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Magnetic Hammer Actuation

for Tissue Penetration using a Millirobot

Julien Leclerc1, Ashwin Ramakrishnan2, Nikolaos V. Tsekos3, and Aaron T. Becker1

Abstract—Untethered magnetic navigation of millirobots
within a human body using a Magnetic Resonance Imaging
(MRI) scanner is a promising technology for minimally invasive
surgery or drug delivery. Because MRI scanners have a large
static magnetic field, they cannot generate torque on magnetic
millirobots and must instead use gradient-based pulling. How-
ever, gradient values are too small to produce forces large enough
to penetrate tissue. This paper presents a method to produce
large pulsed forces on millirobots. A ferromagnetic sphere is
placed inside a hollow robot body and can move back and forth.
This movement is created by alternating the magnetic gradient
direction. On the posterior side, a spring allows the sphere to
change direction smoothly. On the anterior side, a hard rod
creates a surface for the sphere to impact. This impact results in
a large pulsed force. The purpose of this study was to understand
the functioning of magnetic hammer actuation and control, as
well as demonstrate the viability of this mechanism for tissue
penetration. This paper begins with modeling and simulating this
system. Next, different control strategies are presented and tested.
The system successfully penetrated lamb brain samples. Finally,
preliminary tests inside a clinical MRI scanner demonstrate the
potential of this actuation system.

Index Terms—Medical Robots and Systems, Surgical Robotics:
Steerable Catheters/Needles, Mechanism Design

I. INTRODUCTION

THE navigation of millimeter-scale robots through the

passageways of bodies is currently being studied as a

method to perform highly localized drug delivery or perform

minimally invasive surgery [1]–[3]. Untethered navigation can

be achieved by placing a ferromagnetic piece inside the robot

and producing a controlled magnetic field around a patient.

Propulsion and steering of millirobots can be accomplished by

either moving a permanent magnet assembly around a patient

[4] or by controlling the current inside electromagnets [5].

The latest solution is often realized with an MRI scanner

which already includes several electromagnets. In an MRI,
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the background field magnetizes the ferrous components of

the robot, and the gradient coils generate the magnetic gradient

necessary to produce forces. The Magnetic Resonance Imaging

(MRI) scanner can be used simultaneously to provide real-

time imaging of the operating area as well as positioning of

the robot.

The force generated on the millirobots is proportional to

the gradient field strength. Commercial MRI scanners produce

gradients in the range of 20 to 40 mT/m. These gradients are

sufficient to maneuver milli-robots inside fluid-filled regions

of the body, such as vessels, [6] but insufficient for tissue

penetration that requires larger forces [7]; tissue penetration is

required for many procedures, including brachytherapy and

micro-biopsy. The purpose of this paper is to present and

study a method, denoted magnetic hammer actuation, that

can generate large pulsed forces for tissue penetration. The

paper demonstrates the capability of the device to penetrate

tissue and shows that an MRI scanner is suitable to produce

the external magnetic field and gradient necessary for the

actuation. The magnetic hammer is a system embedded into

the millirobot. The millirobot has a tubular structure in which a

ferromagnetic sphere can move back and forth. This movement

is produced by alternately changing the gradient direction.

On the posterior side of the millirobot, a spring allows the

sphere to change direction smoothly. On the anterior side,

a hard rod creates a surface for the sphere to impact, the

impact plate. This impact results in large pulsed forces that

enable penetrating body tissues progressively. A magnetic test

bench has been developed to make experimental tests more

practical and less expensive. It includes coils, sensors, power

electronics, and a real-time controller.

The paper studies three control strategies. The open-loop

control switches the magnetic gradient direction at constant

frequency. It is completely independent of the sphere position

and uses no feedback. The partially closed-loop control detects

the impact of the sphere and switches the magnetic gradient

direction as soon as the impact is detected. The original

gradient direction is reapplied after a constant time ts. The

perfect closed-loop control assumes a theoretical sensor able

to measure the position of the sphere at any time. It is capable

of detecting the impact of the sphere as well as the change

of direction on the posterior side. The controller is therefore

able to change the direction of the gradient when the impact

is detected and when the change of direction on the posterior

side is detected.

The paper is organized as follows: first, the system is

mathematically modeled, and its behavior is studied in Section

II. Secondly, parameters for the model are experimentally
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Fig. 1. Schematic representation of a millirobot actuated by a magnetic
hammer.

Fig. 2. Picture of three millirobot prototypes actuated by a magnetic hammer.

measured (see Section III). Different materials for the impact

plate are compared. Thirdly, the magnetic test bench is de-

scribed and the test of a magnetic hammer is presented (see

section IV). Next, preliminary results from an open-loop test

performed in a clinical MRI scanner are presented in Section

V. The last Section (Section VII) is a conclusion of this study.

II. THEORETICAL STUDY

A. Mechanical modelization

The motion of the sphere between two consecutive impacts

can be divided into two phases, based on the forces that act

on it. The magnetic gradient force Fmag and friction force

Ffriction act on the sphere during its motion along the free

length of the tube, L (see Fig. 3 (i),(iii)). When the spring is

compressed, its reaction force Fspring acts on the ball as well

(see Fig. 3 (ii)). The directions of Fmag and Ffriction change

depending on the direction of motion of the sphere. Inside

the homogeneous region of an MRI scanner, the magnitude

of Fmag is constant [8]. The same has been assumed for

Fmag

Ffriction

Fmag
Fspring

(ii) (iii)

(i)

L

Ffriction

x
s
= L

x
s
= 0x

s
= -x

cs

2r
s

Fig. 3. (i) Free length of sphere travel, L; (ii) free body diagram of sphere
when spring is compressed, (iii) when spring is not compressed.

developing analytical and numerical models in this paper. The

formula for calculating Fmag is presented in Section II-B.

Friction is considered negligible, but this assumption will be

relaxed in later sections. The spring force is given by

Fspring = kx, (1)

where x is the compression length, and k is the spring

constant. In the case of perfect closed-loop control, the mag-

netic gradient direction is changed when the sphere hits the

impact plate and when the sphere velocity slows to zero

when it compresses the spring. These two events represent

the instances when the sphere changes direction. In other

words, to maximize the impact velocity, the magnetic force,

and therefore, the magnetic gradient, are oriented in the same

direction as the sphere velocity vector. In the simulations,

the sphere changes direction after impact, and after the full

compression of the spring. The perfect closed-loop system can

therefore be easily modeled by applying a magnetic gradient

that is always in the same direction as the sphere velocity.

An analytical model was developed by solving the system

of differential equations describing the dynamics of sphere

motion. This model allows predicting the impact velocity for

each impact, given a set of input parameters. The sphere-

impact plate system is assumed to have a coefficient of

restitution, e. This model assumes that the robot capsule does

not move. As seen in fig. 4, the impact velocity initially

increases and ultimately saturates for all values of e greater

than 0 and less than or equal to 1. The system reaches a

resonant state when the impact velocity saturates. This happens

when the energy lost by the sphere during impact equals the

energy gained by it during the rest of the cycle. A higher

e results in a higher impact velocity. For e = 1, the impact

velocity indefinitely increases since there is no energy loss

during impact. An analytical formula was derived to predict

the resonant impact velocity for a given set of input parameters

and for values of e between 0 and 1. This was done by solving

for the impact velocity at resonance, under the condition

that the velocities at impacts i and i + 1 are equal. Using

this condition, eq. (2) is derived by solving the differential

equations that define the dynamics of sphere motion between

impacts. The magnetic gradient is always in the same direction

as the sphere velocity vector. The results given by eq. (2) were

also verified by numerical simulations in MATLAB.

vres =
2

√

Fmag

(

(e2+1)Fmag+(e2−1)(−k)L+
√

(2−2e4)kLFmag+(1+e2)2F2
mag

)

kms

1−e2

(2)

In the above equation, ms is the mass of the sphere in

kg. The radius of the ball rs indirectly influences the impact

velocity through Fmag and ms, both of which depend on the

volume of the sphere. The variation of vres with changes in

L, e, k,ms, rs, Fmag were plotted and they were all found to

be monotonic functions with no critical points. In eq. (2), vres

tends towards infinity as e tends to 1. In this case there is no

loss of energy during collision and hence, the impact velocity

indefinitely increases with subsequent impacts. Further, the

time between impacts at resonance, tres, is a constant value

and is given by eq. (3). tres is calculated by adding up the time
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Fig. 4. Closed-loop impact velocity for 150 impacts; k = 50 N/m; Fmag =
1.5e-3 N; L = 0.03 m; ms = 5.58e-4 kg; rs = 2.5 mm.

Fig. 5. Geometry and variables used in equation eqs. (9) to (12)

taken for the sphere to travel through each of the four phases of

motion defined in the introduction to eqn. 2. The values tpos,1,

tpos,2, tant,1 and tant,2 represent the time for the sphere to move

from xs = (i) L to 0, (ii) 0 to −xcs, (iii) −xcs to 0, and (iv) 0

to L, all in a perfect closed-loop system with optimal gradient

switching. Here, xcs is the maximum compression distance of

the spring (See Fig. 3 (i)). The durations of motion for each of

these individual phases are calculated by solving the equations

of motion with the forces acting as shown in fig. 3. Friction

has been assumed to be negligible for these calculations.

tres = tpos,1 + tpos,2 + tant,1 + tant,2 (3)

tpos,1 =

√

e2v2res +
2LFmag

ms

− evres

Fmag

ms

(4)

tpos,2 =

π − tan−1

(

k

√

e2v2
res+

2LFmag

ms

ωFmag

)

ω
;ω =

√

k

ms

(5)

tant,1 =
cos−1

(

Fmag

Fmag+kxcs

)

ω
(6)

tant,2 =
vres −

√

v2res −
2LFmag

ms

Fmag

ms

(7)

xcs =

√

e2kmsv2res + 2kLFmag + F 2
mag + Fmag

k
(8)

In the above equations, ω represents the natural frequency

of the spring-mass system. The value of xcs can be used to

Fig. 6. Comparison between the flux density computed with the semi-
analytical method with MATLAB and the flux density computed via a finite
element method with FEMM. The maximum difference is 0.8 %.

select an appropriate free length for the spring, to ensure that

it does not bottom out during compression.

B. Magnetic field calculation

The magnetic field generated by an MRI scanner can be

separated into two components. The first is a constant and

strong magnetic field B0 along the z-axis. This field is used

to align the magnetic moments of the protons. Commercial

MRI scanners have B0 typically ranging from 1.5 to 3 T. The

second component of the field is the magnetic gradient. It is

used to encode the MRI signal spatially. The flux density G

produced by the gradient coils is added to B0 and linearly

varies with position. A computer controls this value.

The modelization of the field inside the uniformity sphere of

an MRI scanner is straightforward. G is directly proportional

to the current inside the gradient coils.

The flux density is more complicated to calculate outside

of the uniformity sphere. The same problem is present in our

magnetic test bench because the flux density and gradient are

not constant. To calculate forces accurately, it is necessary

to compute the magnetic field precisely. A semi-analytical

method was used to calculate the field produced in all space

by a solenoid assembly. It was tested on our magnetic test

bench.

According to [9], the magnetic flux density produced by

a current loop in all space can be calculated using equations

eqs. (9) to (12) and fig. 5. The authors obtained these results

by calculating the curl of the magnetic vector potential using

the software Mathematica. E(k) and K(k) are the complete

elliptical integrals of first and second kind respectively.

Bz =
µ0I

2πδ2β

[(

a2 −R2
m − z2

)

(E(k2) + δ2K(k2))
]

(9)

Bθ =
µ0I · z

2πδ2βRm

[(

a2 −R2
m − z2

)

(E(k2)− δ2K(k2))
]

(10)

δ =
√

a2 +R2
m + Z2

m − 2aRm (11)

β =
√

a2 +R2
m + Z2

m + 2aRm (12)
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Fig. 7. Comparison of average impact velocities between impacts 100 and
1100 for three different control inputs: Open-loop vs. Partially closed-loop
vs. Perfect closed-loop.

The cross-section S of any solenoid can be divided into

infinitesimal sections dS. Each dS is subjected to a current

dI = JdS. This current dI forms an infinitesimal loop, and

the field it produces can be calculated using eqs. (9) to (12).

By integrating this equation over the solenoid cross-section,

one can obtain the value of the flux density generated by the

solenoid.

The flux density must be calculated for each solenoid. The

total flux density is the vectorial sum of the flux density

produced by each solenoid. The results obtained via this semi-

analytical method is compared to the solution obtained via

finite element calculations with the software FEMM (Finite

Elements Method Magnetics) [10] (see fig. 6). The results

are identical. The semi-analytical method is faster to compute

for this model. Indeed, the magnetic field only needs to be

calculated at the sphere position. The semi-analytical method

can calculate the magnetic field at one point only whereas

finite elements methods must compute the magnetic field in

the full domain.

C. Magnetic force calculation

This section calculates the force applied by the magnetic

field to the sphere.

The ferromagnetic sphere is small compared to the coil

system and can be considered as a infinitely small magnetic

moment m. Assuming a constant material magnetization M,

one can calculate m from eq. (13).

V is the volume of the sphere. The ferromagnetic sphere is

magnetized by the externally applied field Happ = Bapp/µ0.

Ferromagnetic materials create a demagnetizing field Hd when

subjected to an external field. The actual field H seen by the

sphere is the sum of Happ and Hd. This effect must be taken

into account to calculate the magnetization accurately. Hd is

related to Happ by eq. (14). The demagnetization factor N
for a sphere is -1/3. Its magnetization can be calculated using

eq. (15). Once the magnetic moment m is obtained, the force

on the sphere can be calculated using eq. (16).

m = M · V (13)

Hd = N ·Happ (14)

M =
Happ (µr − 1)

2 ·N · µr − 1
(15)

F = ∇(m ·B) (16)

t=ts
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(v)
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t=ts

t=ts

xs’(t)=0

(i)

(ii)
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t=ts

xs’(t)=0
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Fig. 8. Six regimes for spring-end switching time; green and red represent
Fmag towards anterior and posterior respectively. Direction of colored arrow
represents direction of ball motion.

D. Simulation results

1) Perfect closed-loop vs. open-loop system: A numerical

model was used to simulate the system dynamics for different

input gradients. Average impact velocities over impacts 100 to

1,100 were compared for a perfect closed-loop pulsed input,

and open-loop inputs with sinusoidal and square profiles. As

seen in figure 7, closed-loop control produces approximately

three times greater average impact velocity as compared to

open-loop sinusoidal and square waves, over all frequencies.

As with the analytical model in Section II-A, the simulation

assumes that the robot capsule does not translate along its

axis. While the absolute values of impact velocity and force

will be different when the capsule is free to move, the closed-

loop input can still be expected to produce higher forces than

open-loop inputs. Further, for a given open-loop frequency, the

variation of impact velocity over multiple contacts was found

to be random for both square and sinusoidal inputs. It is not

possible to reach a resonant state using a constant frequency

input of any form. For a given set of input parameters, there

exists only one path, or control input, that enables the system

to achieve resonance.

2) Partially closed-loop system: To implement a perfect

closed-loop system, sensing is required at both the spring and

impact ends. While sensing at the impact end can be done

using a microphone sensor (see Section IV-B), it is harder

to detect sphere reversal at the spring end. For experiments of

the magnetic hammer on our test bench, a partially closed-loop

system was implemented with only impact end sensing using

a microphone. The sensor detected each impact and triggered

a reversal in the direction of the gradient force. The switching

time ts at the spring end was manually set at different values.

The motion of the sphere between two successive impacts is

analyzed based on ts, the initial velocity v0+ , and the time

between impacts ∆timp. The motion can be divided into six

regimes based on ts, for a given set of geometric and material

properties as shown in fig. 8. In fig. 8(i), v0+ and ts are low

enough that the sphere reverses direction before reaching the

spring. In this case, v0+ < 2aL, where a = Fmag/ms. Fig.

8(ii) represents the case when v0+ is high enough that spring

compression is unavoidable even for ts = 0. In fig. 8(iii),

the signal switch happens after spring compression starts but

before it bottoms out. Fig. 8(iv) represents perfect closed-loop

switching. In fig. 8(v), the signal is switched after maximum
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compression, but before the sphere reaches xs = 0. Fig.

8(vi) represents switching after spring rebound and before the

next impact. There is also a possible seventh case where the

switching happens after one entire impact cycle. This case is

not relevant and serves more as an upper limit of practical ts
values.

Simulations were done for the partially closed-loop system

to identify effects of different ts and v0+ values on ∆timp.

Fig. 9 shows ∆timp as a function of ts for different values of

v0+ . For v0+ = 0.15 m/s, there is a linear increase in ∆timp

untill ts reaches a critical point. This linear region represents

the case shown in fig. 8(i). Beyond this, ∆timp decreases with

increasing ts (fig. 8(ii),(iii)), until the latter reaches its perfect

closed-loop value. At this point ∆timp reaches a minimum

value (fig. 8(iv)). As ts increases beyond this, the ∆timp keeps

increasing (fig. 8(v),(vi)), until it saturates because the signal

is switched after the duration of the entire impact cycle. The

linear range does not exist for higher values of v0+ . Future

work will involve designing a control law that will help push

ts values closer to perfect closed-loop values for subsequent

impacts.

3) Effect of Coulomb friction: In all the above models,

the friction force was assumed to be zero. Average impact

velocities over 100 impacts are plotted for varying values of

the friction force in Fig. 10. The circles represent the perfect

closed-loop values, while the curves represent the partially

closed-loop values using impact times. Much like the step-out

frequency of a stepper motor, average impact velocities drop
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suddenly for the partially closed-loop system beyond a cut-off

driving frequency. This is due to the sphere reversing direction

before spring contact, leading to a drop in its net kinetic

energy. As friction force increases as a percentage of Fmag,

the partially closed-loop system reaches its cutoff frequency,

before resonance. This drop in impact velocity is not seen in

the perfect closed-loop system for any values of friction since

the spring is always compressed to its maximum limit. Hence,

partially closed-loop control will not produce the maximum

possible impact velocity for high values of Coulomb friction

force. Future work will use better models of kinetic and static

friction, as well as air resistance.

III. EXPERIMENTAL DETERMINATION OF IMPACT

COEFFICIENT OF RESTITUTION

The coefficient of restitution e was determined using the

time interval between two consecutive bounces of the sphere

when dropped from a given height onto the impact rod. The

measurements were made using 38.1 mm long impact rods

for five different materials. Impact rods were held by a drill

chuck. A length of 10.0 mm of the impact rods was sticking

out of the chuck. The experimental setup is shown in fig. 11.

The results, shown in fig. 11 (c), show that titanium

offers the largest coefficient of restitution. The densities of

aluminum, titanium, stainless steel, brass, and copper are 2720,

4500, 7600, 8500, and 8940 kg/m3 respectively. This data,

coupled with a desire for a lightweight millirobot suggests

that titanium is the best material for an impact plate. Bio-

compatibility of the material used is another constraint.

IV. EXPERIMENTAL MAGNETIC HAMMER TESTS

A. Magnetic test bench description

A desktop-size, single-axis magnetic setup was built to

reduce the cost related to clinical MRI experiments. It is

composed of two solenoid coils oriented along the same axis

and separated by a distance d. The coils are used to produce

both the magnetizing field and the gradient. The properties of

the coils are shown in Table I.
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Fig. 12. Picture of the magnetic test bench.

TABLE I
PROPERTIES OF THE COILS USED IN THE MAGNETIC TEST BENCH

Internal Radius 140 mm Electrical resistance 8.17 Ω

External Radius 63 mm Inductance 113 mH

Length 60 mm
Max current change rate
Voltage = 25 V

130 A/s

Wire 18 AWG Max continuous current 10 A

Wire cross-section 0.823 mm2

Flux density on
system center
I = 10 A, d = 50 mm

55 mT

Number of turns 265

Gradient on
system center
I = 10 A, d = 50 mm

0.14 T/m

The system is shown in fig. 12. The two coils are held by an

acrylic tube. They can slide along this tube and be locked in

place to adjust the distance between the two coils and therefore

change the maximum field and gradient values. The acrylic

tube is transparent, allowing for visual access to the robot.

Each coil is powered by a Syren 25 regenerative switching

power supply. The Syren 25 are manufactured by Dimension

Engineering. They can provide continuously a current of 25

A with a maximum voltage of 24 V.

Robots are inserted inside the acrylic tube holding the coils.

They are held by a second, smaller tube that guides them along

the system axis. Robots can be free to move along the coil axis

or held in place. A picture of the system is provided in fig. 12.

B. Partially closed-loop experiment

A system to record the impact velocity of the sphere as

well as the driving period of the magnetic hammer was built.

A schematic representation of the system is shown in fig.

13. The main body of the system is a 3d printed tube with

thick walls. The sphere is a NdFeB permanent magnet with

a magnetization of 883,000 A/m. It has a mass of 1.05 g.

It is placed inside the tube and an impact rod and a spring

are placed on the anterior and posterior sides respectively.

This constitutes the magnetic hammer system. A laser and

a diametrically opposed light sensor are placed radially on the

tube, with radial holes in the tube for the laser beam to pass

through. The thick walls of the tube permit the encapsulation

of the laser and the sensor with epoxy resin.

When moving, the sphere interrupts the laser beam during

a time ti inversely proportional to the velocity. By measuring

ti one can calculate the average velocity V of the sphere

with V = 2 · rs/ti. The laser beam was positioned on the

anterior side of the capsule, mounted at a distance Lf > 2rs
from the impact rod to allow the sphere to not interrupt the

Fig. 13. Schematic representation of the system using a laser and a light
sensor to measure the sphere velocity

Fig. 14. Experimental results obtained with the laser-based sensor. The error
bars represent the standard deviation. 300 impacts were recorded for each
point.

beam when it touches the impact rod. This positioning enables

computing the velocity of the sphere just before the impact

which we will consider as being equal to the impact velocity.

The acquisition of the data is automatic and performed via a

National Instrument cRIO real-time controller. The controller

was programmed using LabVIEW.

The cRIO is used at the same time to control the magnetic

hammer. The partially closed-loop method is used. Square

shaped current waveform drive the coils. The current in the

coils either either considered to be Imax or 0 A. The time

constant of the coils (13 ms) is small enough compared to Ts

to neglect the current transient. The coil will be said to be

“on” when I = Imax and “off” when I = 0 A. A microphone

is used to monitor the noise produced by the system. The

impact creates a large pulsed signal on the microphone output

that can be easily detected. When the impact is detected, the

anterior coil is turned off while the posterior coil is turned on.

The force applied to the sphere pushes it toward the posterior

side. The current stays constant during a time ts after the

impact is detected. The anterior coil is subsequently turned

on, and the posterior coil is turned off. The force then pushes

the sphere forward. The current in the coils is changed again

when another impact is detected. This process is repeated

indefinitely.

Data were recorded for Imax values of 0.96A, 1.5A and 2.2A
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which correspond to forces Fmag equal to 0.0273N, 0.0426N

and 0.0625N respectively. The value for Fmag were calculated

using the software FEMM. Results of the measurements are

presented in fig. 14. The impact velocity is larger at 1.5A than

at 0.96A due to the larger force exerted on the sphere at larger

current. This increase in velocity produces a decrease on the

average time between impact ∆timp (on the bottom curve, one

can see that ∆timp is smaller for the largest current). These

curves exhibit a maximum impact velocity, at ts = 75 ms

for Imax=1.5 A and ts = 95 ms for Imax=0.96A. These points

coincide with a minimum on the ∆timp curve and correspond

to the optimal driving frequency. The curve measured at higher

current, 2.2A, show better performance overall in both impacts

per second and velocity. A few points are not in agreement

with this observation but the difference is within the value

of the standard deviation. At all current values, our visual

observations as well as the large standard deviation indicates

that the control with the partially closed-loop method is not

optimum because it is not able to maintain the maximum

velocity for each impact.

The impact velocity has a local maximum at ts=135 ms for the

curve at measured at 1.5A. This is a point where the system

exhibits another resonance, when the sphere compresses the

spring two times during each cycle.

V. PRELIMINARY TESTS IN CLINICAL MRI

Preliminary tests of magnetic hammers were performed

in a clinical 3T Siemens MRI scanner to demonstrate the

ability of MRI scanners to produce a force able to drive

the device. No closed-loop control was implemented. The

magnetic gradient oscillated at a constant frequency. As seen

before, the system does not work optimally in these conditions.

At low frequencies, the magnetic sphere completely stops on

both sides of the millirobot. All the kinetic energy is lost at

these times, and the magnetic hammer, therefore, performs

poorly. The aim of these tests is to prove that MRI scanners are

suitable to produce the desired force on the magnetic sphere

inside the millirobot and provide a pulsed force.

A 50 mm long, 7 mm diameter robot was built for this

test. The sphere has a diameter of 5mm and is made of

stainless steel. This material is used instead of a permanent

magnet because the main magnetic field of the MRI scanner

magnetizes the stainless steel at its saturation value which is

higher than the magnetization of a permanent magnet.

A plastic container was placed inside the MRI scanner,

sitting on the patient table. The millirobot was positioned

inside this container, with its length oriented along the x axis.

The tissue sample to penetrate was a goat brain hemisphere

placed in the container, in front of the millirobot tip. . A 2

Hz square gradient along the x axis with an amplitude of 23

mT/m was applied to it. This frequency is slow enough to

allow the sphere to stop on both sides completely.

Friction with the plastic container prevented the capsule

from moving when a constant gradient was applied. Once the

gradient wave was started, the sphere began to move back

and forth while the robot was moving toward the sample at

each impact, at an average speed of 1.9 mm/s. The robot then

Fig. 15. Picture of the magnetic hammer driven by an MRI scanner. The
penetration test is realized on a goat brain sample.

began to penetrate the sample. It went 9 mm deep inside

it and stopped progressing (see fig. 15). This experiment

demonstrates the suitability of MRI scanners to drive mag-

netic hammers. No further measurements were made as this

demonstration was the sole purpose of the experiment and the

magnetic test bench allows us to perform extensive testing at

reduced cost.

Future work will implement closed-loop control on the

clinical MRI scanner to transfer energy efficiently. The MRI

signal could be used to compute the position of the magnetic

sphere at a frequency greater than 20 Hz, as we did in [11].

VI. TISSUE PENETRATION EXPERIMENT

An iterative design process was used to achieve tissue

penetration using the magnetic test bench. Seven millirobots

were built and tested, varying the tip shape and composition,

the tube length, the spring, and the sphere material.

Our observations of the penetration experiments concluded

that sharp blades placed on the tip of the millirobot allow for

an easier tissue penetration. The blades are placed much like

on a hunting arrow tip, and create a fissure in the tissue that

reduces the force needed for the capsule to progress through

the sample. The blades used in our experiments were made of

titanium, a bio-compatible and non-magnetic metal.

Our observations also showed that, when the sphere com-

presses the spring, the capsule tends to move backward. This

effect releases the pressure exerted by the millirobot tip on

the tissue and therefore makes the impact less efficient at

penetrating the sample. This issue was solved by placing a

porcupine needle placed at the leading tip of the millirobot, at

the center of the blades. Porcupine needles are covered with

microscopic backward facing barbs. These barbs prevent the

needle from being pulled off a tissue once penetrated. Natural

porcupine needles cannot be sanitized and so cannot be used in

an in-vivo medical intervention. However, synthetic porcupine

needles can be built [12].

Fig. 16 show frames of a video from a representative

penetration test. A video attached to this paper shows this

test. The tissue samples used in these experiments were 10

mm thick lamb brain slices. As shown in the attached video,

it was placed in a sample holder made with two acrylic sheets,

one on each side. Two holes in the sample holder allow the

millirobot to access and cross the tissue. The millirobot used

in this experiment has a diameter of 7.5 mm. It uses three

titanium blades, a porcupine needle, and a titanium impact

rod. The sphere is a NdFeB permanent magnet with a 6.35
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Fig. 16. Picture presenting the penetration of a millirobot prototype inside a
lamb brain sample. The corresponding video is attached to this paper.

mm diameter and a mass of 1.05 g. The spring has a free

length of 10 mm and a constant of 35 N/m. The free length of

sphere travel is 15 mm. The flux density applied by the coils

had a maximum value of 40 mT and a maximum gradient

of 545 mT/m. The control was performed with the partially

closed-loop method presented in Section II-D2.

We performed a series of four successful penetration tests

with no failures using our final millirobot design. The first

three samples were perforated in 225, 252 and 230 seconds.

It took 20 minutes for the millrobot to perforate the fourth

sample because it included the pia mater. These tests prove

the capability of the magnetic hammer system to penetrate

biological tissue.

VII. CONCLUSIONS

A magnetic hammer system for a millirobot driven by the

gradient fields of an MRI scanner was studied. The system

enables producing force large enough to penetrate body tissue.

The hammer is composed of a magnetic sphere moving inside

a tube.

A modelization allows the computation of the position of

the sphere as a function of time. The magnetic flux density

and the gradient are computed using a semi-analytical method

and allow an accurate calculation of the force applied to the

sphere. A study about the sphere friction on the tube was

performed. The friction between the air and the sphere was

not taken into account as the final millirobot will be under

vacuum to prevent any air release within the body. The speed

of the sphere after impact is computed from the coefficient of

restitution.

The coefficient of restitution (e) depends on the materials of

the colliding objects and also on their shape and sizes. Values

of e were experimentally measured. These measurements

showed that titanium impact plates exhibit large values of e.

This material also has the advantage of being lightweight, a

useful property to achieve neutral buoyancy of millirobots, and

is a bio-compatible material.

A magnetic test bench was built to reduce experimental

cost related to the use of a clinical MRI scanner. A magnetic

hammer was tested with a partially closed-loop control. The

impact of the sphere is detected via a microphone. The

posterior coil is turned on during a predetermined time ts to

pull the sphere backward. After this time, the posterior coil

is turned off and the anterior coil is turned on until the next

impact is detected.

A laser based sensor was used to record the impact velocity

of the sphere. The data obtained shows that there is an

optimum value for ts where the impact velocity is maximum.

The impact velocity also increases when the magnetic field

value increases.

In a series of four trials the magnetic test bench propelled a

millirobot through lamb brain samples. Preliminary tests in a

3T MRI scanner validated the mechanical design. Future work

should implement and test closed-loop control of the magnetic

hammer in a clinical MRI scanner, detecting impacts with the

MRI signal instead of a microphone. Tradeoffs involved in

miniaturization of the robot should also be studied.
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