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Abstract—Microrobotics has the potential to revolutionize
many applications including targeted material delivery, assembly,
and surgery. The same properties that promise breakthrough
solutions—small size and large populations—present unique
challenges for controlling motion.

Robotic manipulation usually assumes intelligent agents, not
particle systems manipulated by a global signal. To identify the
key parameters for particle manipulation, we used a collection of
online games where players steer swarms of up to 500 particles
to complete manipulation challenges. We recorded statistics from
over ten thousand players. Inspired by techniques where human
operators performed well, we investigate controllers that use only
the mean and variance of the swarm. We prove the mean position
is controllable and provide conditions under which variance
is controllable. We next derive automatic controllers for these
and a hysteresis-based switching control to regulate the first
two moments of the particle distribution. Finally, we employ
these controllers as primitives for an object manipulation task
and implement all controllers on 100 kilobots controlled by the
direction of a global light source.

I. INTRODUCTION

Large populations of micro- and nanorobots are being pro-

duced in laboratories around the world, with diverse potential

applications in drug delivery and construction, see [1]–[3].

These activities require robots that behave intelligently. Lim-

ited computation and communication at small scales makes

autonomous operation or direct control over individual robots

difficult. Instead, this paper treats the robots as particles that

are steered by a global control signal broadcast to the entire

population. This paper examines object manipulation by a

swarm of particles, as illustrated in Fig. 1. The transportation

methodology is similar to that in [4], but rather than using

onboard computation or sensing, the particles all move in the

same direction.

Many promising applications for particle swarms require

direct human control, but user interfaces to thousands—or

millions—of particles is a daunting human-swarm interaction

(HSI) challenge. Our early work with over a hundred hardware

robots and thousands of simulated particles demonstrated that

direct human control of large swarms is possible, [5]. Unfortu-

nately, the logistical challenges of repeated experiments with

over one hundred robots prevented large-scale tests. There is

currently no comprehensive understanding of user interfaces

for controlling multi-robot systems with massive populations.

One contribution of this paper is a tool for investigating HSI

This work was supported by the National Science Foundation under Grant
No. [IIS-1553063].

Authors are with the Department of Electrical and Computer Engineer-
ing, University of Houston, Houston, TX 77204 USA {sshahrokhi2,
atbecker}@uh.edu

Goal 

Object Centroid / 
Repulsive Point 

Robot Mean 

95% Confidence 
Ellipse 

Object 

Attractive Point 
Robots 

Force Vectors 

Fig. 1. A swarm of particles, all actuated by a uniform control input where
each particle gets the same control input, can be effectively manipulated by
a control law that uses only the mean and variance of the robot distribution.
Here a swarm of particles (kilobot robots) pushes a green hexagon toward the
goal (see video attachment).

methods through statistically significant numbers of experi-

ments.

Often particles are difficult or impossible to sense individ-

ually due to their size and location. For example, microrobots

are smaller than the minimum resolution of a clinical MRI-

scanner, see [6], however it is often possible to sense global

properties of the group such as mean position and variance.

To make progress in automatic control with global inputs,

this paper presents swarm manipulation controllers inspired

by our online experiments that require only mean and variance

measurements of the particle’s positions. To perform the object

manipulation task illustrated in Fig. 1, we use these controllers

as primitives, policy iteration for path planning, handle outliers

by partitioning the workspace, and minimize pushing the

object backwards with potential field navigation.

Our paper is organized as follows. After a discussion of

http://nsf.gov/awardsearch/showAward?AWD_ID=1553063


related work in §II, we describe our experimental methods

for an online human-user experiment and their results in §III.
Next we prove that the mean and variance of a particle swarm

are controllable in §IV, and present automatic controllers in

§V. We use these controllers as primitives and present a

framework for manipulating an object through a maze in §VI.

We implement these controllers in our hardware robots and

use them to complete an object manipulation task with 100

kilobots in §VII, and conclude in §VIII.

II. RELATED WORK

This section describes global control challenges and reviews

highlights of human-swarm interaction, block pushing, and

compliant manipulation.

A. Global control of microrobots

This paper investigates global control of particles that have

no onboard computation. This prevents us from applying

controllers that require computation on the agents, as in [7]–

[9]. Another control paradigm is to construct robots with

physical heterogeneity so that they respond differently to a

global broadcast control signal. Examples include scratch-

drive microrobots, actuated and controlled by a DC voltage

signal from a substrate by [10], [11]; magnetic structures

with different cross-sections that can be independently steered

by [12], [13]; MagMite microrobots with different resonant

frequencies and a global magnetic field by [14]; and magnet-

ically controlled nanoscale helical screws constructed to stop

movement at different cutoff frequencies of a global magnetic

field by [15] and [1]. Similarly, our previous work focused

on exploiting inhomogeneity between robots [16], [17]. These

control algorithms theoretically apply to any number of robots,

even robotic continuums. However, all these works never con-

trolled more than twelve robots at a time because process noise

cancels the differentiating effects of robot inhomogeneity. We

desire control algorithms that extend to many thousands of

robots. Limited position control was achieved by [18] and

our previous work [19], but both used robots commanded in

their local coordinate frame. Our new submission focuses on

a more common paradigm: particles commanded in a global

coordinate frame.

While it is now possible to create many microrobots, there

remain challenges in control, sensing, and computation:

a) Control—global inputs: Many micro- and nanorobotic

systems, see [1]–[3], [10]–[15], [20] rely on global inputs,

where each robot receives an exact copy of the control signal.

Our experiments follow this global model.

b) Sensing—large populations: n differential-drive

robots in a 2D workspace require 3n state variables. Even

holonomic robots require 2n state variables. Numerous

methods exist for measuring this state in microrobotics [1],

[3], [6]. These solutions use computer vision systems to sense

position and heading angle, with corresponding challenges

of handling missed detections and image registration

between detections and robots. These challenges increase

at small scales where sensing competes with control for

communication bandwidth. We examine control when the

operator has access to partial feedback, including only the

first and/or second moments of a population’s position, or

only the convex-hull containing the robots.

c) Computation—calculating the control law: In our

previous work the controllers required at best a summation

over all the robot states, see [17] and at worst a matrix

inversion, see [16]. These operations become intractable for

large populations of robots. By focusing on human control of

large robot populations, we accentuate computational difficul-

ties because the controllers are implemented by the unaided

human operator.

B. Human-swarm interaction

Most humans are able to, with practice, steer a swarm

of robots controlled by a global input. Prior to our paper,

no algorithm existed. Using human input to learn how to

control a dynamic system is a line of research with a rich

history [21], [22]. This paper exploits insights gained from

SwarmControl.net, particularly the fact that having a swarm’s

mean and variance is sufficient for object manipulation through

an obstacle field.

A user interface enabling an operator to maneuver a swarm

of robots through a cluttered workspace by specifying the

bounding prism for the swarm and then translating or scaling

this prism is designed in [23]. Our paper shares the concept

of a global control input, but our robots have no onboard

computation and cannot track a virtual boundary.

Human fanout, the number of robots a single human user

could directly control is studied in [24]. They postulated

that the optimal number of robots was approximately the

autonomous time divided by the interaction time required

by each robot. Their sample problem involved a multi-robot

search task, where users could assign goals to robots. Their

user interaction studies with simulated planar robots indicated

a fanout plateau of about 8 robots, with diminishing returns for

more robots. They hypothesized the location of this plateau is

highly dependent on the underlying task. Indeed, our paper

indicates there are tasks without plateaus. Their research

investigated robots with three levels of autonomy. We use

robots without autonomy, corresponding with their first-level

robots.

Several user studies compare methods for controlling large

swarms of simulated robots, for example [25]–[27]. These

studies provide insights but are limited by cost to small

user studies; have a closed-source code base; and focus on

controlling intelligent, programmable agents. For instance, the

studies [25], [26], and [27] were limited to a pool of 5, 18,

and 32 participants. Using an online testing environment, we

conduct similar studies but with sample sizes three orders of

magnitude larger.

C. Block pushing and compliant manipulation

Unlike caging manipulation, where robots form a rigid

arrangement around an object, as in [28], [29], our swarm

of robots is unable to grasp the blocks they push, and so our

http://www.swarmcontrol.net
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Fig. 2. Screenshots from our online experiments controlling multi-particle
systems with limited, global control. (a) Varying the number of particles from
1-500 (b) Comparing 4 levels of visual feedback (c) Varying noise from 0 to
200% of control authority.

manipulation strategies are similar to nonprehensile manipula-

tion techniques, e.g. [30], where forces must be applied along

the center of mass of the moveable object. A key difference

is that our robots are compliant and tend to flow around the

object, making this similar to fluidic trapping as in [31] and

[32].

Our n-robot system with 2 control inputs and 4n states is

inherently under-actuated, and superficially bears resemblance

to compliant, under-actuated manipulators. Our swarms con-

form to the object to be manipulated, but lack the restoring

force provided by flexures in [33] or silicone in [34]. Our

swarms tend to disperse and so to regroup them we require

artificial forces like the variance control primitives in §IV-C.

D. Relationship to authors’ prior work

This paper combines the content of two preliminary confer-

ence papers, extending their substance and providing full de-

tails in a single journal paper. One paper covered the first three

months of SwarmControl.net experiments [35], and the second

presented simulations of object manipulation [36]. This paper

presents three years of results from SwarmControl.net. For

object manipulation, this paper presents robust new algorithms

for manipulation, path planning, and obstacle avoidance, and a

rich set of parameter sweeps over key variables. All hardware

validation experiments are new.

III. ONLINE EXPERIMENT

The goal of these online experiments is to test several sce-

narios involving large-scale human-swarm interaction (HSI),

and to do so with a statistically-significant sample size.

Towards this end, we have created SwarmControl.net: an

open-source, online testing platform suitable for inexpensive

deployment and data collection on a scale not yet seen in

swarm robotics research. Screenshots from this platform are

shown in Fig. 2. All code and experimental results are online

at [37].

We developed a flexible testing framework for online

human-swarm interaction studies. Over 5,000 humans per-

formed over 20,000 swarm-robotics experiments with this

framework, logging almost 700 hours of experiments. These

experiments indicated three lessons used for designing auto-

matic controllers for object manipulation with particle swarms:
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Fig. 3. Data from Varying Number using particles to push an object through
a maze to a goal location.

1) When the number of particles is large (> 50), varying

the number of particles does not significantly affect the per-

formance.

2) Swarm control is robust to independent and identically

distributed (IID) noise.

3) Controllers that only use the mean and variance of the

swarm can perform better than controllers with full feedback.

A. Implementation

Our web server generates a unique identifier for each partici-

pant and sends it along with the landing page to the participant.

A script on the participant’s browser runs the experiment and

posts the experiment data to the server. Anonymized human

subject data was collected under IRB #14357-01.

We designed six experiments to investigate human control

of large swarms for manipulation tasks. Screenshots of rep-

resentative experiments are shown in Fig. 2. Each experiment

examined the effects of varying a single parameter: population

of particles for manipulation, four levels of visual feedback,

different levels of Brownian noise. The users could choose

which experiment to try, and our architecture randomly as-

signed a parameter value for each trial. We recorded the

completion time and the participant ID for each successful

trial.

B. Varying number

This experiment varied from 1 to 500 the population of

particles used to transport an object. The total area, maximum

particle speed, and total net force the swarm could produce

were constant. The particles pushed a large hexagonal object

through an S-shaped maze. We hypothesized participants

would complete the task faster with more particles. The results,

shown in Fig. 3, do not support our hypothesis, indicating a

minimum around 130 particles, but only a gradual increase in

completion time from 50 to 500.

C. Varying visualization

This experiment explores manipulation with varying

amounts of sensing information: full-state sensing provides

the most information by showing the position of all particles;

http://www.swarmcontrol.net/show_results
https://github.com/crertel/swarmmanipulate.git
http://www.swarmcontrol.net/show_results


convex-hull draws a convex hull around the outermost parti-

cles; mean provides the average position of the population;

and mean + variance adds a confidence ellipse. Fig. 4

shows screenshots of the same particle swarm with each type

of visual feedback. Full-state requires 2n data points for n
particles. Convex-hull requires at worst 2n, but according to

Har [38], the expected number is O(2n1/3). Mean requires

two, and variance three, data points. Because they do not

increase with population size, mean and mean + variance are

convenient even with millions of particles.

Our hypothesis predicted a steady decrease in performance

as the amount of visual feedback decreased. Our experiment

indicated the opposite: players with just the mean completed

the task faster than those with full-state feedback. As Fig. 5

shows, the levels of feedback arranged by increasing com-

pletion time are [mean, mean + variance, full-state, convex-

hull]. All experiments lasting over 300 s were removed, under

the assumption that the user stopped playing. Using ANOVA

analysis, we rejected the null hypothesis that all visualization

methods are equivalent, with p-value 2.69×10−19. Anecdotal

evidence from beta-testers who played the game suggests that

tracking 100 particles is overwhelming—similar to schooling

phenomenons that confuse predators—while working with just

the mean + variance is like using a “spongy” manipulator.

However, our beta-testers described convex-hull feedback as

confusing and irritating since it is not robust to outliers. A

single particle left behind an obstacle will stretch the entire

hull, obscuring the majority of the swarm.

D. Varying noise

This experiment varied the strength of disturbances to study

how noise (disturbance inputs) affects human control of large

swarms. Noise was applied at every time step as follows:

ẋi = ux +mi cos(ψi)

ẏi = uy +mi sin(ψi).

Here, mi and ψi were uniformly IID, with mi ∈ [0,M ] and

ψi ∈ [0, 2π]. M was a constant for each trial ranging from 0

to 200% of the maximum control power (umax).

We hypothesized 200% noise was the largest a human

could be expected to control—at 200% noise, the particles

move erratically. Disproving our hypothesis, the results in

Fig. 6a show only a 40% increase in completion time for the

maximum noise. This indicates swarm control is robust to IID

noise.

Full-state Convex-hull Mean + var Mean

Fig. 4. Screenshots from task Vary Visualization. This experiment challenges
players to quickly steer 100 particles (blue discs) to push an object (green
hexagon) into a goal region. We record the completion time and other
statistics.
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Fig. 5. Completion-time results for the four levels of visual feedback shown
in Fig. 4. Players performed better with limited feedback.

IV. GLOBAL CONTROL LAWS FOR A HOLONOMIC SWARM

Emboldened by the three lessons from our online exper-

iments, this section presents automatic controllers for large

numbers of particles that only rely on the first two moments

of the swarm position distribution.

We represent particles as holonomic robots that move in

the 2D plane. We want to control position and velocity of

the particles. First, assume a noiseless system containing one

particle with mass m. Our inputs are global forces [ux, uy]
⊤.

We define our state vector x(t) as the x position, x velocity,

y position and y velocity. The state-space representation in

standard form is:

ẋ(t) = Ax(t) +Bu(t). (1)

and our state space representation is:
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We want to find the number of states that we can control,

which is given by the rank of the controllability matrix:

C = [B,AB,A2B,A3B]. (3)

Here C =
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Fig. 6. Left: Varying the noise from 0 to 200% of the maximum control
input resulted in only a small increase in completion time. Right: For position
control, increasing the number of particles resulted in longer completion times.
For more than 4 particles the goal pattern contained a void, which may have
caused the jump in completion times.



rank(C) = 4, (5)

and thus all four states are controllable. This section starts

by proving independent position control of many particles is

not possible, but the mean position can be controlled. We then

provide conditions under which the variance of many particles

is also controllable.

A. Independent control of many particles is impossible

In this model, a single particle is fully controllable. For

holonomic particles, movement in the x and y coordinates

are independent, so for notational convenience without loss

of generality we will focus only on movement in the x axis.

Given n particles to be controlled in the x axis, there are 2n
states: n positions and n velocities. Without loss of generality,

assume m = 1. Our state-space representation is:
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However, just as with one particle, we can only control two

states because the controllability matrix Cn has rank two:

Cn =
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, rank(Cn) = 2. (7)

B. Controlling the mean position

This means any number of particles controlled by a global

command have just two controllable states in each axis. We

cannot arbitrarily control the position and velocity of two or

more particles, but have options on which states to control.

We create the following reduced order system that represents

the mean x position and velocity of the n particles:

[
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[
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We again analyze the controllability matrix Cµ:

Cµ =
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, rank(Cµ) = 2. (10)

Thus the mean position and mean velocity are controllable.

There are several techniques for breaking the symmetry of

the control input to allow controlling more states, for example

by using obstacles as in [5], or by allowing independent noise

sources as in [19].

We control mean position with a PD controller that uses the

mean position and mean velocity. [ux, uy]
⊤ is the global force

applied to each particle:

ux = Kp(xgoal − x̄) +Kd(0− ˙̄x),

uy = Kp(ygoal − ȳ) +Kd(0− ˙̄y). (11)

Kp is the proportional gain, and Kd is the derivative gain.

C. Controlling the variance

The variance, σ2
x, σ

2
y , of n particles’ position is:

x(x) =
1

n

n
∑

i=1

xi, σ2
x(x) =

1

n

n
∑

i=1

(xi − x)2,

y(x) =
1

n

n
∑

i=1

yi, σ2
y(x) =

1

n

n
∑

i=1

(yi − y)2. (12)

Controlling the variance requires being able to increase and

decrease the variance. We will list a sufficient condition for

each. Microscale systems are affected by unmodelled dynam-

ics. These unmodelled dynamics are dominated by Brownian

noise, as described in [39]. To model this (1) must be modified

as follows:

ẋ(t) = Ax(t) +Bu(t) +Wε(t), (13)

where Wε(t) is a random perturbation produced by Brow-

nian noise with magnitude W . Given a large obstacle-free

workspace with u(t) = 0, a Brownian noise process increases

the variance linearly with time.

σ̇2
x(x(t),u(t)) =Wε, σ2

x(t) = σ2
x(0) +Wεt. (14)

If faster dispersion is needed, the swarm can be pushed through

obstacles such as a diffraction grating or Pachinko board as

in [5].

If particles with radius r are in a bounded environment with

sides of length [ℓx, ℓy], the unforced variance asymptotically

grows to the variance of a uniform distribution,

[σ2
x, σ

2
y] =

1

12
[(ℓx − 2r)2, (ℓy − 2r)2]. (15)

A flat obstacle can be used to decrease variance. Pushing

a group of dispersed particles against a flat obstacle will

decrease their variance until the minimum-variance (maxi-

mum density) packing is reached. For large n, Graham and

Sloane [40] showed that the minimum-variance packing for n
circles with radius r is

σ2
optimal(n, r) ≈

√
3

π
nr2 ≈ 0.55nr2. (16)

Thus, to control this variance, we choose
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Fig. 7. Hysteresis to control swarm mean and variance.

u(t) =

{

move to wall if σ2(x) > σ2
goal

move from wall if σ2(x) ≤ σ2
goal.

(17)

Similar to the PD controller in Eq. (11) that controls the

mean particle position, a controller to regulate the variance to

σ2
ref is:

ux = Kp(xgoal(σ
2
ref)− x̄)−Kdv̄x +Ki(σ

2
ref − σ2

x), (18)

uy = Kp(ygoal(σ
2
ref)− ȳ)−Kdv̄y +Ki(σ

2
ref − σ2

y). (19)

We call the gain scaling the variance error Ki because the

variance, if unregulated, integrates over time. This controller

requires a vertical and a horizontal wall. Eq. (18) assumes the

nearest wall is to the left of the particle at x = 0, and chooses

a reference goal position such that the swarm, if uniformly

distributed between 0 and ℓ, would have the correct variance

according to (15):

xgoal(σ
2
ref) = ℓ/2 = r +

√

3σ2
ref . (20)

If a wall to the right is closer, the signs of [Kp,Ki] are in-

verted, and the location xgoal is translated. A similar argument

applies to (19).

D. Controlling both mean and variance

The mean and variance of the swarm cannot be controlled

simultaneously. However, if the variance gained while moving

from a corner to the target position is less than some σ2
max −

σ2
min, we can adopt the hybrid, hysteresis-based controller

shown in Alg. 1 to regulate the mean and variance. Such a

controller normally controls the mean position, but switches

to minimizing variance if the variance exceeds σ2
max. Variance

is reduced until less than σ2
min, then control again regulates

the mean position. This technique satisfies control objectives

that evolve at different rates as in [41], and the hysteresis

avoids rapid switching between control modes. The process is

illustrated in Fig. 7.

A key challenge is to select proper values for σ2
min and

σ2
max. The optimal packing variance was given in (16). The

random packings generated by pushing our particles into

corners are suboptimal, so we choose the conservative values:

σ2
min = 2.5r + σ2

optimal(n, r),

σ2
max = 15r + σ2

optimal(n, r). (21)

Algorithm 1 Hybrid mean and variance control

Require: Knowledge of swarm mean [x̄, ȳ], variance

[σ2
x, σ

2
y], the locations of the rectangular boundary

{xmin, xmax, ymin, ymax}, and the target mean position

[xtarget, ytarget].
1: xgoal ← xtarget, ygoal ← ytarget
2: loop

3: if σ2
x > σ2

max then

4: xgoal ← xmin

5: else if σ2
x < σ2

min then

6: xgoal ← xtarget
7: end if

8: if σ2
y > σ2

max then

9: ygoal ← ymin

10: else if σ2
y < σ2

min then

11: ygoal ← ytarget
12: end if

13: Apply (11) to move toward [xgoal, ygoal]
14: end loop
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Fig. 8. In simulation, tuning proportional (Kp, top) and derivative (Kd,
bottom) gain values in (11) improves performance with n = 100 particles.

V. SIMULATION OF CONTROL LAWS

Our simulations use a Javascript port of Box2D, a popular

2D physics engine with support for rigid-body dynamics,

including collision, density, and friction, and fixed time step

simulation [42]. All experiments in this section ran on a

Chrome web browser on a 2.6 GHz Macbook. All code is

available at [43].

a) Controlling the mean position: We performed a pa-

rameter sweep using the PD controller (11) to identify the best

control gains. Representative experiments are shown in Fig. 8.

100 particles were used and the maximum speed was 3 m/s.
As shown in Fig. 8, we can achieve an overshoot of 1% and

a rise time of 1.52 s with Kp = 4, and Kd = 1.

b) Controlling the variance: Variance control uses the

control law (18) with Kp,i,d = [4, 1, 1]. Results are in Fig. 9.

c) Hybrid control of mean and variance: Fig. 10 shows

a simulation run of the hybrid controller in Alg. 1 with

100 particles in a square workspace containing no internal

obstacles.

http://box2d.org/
https://github.com/aabecker/SwarmControlSandbox/blob/master/exampleControllers/BlockPushingIROS2015.html
https://github.com/aabecker/SwarmControlSandbox/blob/master/exampleControllers/BlockPushingIROS2015.html
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Fig. 9. In simulation, increased noise results in more responsive variance
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VI. PARTICLE SWARM OBJECT MANIPULATION

This section analyzes an object manipulation task attempted

by our hybrid, hysteresis-based controllers. The swarm must

deliver the object to the goal region. We assume Coulomb and

viscous friction parameters such that the object can be moved

by particle motion. Increasing the number of pushing particles

increases the object speed. To solve this object manipulation

task we divide the task into three components: 1) designing a

policy for the object, 2) pushing the object with a compliant

swarm, and 3) managing outliers.

The table below summarizes the simulation results for each

10 successful trials:

Method Result, mean±std (s)

Value Iteration (VI) 367 ± 253

VI + Potential Fields (PF) 271 ± 267

VI + Outlier Rejection (OR) 245 ± 135

BFS + PF + OR 183 ± 179

VI + PF + OR 90 ± 35

A. Learning a policy for the object

To design the policy we first discretize the environment. In

[36], we used breadth-first search (BFS) on this discretized

grid, but using workspace BFS fails to account for the hull of

the object and will suggest moves that can cause collisions

with the workspace. A configuration-space BFS approach

Fig. 11. BFS finds the shortest path for the moveable object to compute
gradient vectors (left). Modeling as an MDP enables encoding penalties for
being near obstacles. (Middle) The control policy from value iteration. (Right)
The vision algorithm detects obstacles in the hardware setup. This map is used
to produce the value function and control policy shown.

avoids that problem but still fails to model uncertain actuation

of the object by the swarm.

To solve both these problems, this paper models object

movement as a Markov Decision Process (MDP) with non-

deterministic movement. Value iteration is used to learn an op-

timal policy [44]. At each state the object can be commanded

to move in one of eight directions with a small probability of

moving in a wrong direction.

The reward function r(x,u) is defined as

r(x,u) =







+100, if u leads to goal state

−100, if u leads to an obstacle state

−1, otherwise

(22)

where x is the current state and u is the action. Value iteration

computes V̂ (x), the expected discounted sum reward if the

optimal policy is implemented, for the object starting in each

state x. The optimal policy is

D(x) = argmax
u



r(x,u) +
N
∑

j=1

V̂ (xj)p(xj |x,u)



 . (23)

The value function V̂ (xi) is calculated by computing the value

V̂ for all N states and iterating until convergence:

for i = 1 to N do

V̂ (xi) = γmax
u



r(xi,u) +
N
∑

j=1

V̂ (xj)p(xj |xi,u)





end (24)

Our probabilistic motion model p(xj |x,u) assumed the object

moved in the commanded direction u half of the time but +45◦

with probability 0.25 and −45◦ with probability 0.25. In our

experiments γ = 0.97, and (24) was iterated 200 times. A

MATLAB implementation is available at [45].

MBFS and the value function are shown in Fig. 11. In 10

simulations with 100 particles, pushing the object to goal using

BFS required 183±179 s while value iteration required 90±35

s (mean±std).

B. Potential fields for swarm management with a compliant

manipulator

When the swarm is in front of the object, control law

(11) pushes the object backwards. To fix this, we implement



Fig. 12. (Left) The attractive field is centered behind the object’s COM.
(Middle) The repulsive field is centered at the object’s COM. (Right) Com-
bining these forces prevents the swarm from pushing the object backwards.

a potential field approach that attracts the swarm to the

intermediate goal, but repulses the swarm from in front of

the object, as shown in Fig. 12. The approach is similar to

[46], chapter 5. The repulsive potential field is centered at b,

the object’s COM, and is active in a circular sector of angular

width 2θ and radius d0 aligned with D(b). D(b) is the desired

direction of motion from (23).

d = [x̄, ȳ]− b, φ = cos−1

(

D(b) · d
‖D(b)‖ · ‖d‖

)

,

Fatt = −ζ
d

‖d‖ ,

Frep =

{

η( 1
‖d‖ − 1

d0

) 1

‖d‖2d, ‖d‖ ≤ d0 ∧ φ < θ

0, otherwise
,

Fpot = Fatt + Frep,

[xgoal, ygoal] = [x̄, ȳ] +
Fpot

‖Fpot‖
. (25)

Here η and ζ are positive parameters that scale the forces and

‖d‖ is the distance from the swarm mean [x̄, ȳ] to the object

COM. In simulations, θ = π/2, η = 75, ζ = 2 and d0 = 3.

Because the kilobots have a slower time constant, they use

θ = π/2, η = 50, ζ = 1 and d0 = 7.5.

In 10 simulations with 100 particles, pushing the object to

goal without a repulsive potential field failed in two of twelve

runs. No failures occurred with the repulsive potential field. Of

successful trials, completion time without repulsive potential

fields required 245±135 s while using repulsive potential fields

required 90±35 s (mean±std).

C. Outlier rejection

The variance controller in Alg. 1 is a greedy algorithm

that is susceptible to outliers. Our controller in [36] failed

in 14% trials, in each failure some particles were unable to

reach the object because workspace obstacles were blocking

them. This failure rate increases if object weight increases or

ground-particle friction increases. The mean and covariance

calculations (12) included all particles in the workspace.

Particles that cannot reach the object due to obstacles skew

these calculations. The state machine in Fig. 13a solves this

problem by creating two states for the maze: either main

or transfer. Each state has a set of regions representing a

discretized visibility polygon. Whenever the object crosses
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Fig. 13. Outlier rejection state machine and regions.

a region boundary the state toggles. The main regions are

generated by extending obstacles until they meet another

obstacle. The transfer regions are perpendicular to obstacle

boundaries, and act as a buffer between two main regions.

Fig. 13b shows the regions for the main state. The object

is in region 1. An indicator function is applied to (12) so

only particles inside region 1 are counted. This filtering

increases experimental success because the mean calculation

only includes nearby particles that can directly interact with

the object. When the object leaves main region 1 the state

switches to transfer. The transfer regions are shown in Fig.

13c. The object is in transfer region 1, so only particles in

transfer region 1 are included in the mean and covariance

calculations. The particles should push the object to the left.

Without filtering using regions, the red circle is the mean and

the algorithm would instruct the particles to push the object

up. The black circle shows the filtered mean and the algorithm

instructs the particles to push the object directly left.

In 10 simulations with 100 particles, completion time with-

out outlier rejection required 271±267 s while using outlier

rejection required 90±35 s (mean±std).

D. Simulation results

We use the hybrid hysteresis-based controller in Alg. 1

to track the desired position, while maintaining sufficient

particle density to move the object by switching to minimize

variance whenever variance exceeds a set limit: 0.003W and

0.006W were added to the min and max variance limits from

(21), where W is the magnitude of the Brownian noise. The

minimize variance control law (18) is slightly modified to

choose the nearest corner further from the goal than the object

with an obstacle-free straight-line path to the object. The

control algorithm for object manipulation is listed in Alg. 2.

In rare cases during simulations the swarm may become

trapped in a local minimum of (25). If the swarm mean

position does not change for five seconds, the swarm is

assumed to be in a local minimum and is commanded to



Fig. 14. The six equal-area objects tested in simulation.

move toward the previous corner. As soon as the mean position

changes, normal control resumes.

Algorithm 2 Object-manipulation controller for a particle

swarm.

Require: Knowledge of moveable object’s center of mass b;

swarm mean [x̄, ȳ] and variance [σ2
x, σ

2
y], each calculated

using the regions function from §VI-C; map of the envi-

ronment

1: Compute optimal policy for object, according to §VI-A

2: while b is not in goal region do

3: σ2 ← max (σx, σy)
4: if σ2 > σ2

max then

5: while σ2 > σ2
min do

6: [xgoal, ygoal]← nearest corner in region

7: Apply (11) to move toward [xgoal, ygoal]
8: end while

9: else

10: Calculate D(b) ⊲ direction for object at b

11: Apply (25) ⊲ potential field for swarm

12: end if

13: end while

Fig. 15 shows snapshots during an execution of this algo-

rithm in simulation. To illustrate the flexibility of the algorithm

we tested two additional workspaces, E-shaped and Spiral,

without changing the algorithm. These are shown in Fig. 16.

More complicated workspaces could be generated by compos-

ing these workspaces. Fig. 17 shows the results of all three

mazes. The E-shaped maze required the least average time

because the path to the goal is shorter. Experimental results

of parameters sweeps are summarized in Fig. 18. Each trial

measured the time to deliver the object to the goal location.

The default parameter settings used 100 particles, a normalized

weight of 1, a hexagon shape, and Brownian noise (applied

once each simulation step) with W = 5.

The interaction between the particles and object is impul-

sive so, like the study of impulsive pulling in [47], adding

additional particles decreases completion time, but with di-

minishing returns. The effect of adding particles diminishes

asymptotically because additional particles have difficulty in-

teracting with the object. Brownian noise adds stochasticity.

This randomness can break the object free if it is stuck,

but diminishes the effect of the control input. Increasing

t = 5 s  t = 45 s  t = 60 s  t = 85 s  t = 100 s  

Fig. 15. Snapshots showing an object manipulation simulation with 100
particles under automatic control (see also Extension 1).

Fig. 16. We tested three workspaces. The control policies from value iteration
for an E-shaped and a spiral workspace are shown in the left column.

noise increases completion time. The particles have limited

force, so increasing the object weight increases completion

time. Each shape was designed to have the same mass and

area. Rectangles and squares tend to get stuck in the 90◦

workspace corners, and cause longer completion times than

circles, triangles, and hexagons.

VII. OBJECT MANIPULATION WITH HARDWARE ROBOTS

Our experiments use centimeter-scale hardware systems

called kilobots. While those are far larger than the micro

scale devices we model, using kilobots allows us to emulate a

variety of dynamics, while enabling a high degree of control

over robot function, the environment, and data collection. The

kilobot is a nonholonomic, low-cost robot designed for testing
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Fig. 17. Completion times for three workspaces.
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Fig. 18. Parameter sweep simulation studies for a) number of particles, b) different noise values, c) object weight, and d) object shape. Each bar is labelled
with the number of trials. Completion time is in seconds.

collective algorithms with large numbers of robot [48], [49]. It

is available as an open-source platform or commercially [50].

Each robot is approximately 3 cm in diameter, 3 cm tall, and

uses two vibration motors to move on a flat surface at speeds

up to 1 cm/s. Each robot has one ambient light sensor that is

used to implement phototaxis, moving towards a light source.

A. Environmental setup

In these experiments as shown in Fig. 19, we used n=100

kilobots and a 1.5 m×1.2 m whiteboard as the workspace.

LED floodlights were placed 1.5 m above the table on the

sides and corners of a square with 6 m sides. An Arduino

Uno connected to an 8-relay shield controlled the lights.

Above the table, an overhead machine vision system tracks

the swarm. The vision system identifies obstacles and the

object by color segmentation, determines the corners of the

maze, and identifies robots using a circular Hough transform.

The objects were 3D printed from ABS plastic with a paper

overlay. Shapes included a 325 cm2 equilateral triangle, 324

cm2 square, 281 cm2 hexagon, 254 cm2 circle, and a 486 cm2

rectangle, all shown in Fig. 19. The laser-cut patterns for the

neon green fiducial markers on the robots and 3D files for

objects are available at our github repository [43].

a) Swarm mean control (hardware experiment): Unlike

the PD controller (11), we cannot command a force input to

the kilobots. Instead, control is given by turning on one of

eight lights. The kilobots run a phototaxis routine where they

search for an orientation that aligns them with the light source,

and then move with an approximately constant velocity toward

this light. The kilobots oscillate along this orientation because

they only have one light detector.

We use the sign of (11), and choose the closest orientation to

D(b) among the eight light sources. Fig. 20 shows that this

limited, discretized control still enables regulating the mean

position of a swarm of 100 robots.

B. Automated object manipulation (hardware experiment)

Even though kilobots are nonholonomic, they performed

five successful runs manipulating a hexagonal object through

an obstacle maze. Videos of these runs are in Extension 2.

These hardware experiments represent the results of over 100

hours of trials. Each trial used 100 kilobots. Trials two through

five were performed in a row with no failures in between. For

each trial, fully charged kilobots were placed in the lower left-

hand of the workspace, as shown in Fig. 21. The moveable

object was placed in the lower center of the workspace.

MATLAB code for vision processing, the value iteration of

§VI-A and the algorithm of §VI-D is available on MATLAB

Central at [51]. Trials were run until the object COM entered

the goal region. The trials ran for {1465, 3457, 3000, 2162,

2707} s. This is 2558± 771 s (mean±std).

We also tested other object shapes. A circular object com-

pleted in 3155 s. A square object completed in 6871 s. A

rectangle and three equilateral triangle objects of varying sizes

failed in a total of nine runs. Manipulation failures occurred

when the object was pushed into a corner, requiring torque to

be unstuck. Swarm torque control is the subject of our ongoing

research begun in [52].

VIII. CONCLUSION

The small size of micro and nano particles makes individual

control and autonomy challenging, so currently these particles

are steered by global control inputs such as magnetic fields or

chemical gradients. To investigate this control challenge, this

paper introduced SwarmControl.net, an open-source tool for

large-scale user experiments where human users steer swarms

of robots to accomplish tasks. Analysis of the gameplay results

revealed benefits of measuring and controlling statistics of the

swarm rather than full state feedback, robustness to IID noise,

and small effects of varying population size of large swarms.

Inspired by the three lessons from SwarmControl.net, this

paper designed controllers and controllability results using

only the mean and variance of a particle swarm. We developed

a hysteresis-based controller to regulate the position and vari-

ance of a swarm. We designed a controller for object manipula-

tion using value iteration for path planning, regions for outlier

rejection, and potential fields for minimizing moving the object

backwards. All automatic controllers were implemented using

100 kilobots steered by the direction of a global light source.

These experiments culminated in an object manipulation task

in a workspace with obstacles.

Our future goal is to perform assembly using particle

swarms to manipulate and attach components. This task re-

quires applying force and torque to components and manip-

ulating them through obstacles and each other. This work

provides foundational algorithms and techniques for steering

swarms, object manipulation, and addressing obstacle fields,

but there are many opportunities to extend the work.

Topics of interest include control with nonuniform flow

such as fluid in an artery, gradient control fields like that

http://www.swarmcontrol.net
www.swarmcontrol.net
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of an MRI, competitive playing, multi-modal control, flexible

workspaces, optimal-control, and targeted drug delivery in a

vascular network.
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