During every step in the depth-first search, we only need to change a single tile in
the search trees, doing O(1) updates with O(logN) cost. As we only consider O(N) vertices
in the depth-first search, this results in a cost of O(N logN) for a fixed start tile. It is trivial
to keep track of the longest such constructible path. Repeating this for every tile results in
a running time of O(N2 logN). J

In tree-shaped polyominoes, finding a constructible path is easy. For simple polyominoes,
additional arguments and data structures lead to a similar result.

I Theorem 4.6. Finding the longest of all shortest paths that are sequentially constructible
can be found in O(N2 logN) time.

See Appendix B for details.
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Figure 9 (Left) A polyomino that cannot be constructed in the basic TAP model. (Right)
Construction in a staged assembly model by putting together subpolyominoes.

5 Three-Dimensional Shapes

An interesting and natural generalization of TAP is to consider three-dimensional shapes,
i.e., polycubes. As it turns out, the local considerations for simply connected two-dimensional
shapes are no longer sufficient. In the following we show that deciding whether a polycube is
constructible is NP-hard. Moreover, it is NP-hard to check whether there is a constructible
path from a start cube s to an end cube t in a partial shape.

As a stepping stone, we start with a restricted version of the three-dimensional problem.

I Theorem 5.1. It is NP-hard to decide if a polycube can be built by inserting tiles only
from above, north, east, south, and west.

The proof is based on a reduction from 3SAT and omitted for lack of space; see Ap-
pendix C for details. The construction can be extended to assemblies with arbitrary direc-
tion.

I Theorem 5.2. It is NP-hard to decide if a polycube can be built by inserting tiles from
any direction.

The proof proceeds similar to the one of Theorem 5.1. An additional “base” construction
below the actual logic gadgets that needs to be built first ensures that the mechanisms from
the 3SAT reduction remain valid; again, see the appendix for details.

The difficulties of construction in 3D are highlighted by the fact that even identifying
constructible connections between specific positions is NP-hard.

I Theorem 5.3. It is NP-hard to decide whether a path from one tile to another can be built
in a general polycube.

The proof proceeds by a reduction from SAT; see Appendix C for details.

6 Conclusion/Future Work

We have provided a number of algorithmic results for Tilt Assembly. Various unsolved
challenges remain. What is the complexity of deciding TAP for non-simple polyominoes?
While Lemma 3.4 can be applied to all polyominoes, we cannot simply remove any convex
tile. Can we find a constructible path in a polyomino from a given start and endpoint?
This would help in finding a

√
N -approximation for non-simple polyominoes. How can we

optimize the total makespan for constructing a shape? And what options exist for non-
constructible shapes?

An interesting approach may be to consider staged assembly, as shown in Fig. 9, where
a shape gets constructed by putting together subpolyominoes, instead of adding one tile at
a time. This is similar to staged tile self-assembly [9, 10]. This may also provide a path
to sublinear assembly times, as a hierarchical assembly allows massive parallelization. We
conjecture that a makespan of O(

√
N) for a polyomino with N tiles can be achieved.

All this is left to future work.
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A Details for Section 3

We provide further details for Theorem 3.6.

Theorem 3.6. Given a construction sequence σ := ((d1, l1), . . . , (dN−1, lN−1)) constructing
a polyomino P , we can construct a labyrinth in the parallel tilt assembly model, such that
constructing D copies of P needs O(N +D) unit steps. In particular, constructing one copy
of P can be done in amortized O(1) time.

Proof. Consider the construction sequence σ, the movement sequence ζ consisting of N
repetitions of the cycle (w, n, e, s), and an injective function m : σ → ζ, with m((w, ·)) = e,
m((n, ·)) = s, m(e, ·)) = w and m((s, ·)) = n. We also require that m((di, li)) = ζj if for all
i′ < i there is a j′ < j with m((di′ , li′)) = ζj′ and j is smallest possible. This implies that
in each cycle there is at least one tile in σ mapped to one direction in this cycle.
Labyrinth construction: The main part of the labyrinth is a spiral as can be seen in Fig. 8.

Consider a spiral that is making |ζ| many turns, and the innermost point q of this spiral.
From q upwards, we make a lane through the spiral until we are outside the spiral. At
this point we add a depot of tiles, such that after each south movement a new tile comes
out of the depot (this can easily be done with bottleneck constructions as seen in Fig. 8
or in [14]). Then, we proceed for each turn in the spiral as follows: For the j-th turn,
if m−1(ζj) empty we do nothing. Else if m−1(ζj) is not empty we want to add the next
tile. Let ti be this particular tile. Then, we construct a lane in direction −ζj , i.e., the
direction from where the tile will come from, until we are outside the spiral. By shifting
this line in an orthogonal direction we can ensure the tile to fly in at the correct position
relating to li. There, we add a depot with tiles, such that the first tile comes out after
j − 1 steps and with each further cycle a new tile comes out (this can be done by using
loops in the depot, see Fig. 8 or [14]). Note that depots, which lie on the same side of
the spiral, can be shifted arbitrarily, so they do not collide. Also note that the depots
can be made arbitrarily big, and thus, we can make as many copies of P as we wish.
Note that we can make the paths in the spiral big enough, such that after every turn the
bounding box of the current polyomino fits through the spiral.

Correctness: We will now show that we will obtain copies of P . Consider any j-th turn in
the spiral, where the i-th tile ti is going to be added to the current polyomino. With
the next step, ti and the polyomino move in direction ζj . While the polyomino does not
touch the next wall in the spiral, the distance between ti and the polyomino will not
decrease. Thus, consider the situation, when the polyomino hits the wall: the polyomino
stops moving and ti continues moving towards the polyomino. This is the same situation
as in our non-parallel model: To a fixed polyomino we can add tiles from n, e, s or w.
Therefore, the tile connects to the correct place. Since this is true for any tile and any
copy, we conclude that every polyomino we build is indeed a copy of P .

Time: Since the spiral has at most 4N unit steps (or N cycles), the first polyomino will be
constructed after 4N unit steps. By construction, we began the second copy one cycle
after beginning the first copy, the third copy one cycle after the second, and so on. This
means, after each cycle, when the first polyomino is constructed, we obtain another copy
of P . Therefore, for D copies we need N + D cycles (or O(N + D) unit steps). For
D ∈ Ω(N) this results in an amortized constant time construction for P .

Note that this proof only considers construction sequences in the following form: If a tile
ti increases the side length of the bounding box of the current polyomino, then the tile is
added from a direction with a longitude/latitude, such that the longitude/latitude intersects

ISAAC 2017
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0 1 0 1

Figure 10 Two different sequences. The red tile represents the bounding box of the current
polyomino. (Left) A desired sequence. The latitude intersects the bounding box. (Right) A
sequence where the latitude does not intersect the bounding box.

the bounding box (see Fig. 10). In the case there is a tile, such that the longitude/latitude
does not intersect the bounding box, then we can rotate the direction by π

2 towards the
polyomino and we will have a desired construction sequence. J

B Details for Section 4

B.1 Proof of Theorem 4.2 and Corollary 4.3

Theorem 4.2. MaxTAP is polyAPX-hard, even for tree-shaped polyominoes.

Proof. We reduce Maximum Independent Set (MIS) to MaxTAP; see Fig. 11 for an
illustration. Consider an instance G = (V,E) of MIS, which we transform into a polyomino
PG. We construct PG as follows. Firstly, construct a horizontal line from which we go
down to select which vertex in G will be chosen. The line must have length 10n− 9, where
n = |V |. Every 10th tile will represent a vertex, starting with the first tile on the line. Let ti
be such a tile representing vertex vi. For every vi we add a selector gadget below ti and for
every {vi, vj} ∈ δvi we add a reflected selector gadget below tj , as shown in Fig. 11 for an
example). Note that all gadgets for selecting vertex vi are above the gadgets of vj if i < j.
After all gadgets have been constructed, we continue with a vertical line of length 51n2.

v1

v2

v4

v3

v1 v2 v3 v4

Figure 11 Reduction from MIS to MaxTAP. (Left) A graph G with four vertices. (Right) A
polyomino constructed for the reduction with a feasible, maximum solution marked in grey.

Now let α∗ be an optimal solution to MIS. Then MaxTAP has a maximum polyomino
of size at least 51n2α∗ and at most 51n2α∗ + 50n2: We take the complete vertical part of
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ti for every vi in the optimal solution of MIS. Choosing other lines block the assembly of
further lines and thus, yields a smaller solution.

Now suppose we had an N1−ε-approximation for MaxTAP. Then we would have a
solution of at least 1

N1−εT
∗, where T ∗ is the optimal solution. We know that T ∗ ≥ 51n2α∗

andN ≤ 51n3+50n2 ≤ 100n3, for n sufficiently large. Therefore, we have at least 51n2α∗

1001−εn3−3ε

tiles and thus at least 1
1001−εn3−3εα

∗ strips, because each strips is 51n2 tiles long. Consider
some ε ≥ 2

3 + η for any η > 0, then the number of strips is 1
1001/3n1−3ηα

∗ which results in an
n1−δ-approximation for MIS, contradicting the inapproximability of MIS (unless P=NP). J

As a consequence of the construction, we get Corollary 4.3.

Corollary 4.3. Unless P = NP , MaxTAP cannot be approximated within a factor of
Ω(N 1

3 ).

B.2 Proof of Theorem 4.6
We provide additional details for the proof of Theorem 4.6.

Theorem 4.6. The longest of all shortest paths that are sequentially constructible can be
found in O(N2 logN) time.

We show in the next two lemmas that it is sufficient to consider shortest paths only, and
that we can restrict ourselves to one specific shortest path between two tiles. Hence, we just
need to test a maximum of O(n2) different paths.

I Lemma B.1. In a sequentially constructible path, if there is a direct straight connection
for a subpath, the subpath can be replaced by the straight connection.

L A

B AB

BA

p0

p1

W’

Figure 12 A subpath W ′ and its shortcut L in green. To block L, A and B must exist. But
then, either p0 or p1 (red tiles) will also be blocked. Therefore, also W ′ cannot be built.

Proof. Consider a sequentially constructible path W and a subpath W ′ ⊂ W that has a
straight line L connecting the startpoint and the endpoint of W ′. W.l.o.g., L is a vertical
line and we build from bottom to top. Assume that (W\W ′)∪L is not constructible. Then
at least the two structures A and B must exist, preventing us from building L. Furthermore,
these structures have to be connected via a path (AB or BA, see Fig. 12). We observe that
none of these connections can exist or otherwise, we cannot build W (if AB exist, we cannot
build the last tile p0 of L; if BA exist, we cannot build the first tile p1 of W ′). Therefore,
we can replace W ′ with L. J
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I Lemma B.2. If a shortest path between two tiles is sequentially constructible, then every
shortest path between these two tiles is sequentially constructible.

Proof. Consider a constructible shortest path W , a maximal subpath W ′ that is x-y-
monotone, and a bounding box B around W ′. Due to L1-metric, any x-y-monotone path
within B is as long as W ′. Suppose some path within B is not constructible. Then we can
use the same blocking argument as in Lemma B.1 to prove that W ′ cannot be constructible
as well, contradicting that W is constructible. J

Using Lemma B.1 and Lemma B.2, we are ready to prove Theorem 4.6.

Proof of Theorem 4.6. Because it suffices to check one shortest path between two
tiles, we can look at the BFS tree from each tile and then proceed like we did in Theorem 4.5.
Thus, for each tile we perform a BFS in time O(N) and a DFS with blocking look-ups in
time O(N logN), which results in a total time of O(N2 logN). J

C Details for Section 5

We provide proof details for all hardness constructions.

C.1 Proofs of Theorem 5.1 and Theorem 5.2

Theorem 5.1. It is NP-hard to decide if a polycube can be built by inserting tiles only from
above, north, east, south, and west.

x1 x1 x2 x2 x3 x3 x4 x4

x1 _ x2 _ x3

x2 _ x3 _ x4

x1 _ x3 _ x4

n

e

s

w

Figure 13 Top-view on the polycube. There is a vertical part going south for the true and false
assignment of each variable. We start building at the top layer (blue) and have to block either the
true or the false part of each variable from above. The blocked parts have to be built with only
inserting from east, west, and south. For each clause, the parts of the inverted literals are modified
to allow at most two of them being built in this way. All other parts can simply be inserted from
above in the end.
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x1

true false

true false

x2

(a)

(b)

Figure 14 Top-view on the polycube. (Left) In the beginning we have to block the access from
the top for either the true or false part of the variable. The variable is assigned the blocked value.
(Right) Three gadgets for a clause. Only two of them can be built if the tiles are only able to come
from the east, south, and west.

Proof. We prove hardness by a reduction from 3SAT. A visualization for the formula (x1 ∨
x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) can be seen in Fig. 13. It consists of two layers
of interest (and some further auxiliary ones for space and forcing the seed tile by using the
one-way gadget shown in Fig. 15). In the beginning, one has to build a part of the top
layer (highlighted in blue in the example, details in Fig. 14a). Forcing a specific start tile
can be done by a simple construction. For each variable we have to choose to block the left
(for assigning true) or the right (for assigning false) part of the lower layer. In the end, the
remaining parts of the upper layer can trivially be filled from above. The blocked parts of
the lower layer then have to be built with only inserting tiles from east, south, or west. In
the end, the non-blocked parts can be filled in from above. For each clause we use a part
(as shown in Fig. 14b) that allows only at most two of its three subparts to be built from
the limited insertion directions. We attach these subparts to the three variable values not
satisfying the clause, i.e., the negated literals. This forces us to leave at least one negated
literal of the clause unblocked, and thus at least one literal of the clause to be true. Overall,
this allows us to build the blocked parts of the lower layers only if the blocking of the upper
level corresponds to a satisfying assignment. If we can build the true and the false parts of
a variable in the beginning, any truth assignment for the variable is possible. J

in out

Figure 15 This polyomino can only be constructed by starting at “in” and ending at “out”. By
adding layers above and below this polyomino starting at the “out”-tile, we obtain a polycube that
is only constructible by starting at “in”. With this gadget we can enforce a seed tile.

Theorem 5.2. It is NP-hard to decide if a polycube can be built by inserting tiles from any
direction.
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Proof. We add an additional layer below the construction in Theorem 5.1 that has to be
built first and blocks access from below. Forcing the bottom layer to be built first can again
be done with the one-way gadget shown in Fig. 15. J

C.2 Proof of Theorem 5.3

Theorem 5.3. It is NP-hard to decide whether a path from one tile to another can be built
in a general polycube

A
N
D

x1 x2 x3 x4

x1 x3

x4x2

s

t

Figure 16 (Left) Circuit representation for the SAT formula (x1 ∨x2 ∨x3)∧ (x1 ∨x2 ∨x4)∧ (x2 ∨
x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4). (Right) Reduction from SAT formula. Boxes represent
variable boxes.

Proof. We prove NP-hardness by a reduction from SAT. For each variable we have two
vertical lines, one for the true setting, one for the false setting. Each clause gets a horizontal
line and is connected with a variable if it appears as literal in the clause, see Fig 16 (Left).
We transform this representation into a tour problem where, starting at a point s, one first
has to go through either the true or false line of each variable and then through all clause
lines, see Fig. 16 (Right). The clause part is only passable if the path in at least one crossing
part (squares) does not cross, forcing us to satisfy at least one literal of a clause. As one has
to go through all clauses, t is only reachable if the selected branches for the variables equal
a satisfying variable assignment for the formula.

We now consider how to implement this as a polycube. The only difficult part is to allow
a constructible clause path if there is a free crossing. In Fig. 17 (Left), we see a variable
box that corresponds to the crossing of the variable path at the squares in Fig. 16 (Right).
It blocks the core from further insertions. The clause path has to pass at least one of these
variable boxes in order to reach the other side. See Fig. 16 (Right) for an example. Note
that the corresponding clause parts can be built by inserting only from above and below, so
there are no interferences.

J
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Figure 17 (Left) Empty variable box. (Right) A clause line (blue) dips into a variable box. If
the variable box is built, then we cannot build the dip of the clause line.
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