


c© Copyright by Shiva Shahrokhi 2018
All Rights Reserved



CONTROLLING A SWARM OF SIMPLE ROBOTS

USING GLOBAL INPUTS

A Dissertation

Presented to

the Faculty of the Department of Electrical and Computer Engineering

University of Houston

in Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in Electrical Engineering

by

Shiva Shahrokhi

August 2018



CONTROLLING A SWARM OF SIMPLE ROBOTS

USING GLOBAL INPUTS

Shiva Shahrokhi

Approved:
Chair of the Committee
Aaron T. Becker, Assistant Professor
Department of Electrical and Computer Engineering

Committee Members:
Lydia Kavraki, Noah Harding Professor
Department of Computer Science, Rice University

Stanko Brankovic, Associate Professor
Department of Electrical and Computer Engineering

David Mayerich, Assistant Professor
Department of Electrical and Computer Engineering

Rose Faghih, Assistant Professor
Department of Electrical and Computer Engineering

Suresh K. Khator, Associate Dean, Badrinath Roysam, Professor and Chair,
Cullen College of Engineering Electrical and Computer Engineering



Acknowledgements

I thank God that I spent some of my best years during the Ph.D. program at the

University of Houston. I grew up and became more capable. I would like to take this

opportunity to express my gratitude to those who were part of this journey.

First, I would like to express my appreciation to my advisor, Dr. Aaron T. Becker.

I truly appreciate his support, kindness, intellectual comments and caring for not only

about my research but also many aspects of my life. Dr. Becker was a perfect match for

me as an advisor. He is a nice person and full of energy and he makes the lab a happy

and energetic place. I thank him for everything he has done for me.

I would like to thank my dissertation committee members: Dr. Lydia Kavraki, Dr.

David Mayerich, Dr. Rose Faghih, Dr. Stanko Brankovic and Dr. Nicaolas Tsekos for

their insightful comments and suggestions and their kindness and supportiveness. I also

enjoyed their classes and learned a lot from them.

I was very fortunate to be the first student of swarm control lab. I am thankful

to my great collaborators: Lillian Lin, Arun Mahadev, Mable Wan, Chris Ertel, Jingang

Shi, and Benedict Isichei. I have always benefited from our discussions. I also would like

to thank my other fabulous lab mates: Mary Burbage, Haoran Zhao, Julien Leclerc, Li

Huang, Sheryl Manzoor, Mohammad Sultan, An Nguyen, Shriya Bhatnagar, Daniel Bao,

Srikanth K.V.S, Parth Joshi, Javier Garcia, Steban Soto, Victor Montano, and Jarret

Lonsford. I enjoyed being with all of them.

I would also like to express my sincere appreciation to my parents, Nasrin and

Hadi. Their belief in me made me brave enough to go for my dreams. I appreciate them

for my whole life. I miss my father who was a great role model for me so much and hope

he rests in peace. I believe he is looking at me and hope that I have made him proud.

v



I am very fortunate to have my mother and deeply appreciate her encouragement and

self-sacrifice for me. I also like to thank my brothers and my sister, Ali, Amir and Shima,

who always backed me up and encouraged me. I appreciate them all for being such a

great family.

Finally, I would like to express my most gratitude and appreciation to the love of

my life, my husband, Ali. I cannot imagine how I could finish my Ph.D. if he was not

there to encourage and support me. Each dark day he was there to show me the tiny

light at the end of the road. Each bright day he was there to make my smile bigger and

make my heart warmer. He made the path possible for me, and never left me alone in the

path. He is smart and hardworking and looking at him motivated me to work smarter

and harder. I am forever grateful for each and every day of my life with him.

vi



CONTROLLING A SWARM OF SIMPLE ROBOTS

USING GLOBAL INPUTS

An Abstract

of a

Dissertation

Presented to

the Faculty of the Department of Electrical and Computer Engineering

University of Houston

in Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in Electrical Engineering

by

Shiva Shahrokhi

August 2018



Abstract

Microrobotics has the potential to revolutionize many applications, including tar-

geted material delivery, assembly, and surgery. The same properties that promise break-

through solutions—small size and large populations—present unique challenges for con-

trolling motion.

When there are more particles than control inputs, the system is underactuated

and requires new control techniques. Rather than focusing on a specific microrobotic

system, this dissertation designs control laws and algorithms for steering many particles

controlled by global fields.

First, we identify key parameters for particle manipulation by using a collection of

online games where players steer swarms of up to 500 particles to complete manipulation

challenges. Inspired by techniques where human operators performed well, we investigate

controllers that only use the mean and variance of the swarm. We next derive automatic

controllers for these and a hysteresis-based switching control to regulate the first two

moments of the particle distribution. Torque control is also necessary for manipulating

objects as well as for aligning sensors, emitters, or redirecting an incoming signal.

Second, this dissertation proves that swarm torque control is possible, then presents

algorithms to automate the task. Torque control enables us to control the position and

orientation of an object.

Finally, this dissertation investigates particle control with uniform magnetic gra-

dients (the same force is applied everywhere in the workspace). We provide position

control algorithms that only require non-slip wall contact in 2D. The walls of in vivo and

artificial environments often have surface roughness such that the particles do not move

unless actuation pulls them away from the wall. We assume that particles in contact with

viii



the boundaries have zero velocity if the shared control input pushes the particle into the

wall. All the results are validated with simulations and hardware implementations.
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Chapter 1

Introduction

1.1 Controlling a swarm of particles with global inputs

Large populations of micro- and nanorobots are being produced in laboratories

around the world, with diverse potential applications in drug delivery and construction,

see [2–4]. These activities require robots that behave intelligently. Our vision is for large

swarms of robots to be remotely guided 1) through the human body, to cure disease, heal

tissue, and prevent infection shown in Fig. 1.1 [1] and 2) ex vivo to assemble structures

in parallel shown in Fig. 1.2. For each application, large numbers of micro robots are

required to deliver sufficient payloads. Often particles are difficult or impossible to sense

individually due to their size and location. For example, microrobots are smaller than

the minimum resolution of a clinical MRI-scanner, see [5], however it is often possible

to sense global properties of the group such as mean position and variance. Limited

computation and communication at small scales also makes autonomous operation or

direct control over individual robots difficult. Instead, this dissertation treats the robots

that are steered by a global control signal broadcast to the entire population. The tiny

robots themselves are often just rigid bodies, and it may be more accurate to define

the robot as the system that consists of particles, a uniform control field, and sensing.

Particle swarms propelled by a uniform field, where each particle receives the same control

input, are common in applied mathematics, biology, and computer graphics [2–4]. Such

systems are severely underactuated, having 2 degrees of freedom in the shared planar

control input, but 2n degrees of freedom for the n-particle swarm. Figure 1.3 shows an

example of simple particles when they all get the same control input. Techniques are

needed that can handle this underactuation.
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Figure 1.1: Microrobots has the potential to revolutionize medical applications. Used
with permission from [1].
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Figure 1.2: Assembling and delivering different parts of an object using a swarm of
simple robots.

a) b) c) d)

Figure 1.3: a) The robots are actually simple particles that can be controlled by a
global force. b) All the particles get the same control input. c,d) Breaking
the symmetry is only possible with external boundary or obstacle.

To make progress in automatic control with global inputs, this dissertation presents

swarm manipulation controllers inspired by our online experiments that require only

mean and variance measurements of the particles’ positions. We prove that the mean

position of a swarm is controllable and that, with an obstacle, the swarm’s position vari-

ance orthogonal to rectangular boundary walls is also controllable (these are σ2
x and σ2

y

for a workspace with axis-aligned walls). The usefulness of these techniques is demon-

strated by several automatic controllers. One controller steers a swarm of robots to push

a larger block through a 2D maze [6].

Meanwhile, object manipulation often also requires controlling torque on an object

for a variety of alignment tasks including retroreflectors, and targeted radiation ther-
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apy. Accurate torque control is difficult. The swarm, when steered toward an object,

begins interacting with the object at different times. The number of robots touching

this object as a function of time is difficult to predict and often impossible to directly

measure. Stochastic effects make long-term prediction challenging. Even when it is pos-

sible to predict which agents will hit the object first, as agents interact with the object,

the swarm’s configuration changes. The challenge is not only limited to swarm-object

interaction, but also to swarm-swarm interactions when the swarm self-collides or is split

into multiple components. As a result, the force the swarm will exert on the object is

hard to predict. This dissertation studies the torque applied by a swarm of particles on

a long aspect-ratio rod. We calculate the force and torque generated by a swarm that

has assumed a characteristic shape as a function of the direction the swarm moves. We

generalize these results for three canonical position distributions of a swarm: uniform,

triangular, and normal. The model shows that for a pivoted rod the uniform distribu-

tion produces the maximum torque for small swarm standard deviations, but the normal

distribution maximizes torque for large standard deviations.

Positioning is a foundational capability for a robotic system, e.g. placement of

brachytherapy seeds. 2D position of each particle in such a swarm is controllable if

the workspace contains a single obstacle the size of one particle [7]. However, requiring

a single, small, rigid obstacle suspended in the middle of the workspace is often an

unreasonable constraint, especially in 3D. This dissertation relaxes that constraint, and

provides position control algorithms for two particles that only require non-slip wall

contacts. We assume that particles in contact with the boundaries have zero velocity if

the uniform control input pushes the particle into the wall.
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Figure 1.4: Top left: Chapter 2 discusses steering a swarm of particles using global
inputs and swarm statistics. Top right: Chapter 3 goes deep into the torque
control. Bottom: Chapter 4 demonstrates algorithms to position two robots.

1.2 Dissertation organization

The dissertation is arranged as follows: Chapter 2 discusses steering a swarm of

particles using global inputs and swarm statistics. Chapter 3 goes deep into the torque

control of the swarm and orientation control of the object. Chapter 4 demonstrates

algorithms to control position of two robots in any convex workspace when the walls

have non-slip contact. We conclude in Chapter 5. Figure 1.4 shows a demonstration of

each chapter.
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Chapter 2

Steering a Swarm of Particles

Using Global Inputs and Swarm Statistics

2.1 Introduction

Large populations of micro- and nanorobots are being produced in laboratories

around the world, with diverse potential applications in drug delivery and construction,

see [2–4]. Limited computation and communication at small scales makes autonomous

operation or direct control over individual robots difficult. Instead, this chapter treats

the robots as particles that are steered by a global control signal broadcast to the entire

population. This chapter examines object manipulation by a swarm of particles, as

illustrated in Fig. 2.1. The transportation methodology is similar to that in [8], but

rather than using onboard computation or sensing, the particles all move in the same

direction.

Many promising applications for particle swarms require direct human control,

but user interfaces to thousands—or millions—of particles is a daunting human-swarm

interaction (HSI) challenge. Human control of large swarms is possible over a hundred

hardware robots and thousands of simulated particles [9].

This chapter presents swarm manipulation controllers inspired by our online ex-

periments that require only mean and variance measurements of the positions of the

particles. To perform the object manipulation task illustrated in Fig. 2.1, we use these

controllers as primitives, policy iteration for path planning, handle outliers by parti-

tioning the workspace, and minimize pushing the object backwards with potential field

navigation.
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Figure 2.1: A swarm of particles, all actuated by a uniform control input can be effec-
tively manipulated by a control law that uses only the mean and variance
of the robot distribution. Here a swarm of kilobots pushes a green hexagon
toward the goal.
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This chapter is an extended version of [10] and is organized as follows. After a

discussion of related work in Sec. 4.2, we describe our experimental methods for an

online human-user experiment and their results in Sec. 2.3. Next we prove that the

mean and variance of a particle swarm are controllable in Sec. 4.3, and present automatic

controllers in Sec. 4.7. We use these controllers as primitives and present a framework

for manipulating an object through a maze in Sec. 2.6. We implement these controllers

in our hardware robots and use them to complete an object manipulation task with 100

kilobots in Sec. 2.7, and conclude in Sec. 4.9.

2.2 Related work

This section describes global control challenges and reviews highlights of human-

swarm interaction, block pushing, and compliant manipulation.

2.2.1 Global control of microrobots

This dissertation investigates global control of particles that have no onboard com-

putation. This prevents us from applying controllers that require computation on the

agents, as in [11–13]. Another control paradigm is to construct robots with physical het-

erogeneity so that they respond differently to a global broadcast control signal. Examples

include scratch-drive microrobots, actuated and controlled by a DC voltage signal from a

substrate by [14, 15]; magnetic structures with different cross-sections that can be inde-

pendently steered by [16, 17]; MagMite microrobots with different resonant frequencies

and a global magnetic field by [18]; and magnetically controlled nanoscale helical screws

constructed to stop movement at different cutoff frequencies of a global magnetic field

by [19] and [2], similarly, exploiting inhomogeneity between robots [20, 21]. These con-

trol algorithms theoretically apply to any number of robots, even robotic continuums.

However, all these works never controlled more than twelve robots at a time because

8



process noise cancels the differentiating effects of robot inhomogeneity. We desire con-

trol algorithms that extend to many thousands of robots. Limited position control was

achieved by [22] and [23], but both used robots commanded in their local coordinate

frame. This chapter focuses on a more common paradigm: particles commanded in a

global coordinate frame.

While it is now possible to create many microrobots, there remain challenges in

control, sensing, and computation:

Control—global inputs Many micro- and nanorobotic systems, see [2–4, 14–19, 24]

rely on global inputs, where each robot receives an exact copy of the control signal. Our

experiments follow this global model.

Sensing—large populations n differential-drive robots in a 2D workspace require 3n

state variables. Even holonomic robots require 2n state variables. Numerous methods

exist for measuring this state in microrobotics [2, 4, 5]. These solutions use computer

vision systems to sense position and heading angle, with corresponding challenges of

handling missed detections and image registration between detections and robots. These

challenges increase at small scales where sensing competes with control for communica-

tion bandwidth. We examine control when the operator has access to partial feedback,

including only the first and/or second moments of a population’s position, or only the

convex-hull containing the robots.

Computation—calculating the control law There are controllers that require at

best a summation over all the robot states, see [21] and at worst a matrix inversion,

see [20]. These operations become intractable for large populations of robots. By focusing

on human control of large robot populations, we accentuate computational difficulties

because the controllers are implemented by the unaided human operator.
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2.2.2 Human-swarm interaction

Most humans are able to, with practice, steer a swarm of robots controlled by a

global input. Prior to this work, no algorithm existed. Using human input to learn

how to control a dynamic system is a line of research with a rich history [25, 26]. This

chapter exploits insights gained from SwarmControl.net , particularly the fact that having

a swarm’s mean and variance is sufficient for object manipulation through an obstacle

field.

A user interface enabling an operator to maneuver a swarm of robots through a

cluttered workspace by specifying the bounding prism for the swarm and then translating

or scaling this prism is designed in [27]. This chapter shares the concept of a global control

input, but our robots have no onboard computation and cannot track a virtual boundary.

Human fanout, the number of robots a single human user could directly control is

studied in [28]. They postulated that the optimal number of robots was approximately

the autonomous time divided by the interaction time required by each robot. Their

sample problem involved a multi-robot search task, where users could assign goals to

robots. Their user interaction studies with simulated planar robots indicated a fanout

plateau of about 8 robots, with diminishing returns for more robots. They hypothesized

the location of this plateau is highly dependent on the underlying task. Indeed, this

chapter indicates there are tasks without plateaus. Their research investigated robots

with three levels of autonomy. We use robots without autonomy, corresponding with

their first-level robots.

Several user studies compare methods for controlling large swarms of simulated

robots, for example [29–31]. These studies provide insights but are limited by cost to

small user studies; have a closed-source code base; and focus on controlling intelligent,

programmable agents. For instance, the studies [29], [30], and [31] were limited to a pool

of 5, 18, and 32 participants. Using an online testing environment, we conduct similar

10
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a b c

Figure 2.2: Screenshots from our online experiments controlling multi-particle systems
with limited, global control. (a) Varying the number of particles from 1-500
(b) Comparing 4 levels of visual feedback (c) Varying noise from 0 to 200%
of control authority.

studies but with sample sizes three orders of magnitude larger.

2.2.3 Block pushing and compliant manipulation

Unlike caging manipulation, where robots form a rigid arrangement around an

object, as in [32, 33], our swarm of robots is unable to grasp the blocks they push, and

so our manipulation strategies are similar to nonprehensile manipulation techniques,

e.g. [34], where forces must be applied along the center of mass of the moveable object.

A key difference is that our robots are compliant and tend to flow around the object,

making this similar to fluidic trapping as in [35] and [36].

Our n-robot system with 2 control inputs and 4n states is inherently under-actuated,

and superficially bears resemblance to compliant, under-actuated manipulators. Our

swarms conform to the object to be manipulated, but lack the restoring force provided

by flexures in [37] or silicone in [38]. Our swarms tend to disperse and so to regroup

them we require artificial forces like the variance control primitives in Sec. 2.4.3.
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2.3 Online experiment

The goal of these online experiments is to test several scenarios involving large-scale

human-swarm interaction (HSI), and to do so with a statistically-significant sample size.

Towards this end, we have created SwarmControl.net: an open-source, online testing

platform suitable for inexpensive deployment and data collection on a scale not yet seen

in swarm robotics research. Screenshots from this platform are shown in Fig. 2.2. All

code and experimental results are online at [39].

We developed a flexible testing framework for online human-swarm interaction

studies. Over 5,000 humans performed over 20,000 swarm-robotics experiments with this

framework, logging almost 700 hours of experiments. These experiments indicated three

lessons used for designing automatic controllers for object manipulation with particle

swarms:

1) When the number of particles is large (> 50), varying the number of particles

does not significantly affect the performance.

2) Swarm control is robust to independent and identically distributed (IID) noise.

3) Controllers that only use the mean and variance of the swarm can perform better

than controllers with full feedback.

2.3.1 Implementation

Our web server generates a unique identifier for each participant and sends it along

with the landing page to the participant. A script on the participant’s browser runs the

experiment and posts the experiment data to the server. Anonymized human subject

data was collected under IRB #14357-01.

We designed six experiments to investigate human control of large swarms for ma-

nipulation tasks. Screenshots of representative experiments are shown in Fig. 2.2. Each
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Figure 2.3: Data from Varying Number using particles to push an object through a maze
to a goal location.

experiment examined the effects of varying a single parameter: population of particles

for manipulation, four levels of visual feedback, different levels of Brownian noise. The

users could choose which experiment to try, and our architecture randomly assigned a

parameter value for each trial. We recorded the completion time and the participant ID

for each successful trial.

2.3.2 Varying number

This experiment varied from 1 to 500 the population of particles used to transport

an object. The total area, maximum particle speed, and total net force the swarm could

produce were constant. The particles pushed a large hexagonal object through an S-

shaped maze. We hypothesized participants would complete the task faster with more

particles. The results, shown in Fig. 2.3, do not support our hypothesis, indicating a

minimum around 130 particles, but only a gradual increase in completion time from 50

to 500.
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2.3.3 Varying visualization

This experiment explores manipulation with varying amounts of sensing informa-

tion: full-state sensing provides the most information by showing the position of all

particles; convex-hull draws a convex hull around the outermost particles; mean pro-

vides the average position of the population; and mean + variance adds a confidence

ellipse. Fig. 2.4 shows screenshots of the same particle swarm with each type of visual

feedback. Full-state requires 2n data points for n particles. Convex-hull requires at worst

2n, but according to Har [40], the expected number is O(2n1/3). Mean requires two, and

variance three, data points. Because they do not increase with population size, mean

and mean + variance are convenient even with millions of particles.

Our hypothesis predicted a steady decrease in performance as the amount of visual

feedback decreased. Our experiment indicated the opposite: players with just the mean

completed the task faster than those with full-state feedback. As Fig. 2.5 shows, the

levels of feedback arranged by increasing completion time are [mean, mean + variance,

full-state, convex-hull]. All experiments lasting over 300 s were removed, under the

assumption that the user stopped playing. Using ANOVA analysis, we rejected the

null hypothesis that all visualization methods are equivalent, with p-value 2.69× 10−19.

Anecdotal evidence from beta-testers who played the game suggests that tracking 100

particles is overwhelming—similar to schooling phenomenons that confuse predators—

Full-state Convex-hull Mean + var Mean

Figure 2.4: Screenshots from task Vary Visualization. This experiment challenges players
to quickly steer 100 particles (blue discs) to push an object (green hexagon)
into a goal region. We record the completion time and other statistics.
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while working with just the mean + variance is like using a “spongy” manipulator.

However, our beta-testers described convex-hull feedback as confusing and irritating since

it is not robust to outliers. A single particle left behind an obstacle will stretch the entire

hull, obscuring the majority of the swarm.
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Figure 2.6: Left: Varying the noise from 0 to 200% of the maximum control input re-
sulted in only a small increase in completion time. Right: For position con-
trol, increasing the number of particles resulted in longer completion times.
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2.3.4 Varying noise

This experiment varied the strength of disturbances to study how noise (disturbance

inputs) affects human control of large swarms. Noise was applied at every time step as

follows:

ẋi = ux +mi cos(ψi)

ẏi = uy +mi sin(ψi).

Here, mi and ψi were uniformly IID, with mi ∈ [0,M ] and ψi ∈ [0, 2π]. M was a constant

for each trial ranging from 0 to 200% of the maximum control power (umax).

We hypothesized 200% noise was the largest a human could be expected to control—

at 200% noise, the particles move erratically. Disproving our hypothesis, the results in

Fig. 2.6a show only a 40% increase in completion time for the maximum noise. This

indicates swarm control is robust to IID noise.

2.4 Global control laws for a holonomic swarm

Emboldened by the three lessons from our online experiments, this section presents

automatic controllers for large numbers of particles that only rely on the first two mo-

ments of the swarm position distribution.

We represent particles as holonomic robots (robots that can move freely in any

direction) that move in the 2D plane. We want to control position and velocity of the

particles. First, assume a noiseless system containing one particle with mass m. Our

inputs are global forces [ux, uy]
>. We define our state vector x(t) as the x position, x

velocity, y position and y velocity. The state-space representation in standard form is:

ẋ(t) = Ax(t) +Bu(t), (2.1)
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and our state space representation is:


ẋ
ẍ
ẏ
ÿ

 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



x
ẋ
y
ẏ

+


0 0
1
m

0
0 0
0 1

m

[uxuy
]
. (2.2)

We want to find the number of states that we can control, which is given by the

rank of the controllability matrix :

C = [B,AB,A2B,A3B]. (2.3)

Here C =


0 0
1
m

0
0 0
0 1

m

∣∣∣∣∣∣∣∣
1
m

0
0 0
0 1

m

0 0

∣∣∣∣∣∣∣∣
0 0
0 0
0 0
0 0

∣∣∣∣∣∣∣∣
0 0
0 0
0 0
0 0

 , (2.4)

rank(C) = 4, (2.5)

and thus all four states are controllable. This section starts by proving independent

position control of many particles is not possible, but the mean position can be con-

trolled. We then provide conditions under which the variance of many particles is also

controllable.

2.4.1 Independent control of many particles is impossible

In this model, a single particle is fully controllable. For holonomic particles, move-

ment in the x and y coordinates are independent, so for notational convenience without

loss of generality we will focus only on movement in the x axis. Given n particles to be

controlled in the x axis, there are 2n states: n positions and n velocities. Without loss

of generality, assume m = 1. Our state-space representation is:


ẋ1
ẍ1
...
ẋn
ẍn

 =


0 1 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1
0 0 . . . 0 0




x1
ẋ1
...
xn
ẋn

+


0
1
...
0
1

ux. (2.6)
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However, just as with one particle, we can only control two states because the controlla-

bility matrix Cn has rank two:

Cn =


0
1
...
0
1

∣∣∣∣∣∣∣∣∣∣∣

1
0
...
1
0

∣∣∣∣∣∣∣∣∣∣∣

0
0
...
0
0

∣∣∣∣∣∣∣∣∣∣∣

0
0
...
0
0

∣∣∣∣∣∣∣∣∣∣∣
. . .

 , rank(Cn) = 2. (2.7)

2.4.2 Controlling the mean position

This means any number of particles controlled by a global command have just two

controllable states in each axis. We cannot arbitrarily control the position and velocity

of two or more particles, but have options on which states to control. We create the

following reduced order system that represents the mean x position and velocity of the

n particles:

[
˙̄x
¨̄x

]
=

1

n

[
0 1 . . . 0 1
0 0 . . . 0 0

]

x1
ẋ1
...
xn
ẋn



+
1

n

[
0 0 . . . 0 0
0 1 . . . 0 1

]


0
1
...
0
1

ux. (2.8)

Thus: [
˙̄x
¨̄x

]
=

[
0 1
0 0

] [
x̄
˙̄x

]
+

[
0
1

]
ux. (2.9)

We again analyze the controllability matrix Cµ:

Cµ =

[
0
1

∣∣∣∣ 10
]
, rank(Cµ) = 2. (2.10)
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Thus the mean position and mean velocity are controllable.

There are several techniques for breaking the symmetry of the control input to

allow controlling more states, for example by using obstacles as in [9], or by allowing

independent noise sources as in [23].

We control mean position with a PD controller that uses the mean position and

mean velocity. [ux, uy]
> is the global force applied to each particle:

ux = Kp(xgoal − x̄) +Kd(0− ˙̄x),

uy = Kp(ygoal − ȳ) +Kd(0− ˙̄y). (2.11)

Kp is the proportional gain, and Kd is the derivative gain.

2.4.3 Controlling the variance

The variance, σ2
x, σ

2
y, of n particles’ position is:

x(x) =
1

n

n∑
i=1

xi, σ2
x(x) =

1

n

n∑
i=1

(xi − x)2,

y(x) =
1

n

n∑
i=1

yi, σ2
y(x) =

1

n

n∑
i=1

(yi − y)2. (2.12)

Controlling the variance requires being able to increase and decrease the variance.

We will list a sufficient condition for each. Microscale systems are affected by unmodelled

dynamics. These unmodelled dynamics are dominated by Brownian noise, as described

in [41]. To model this (2.1) must be modified as follows:

ẋ(t) = Ax(t) +Bu(t) +Wε(t), (2.13)

where Wε(t) is a random perturbation produced by Brownian noise with magnitude W .

Given a large obstacle-free workspace with u(t) = 0, a Brownian noise process increases

the variance linearly with time and can be calculated by

σ̇2
x(x(t),u(t)) = Wε, σ2

x(t) = σ2
x(0) +Wεt. (2.14)
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If faster dispersion is needed, the swarm can be pushed through obstacles such as a

diffraction grating or Pachinko board as in [9].

If particles with radius r are in a bounded environment with sides of length [`x, `y],

the unforced variance asymptotically grows to the variance of a uniform distribution,

[σ2
x, σ

2
y] =

1

12
[(`x − 2r)2, (`y − 2r)2]. (2.15)

A flat obstacle can be used to decrease variance. Pushing a group of dispersed

particles against a flat obstacle will decrease their variance until the minimum-variance

(maximum density) packing is reached. For large n, Graham and Sloane [42] showed

that the minimum-variance packing for n circles with radius r is

σ2
optimal(n, r) ≈

√
3

π
nr2 ≈ 0.55nr2. (2.16)

Thus, to control this variance, we choose

u(t) =

{
move to wall if σ2(x) > σ2

goal

move from wall if σ2(x) ≤ σ2
goal.

(2.17)

Similar to the PD controller in Eq. (3.32) that controls the mean particle position,

a controller to regulate the variance to σ2
ref is:

ux = Kp(xgoal(σ
2
ref)− x̄)−Kdv̄x +Ki(σ

2
ref − σ2

x) and (2.18)

uy = Kp(ygoal(σ
2
ref)− ȳ)−Kdv̄y +Ki(σ

2
ref − σ2

y). (2.19)

We call the gain scaling the variance error Ki because the variance, if unregulated,

integrates over time. This controller requires a vertical and a horizontal wall. Eq. (2.18)

assumes the nearest wall is to the left of the particle at x = 0, and chooses a reference

goal position such that the swarm, if uniformly distributed between 0 and `, would have

the correct variance according to (2.15):

xgoal(σ
2
ref) = `/2 = r +

√
3σ2

ref . (2.20)

If a wall to the right is closer, the signs of [Kp, Ki] are inverted, and the location xgoal is

translated. A similar argument applies to (2.19).
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2.4.4 Controlling both mean and variance

The mean and variance of the swarm cannot be controlled simultaneously. However,

if the variance gained while moving from a corner to the target position is less than some

σ2
max − σ2

min, we can adopt the hybrid, hysteresis-based controller shown in Alg. 1 to

regulate the mean and variance. Such a controller normally controls the mean position,

but switches to minimizing variance if the variance exceeds σ2
max. Variance is reduced

until less than σ2
min, then control again regulates the mean position. This technique

satisfies control objectives that evolve at different rates as in [43], and the hysteresis

avoids rapid switching between control modes. The process is illustrated in Fig. 2.7.

Algorithm 1 Hybrid mean and variance control

Require: Knowledge of swarm mean [x̄, ȳ], variance [σ2
x, σ

2
y], the locations of the rectan-

gular boundary {xmin, xmax, ymin, ymax}, and the target mean position [xtarget, ytarget].
1: xgoal ← xtarget, ygoal ← ytarget
2: loop
3: if σ2

x > σ2
max then

4: xgoal ← xmin

5: else if σ2
x < σ2

min then
6: xgoal ← xtarget
7: end if
8: if σ2

y > σ2
max then

9: ygoal ← ymin

10: else if σ2
y < σ2

min then
11: ygoal ← ytarget
12: end if
13: Apply (3.32) to move toward [xgoal, ygoal]
14: end loop

A key challenge is to select proper values for σ2
min and σ2

max. The optimal packing

variance was given in (2.16). The random packings generated by pushing our particles

into corners are suboptimal, so we choose the conservative values:

σ2
min = 2.5r + σ2

optimal(n, r),

σ2
max = 15r + σ2

optimal(n, r). (2.21)
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σ2(x) < σ2
min

σ2(x) > σ2
max

Figure 2.7: Hysteresis to control swarm mean and variance.

2.5 Simulation of control laws

Our simulations use a Javascript port of Box2D, a popular 2D physics engine with

support for rigid-body dynamics, including collision, density, and friction, and fixed time

step simulation [44]. All experiments in this section ran on a Chrome web browser on a

2.6 GHz Macbook. All code is available at [45].

Controlling the mean position We performed a parameter sweep using the PD

controller (3.32) to identify the best control gains. Representative experiments are shown

in Fig. 2.8. 100 particles were used and the maximum speed was 3 m/s. As shown in

Fig. 2.8, we can achieve an overshoot of 1% and a rise time of 1.52 s with Kp = 4, and

Kd = 1.

Controlling the variance Variance control uses the control law (2.18) with Kp,i,d =

[4, 1, 1]. Results are in Fig. 2.9.

Hybrid control of mean and variance Fig. 2.10 shows a simulation run of the

hybrid controller in Alg. 1 with 100 particles in a square workspace containing no internal

obstacles.
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gain values in (3.32) improves performance with n = 100 particles.
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2.6 Particle swarm object manipulation

Table 2.1: Summary, object manipulation results

Method Result (10 trials), mean±std (s)

Value Iteration (VI) 367 ± 253
VI + Potential Fields (PF) 271 ± 267

VI + Outlier Rejection (OR) 245 ± 135
BFS + PF + OR 183 ± 179
VI + PF + OR 90 ± 35

This section analyzes an object manipulation task attempted by our hybrid, hysteresis-

based controllers. The swarm must deliver the object to the goal region. We assume

Coulomb and viscous friction parameters such that the object can be moved by particle
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motion. Increasing the number of pushing particles increases the object speed. To solve

this object manipulation task we divide the task into three components: 1) designing a

policy for the object, 2) pushing the object with a compliant swarm, and 3) managing

outliers. Table 2.1 summarizes results for successful simulation trials.

2.6.1 Learning a policy for the object

To design the policy we first discretize the environment. In [6], we used breadth-first

search (BFS) on this discretized grid, but using workspace BFS fails to account for the

hull of the object and will suggest moves that can cause collisions with the workspace. A

configuration-space BFS approach avoids that problem but still fails to model uncertain

actuation of the object by the swarm.

To solve both these problems, this paper models object movement as a Markov

Decision Process (MDP) with non-deterministic movement. Value iteration is used to

learn an optimal policy [46]. At each state the object can be commanded to move in one

of eight directions with a small probability of moving in a wrong direction.

The reward function r(x,u) is defined as

r(x,u) =


+100, if u leads to goal state,
−100, if u leads to an obstacle state,
−1, otherwise

(2.22)

where x is the current state and u is the action. Value iteration computes V̂ (x), the

expected discounted sum reward if the optimal policy is implemented, for the object

starting in each state x. The optimal policy is

D(x) = arg max
u

[
r(x,u) +

N∑
j=1

V̂ (xj)p(xj|x,u)

]
. (2.23)

The value function V̂ (xi) is calculated by computing the value V̂ for all N states and

iterating until convergence:

for i = 1 to N do
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Figure 2.11: BFS finds the shortest path for the moveable object to compute gradient
vectors (left). Modeling as an MDP enables encoding penalties for being
near obstacles. (Middle) The control policy from value iteration. (Right)
The vision algorithm detects obstacles in the hardware setup.

V̂ (xi) = γmax
u

[
r(xi,u) +

N∑
j=1

V̂ (xj)p(xj|xi,u)

]

end. (2.24)

Our probabilistic motion model p(xj|x,u) assumed the object moved in the commanded

direction u half of the time but +45◦ with probability 0.25 and −45◦ with probability

0.25. In our experiments γ = 0.97, and (2.24) was iterated 200 times. A Matlab

implementation is available at [47].

MBFS and the value function are shown in Fig. 2.11. In 10 simulations with 100

particles, pushing the object to goal using BFS required 183±179 s while value iteration

required 90±35 s (mean±std).

2.6.2 Potential fields for swarm management with a compliant manipulator

When the swarm is in front of the object, control law (3.32) pushes the object

backwards. To fix this, we implement a potential field approach that attracts the swarm

to the intermediate goal, but repulses the swarm from in front of the object, as shown

in Fig. 2.12. The approach is similar to [48], chapter 5. The repulsive potential field is

centered at b, the object’s COM, and is active in a circular sector of angular width 2θ
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and radius d0 aligned with D(b). D(b) is the desired direction of motion from (2.23).

Therefore, we compute the goal locations with the following equations:

d = [x̄, ȳ]− b, φ = cos−1
(

D(b) · d
‖D(b)‖ · ‖d‖

)
,

Fatt = −ζ d

‖d‖
,

Frep =

{
η( 1
‖d‖ −

1
d0

) 1
‖d‖2 d, ‖d‖ ≤ d0 ∧ φ < θ

0, otherwise
,

Fpot = Fatt + Frep,

[xgoal, ygoal] = [x̄, ȳ] +
Fpot

‖Fpot‖
. (2.25)

Here η and ζ are positive parameters that scale the forces and ‖d‖ is the distance from

the swarm mean [x̄, ȳ] to the object COM. In simulations, θ = π/2, η = 75, ζ = 2 and

d0 = 3. Because the kilobots have a slower time constant, they use θ = π/2, η = 50,

ζ = 1 and d0 = 7.5.

In 10 simulations with 100 particles, pushing the object to goal without a repulsive

potential field failed in two of twelve runs. No failures occurred with the repulsive

potential field. Of successful trials, completion time without repulsive potential fields

required 245±135 s while using repulsive potential fields required 90±35 s (mean±std).

2.6.3 Outlier rejection

The variance controller in Alg. 1 is a greedy algorithm that is susceptible to outliers.

Our controller in [6] failed in 14% trials, in each failure some particles were unable to reach

the object because workspace obstacles were blocking them. This failure rate increases

if object weight increases or ground-particle friction increases. The mean and covariance

calculations (2.12) included all particles in the workspace. Particles that cannot reach the

object due to obstacles skew these calculations. The state machine in Fig. 2.13a solves

this problem by creating two states for the maze: either main or transfer. Each state
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Figure 2.12: (Left) The attractive field is centered behind the object’s COM. (Middle)
The repulsive field is centered at the object’s COM. (Right) Combining
these forces prevents the swarm from pushing the object backwards.

has a set of regions representing a discretized visibility polygon. Whenever the object

crosses a region boundary the state toggles. The main regions are generated by extending

obstacles until they meet another obstacle. The transfer regions are perpendicular to

obstacle boundaries, and act as a buffer between two main regions.

Fig. 2.13b shows the regions for the main state. The object is in region 1. An

indicator function is applied to (2.12) so only particles inside region 1 are counted.

This filtering increases experimental success because the mean calculation only includes

nearby particles that can directly interact with the object. When the object leaves main

region 1 the state switches to transfer. The transfer regions are shown in Fig. 2.13c.

The object is in transfer region 1, so only particles in transfer region 1 are included

in the mean and covariance calculations. The particles should push the object to the

left. Without filtering using regions, the red circle is the mean and the algorithm would

instruct the particles to push the object up. The black circle shows the filtered mean

and the algorithm instructs the particles to push the object directly left.

In 10 simulations with 100 particles, completion time without outlier rejection

required 271±267 s while using outlier rejection required 90±35 s (mean±std).
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Figure 2.13: Outlier rejection state machine and regions.

2.6.4 Simulation results

We use the hybrid hysteresis-based controller in Alg. 1 to track the desired position,

while maintaining sufficient particle density to move the object by switching to minimize

variance whenever variance exceeds a set limit: 0.003W and 0.006W were added to the

min and max variance limits from (2.21), where W is the magnitude of the Brownian

noise. The minimize variance control law (2.18) is slightly modified to choose the nearest

corner further from the goal than the object with an obstacle-free straight-line path to

the object. The control algorithm for object manipulation is listed in Alg. 2.

In rare cases during simulations the swarm may become trapped in a local minimum

of (2.25). If the swarm mean position does not change for five seconds, the swarm is
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Figure 2.14: The six equal-area objects tested in simulation.

assumed to be in a local minimum and is commanded to move toward the previous

corner. As soon as the mean position changes, normal control resumes.

Algorithm 2 Object-manipulation controller for a particle swarm.

Require: Knowledge of moveable object’s center of mass b; swarm mean [x̄, ȳ] and
variance [σ2

x, σ
2
y], each calculated using the regions function from §2.6.3; map of the

environment
1: Compute optimal policy for object, according to §2.6.1
2: while b is not in goal region do
3: σ2 ← max (σx, σy)
4: if σ2 > σ2

max then
5: while σ2 > σ2

min do
6: [xgoal, ygoal]← nearest corner in region
7: Apply (3.32) to move toward [xgoal, ygoal]
8: end while
9: else

10: Calculate D(b) . direction for object at b
11: Apply (2.25) . potential field for swarm
12: end if
13: end while

Fig. 4.23 shows snapshots during an execution of this algorithm in simulation.

To illustrate the flexibility of the algorithm we tested two additional workspaces, E-

shaped and Spiral, without changing the algorithm. These are shown in Fig. 2.16. More

complicated workspaces could be generated by composing these workspaces. Fig. 2.17
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t = 5 s  t = 45 s  t = 60 s  t = 85 s  t = 100 s  

Figure 2.15: Snapshots showing an object manipulation simulation with 100 particles
under automatic control (see also Extension 1).

shows the results of all three mazes. The E-shaped maze required the least average time

because the path to the goal is shorter. Experimental results of parameters sweeps are

summarized in Fig. 2.18. Each trial measured the time to deliver the object to the goal

location. The default parameter settings used 100 particles, a normalized weight of 1, a

hexagon shape, and Brownian noise (applied once each simulation step) with W = 5.

The interaction between the particles and object is impulsive so, like the study of

impulsive pulling in [49], adding additional particles decreases completion time, but with

diminishing returns. The effect of adding particles diminishes asymptotically because

additional particles have difficulty interacting with the object. Brownian noise adds

stochasticity. This randomness can break the object free if it is stuck, but diminishes

the effect of the control input. Increasing noise increases completion time. The particles

have limited force, so increasing the object weight increases completion time. Each shape

was designed to have the same mass and area. Rectangles and squares tend to get stuck

in the 90◦ workspace corners, and cause longer completion times than circles, triangles,

and hexagons.

2.7 Object manipulation with hardware robots

Our experiments use centimeter-scale hardware systems called kilobots. While those

are far larger than the micro scale devices we model, using kilobots allows us to emulate

a variety of dynamics, while enabling a high degree of control over robot function, the
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Figure 2.16: The control policies from value iteration for an E-shaped and a spiral
workspace are shown in the left column.

environment, and data collection. The kilobot is a nonholonomic, low-cost robot designed

for testing collective algorithms with large numbers of robot [50, 51]. It is available as

an open-source platform or commercially [52]. Each robot is approximately 3 cm in

diameter, 3 cm tall, and uses two vibration motors to move on a flat surface at speeds up

to 1 cm/s. Each robot has one ambient light sensor that is used to implement phototaxis,

moving towards a light source.
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Figure 2.17: Completion times for three workspaces.

2.7.1 Environmental setup

In these experiments as shown in Fig. 2.19, we used n=100 kilobots and a 1.5

m×1.2 m whiteboard as the workspace. LED floodlights were placed 1.5 m above the

table on the sides and corners of a square with 6 m sides. An Arduino Uno connected to

an 8-relay shield controlled the lights.

Above the table, an overhead machine vision system tracks the swarm. The vision

system identifies obstacles and the object by color segmentation, determines the corners

of the maze, and identifies robots using a circular Hough transform.

The objects were 3D printed from ABS plastic with a paper overlay. Shapes in-

cluded a 325 cm2 equilateral triangle, 324 cm2 square, 281 cm2 hexagon, 254 cm2 circle,
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Figure 2.18: Parameter sweep simulation studies for a) number of particles, b) different
noise values, c) object weight, and d) object shape. Each bar is labelled
with the number of trials. Completion time is in seconds.

and a 486 cm2 rectangle, all shown in Fig. 3.10. The laser-cut patterns for the neon

green fiducial markers on the robots and 3D files for objects are available at our github

repository [45].

2.7.2 Swarm mean control (hardware experiment)

Unlike the PD controller (3.32), we cannot command a force input to the kilobots.

Instead, control is given by turning on one of eight lights. The kilobots run a phototaxis

routine where they search for an orientation that aligns them with the light source, and

then move with an approximately constant velocity toward this light.

We use the sign of (3.32), and choose the closest orientation to D(b) among the

eight light sources. Fig. 2.20 shows that this limited, discretized control still enables

regulating the mean position of a swarm of 100 robots.
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Figure 2.19: Hardware platform. At right are the shapes used for hardware experiments
and a visualization of the potential field.
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Figure 2.20: Regulating mean x position of 100 kilobots using control law (3.32).

2.7.3 Automated object manipulation (hardware experiment)

Even though kilobots are nonholonomic, they performed five successful runs ma-

nipulating a hexagonal object through an obstacle maze. Videos of these runs are in

Extension 2. These hardware experiments represent the results of over 100 hours of tri-

als. Each trial used 100 kilobots. Trials two through five were performed in a row with

no failures in between. For each trial, fully charged kilobots were placed in the lower

left-hand of the workspace, as shown in Fig. 2.21. The moveable object was placed in the

lower center of the workspace. Matlab code for vision processing, the value iteration of

Sec. 2.6.1 and the algorithm of Sec. 2.6.4 is available on Matlab Central at [53]. Trials
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t = 3 s t = 410 s t = 710 s

t = 1374 s t = 2185 s t = 2703 s

Figure 2.21: Snapshots showing object manipulation experiment with 100 kilobots under
automatic control. The automatic controller generates a policy to the goal
(see Extension 2).

were run until the object COM entered the goal region. The trials ran for {1465, 3457,

3000, 2162, 2707} s. This is 2558± 771 s (mean±std).

We also tested other object shapes. A circular object completed in 3155 s. A

square object completed in 6871 s. A rectangle and three equilateral triangle objects

of varying sizes failed in a total of nine runs. Manipulation failures occurred when the

object was pushed into a corner, requiring torque to be unstuck. Swarm torque control

is the subject of our ongoing research begun in [54].
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2.8 Conclusion

The small size of micro and nano particles makes individual control and autonomy

challenging, so currently these particles are steered by global control inputs such as

magnetic fields or chemical gradients. To investigate this control challenge, this chapter

introduced SwarmControl.net, an open-source tool for large-scale user experiments where

human users steer swarms of robots to accomplish tasks. Analysis of the gameplay results

revealed benefits of measuring and controlling statistics of the swarm rather than full

state feedback, robustness to IID noise, and small effects of varying population size of

large swarms.

Inspired by the three lessons from SwarmControl.net, this paper designed con-

trollers and controllability results using only the mean and variance of a particle swarm.

We developed a hysteresis-based controller to regulate the position and variance of a

swarm. We designed a controller for object manipulation using value iteration for path

planning, regions for outlier rejection, and potential fields for minimizing moving the ob-

ject backwards. All automatic controllers were implemented using 100 kilobots steered

by the direction of a global light source. These experiments culminated in an object

manipulation task in a workspace with obstacles.

Our goal in the next chapter is to apply force and torque to components and ma-

nipulating them through obstacles and each other. This work provides foundational

algorithms and techniques for steering swarms, object manipulation, and addressing ob-

stacle fields.
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Chapter 3

Object Manipulation and Position Control

Using a Swarm With Global Inputs

3.1 Introduction

This chapter investigates maximizing torque applied by a large number of particles,

hereafter called a swarm, when the swarm has non-slip contact with a rigid, 2D body.

The under-actuated swarm is steered by a shared signal that consists of a vector direction

for movement. The robotic system is comprised of the swarm of particles, the shared

control signal, and an external sensor that measures the swarm position. This chapter

examines analytically two representative aspects of swarm torque control: first, pushing

a pivoted rod, and second pushing a free body. We conclude with hardware experiments

with centimeter-scale robots. Maximizing torque improves the efficiency of a particle

swarm.

With a single agent, torque control is straightforward: the agent simply maximizes

the length of the movement arm to maximize torque. To make an agent push open a

door, it should push on the edge furthest from the hinge. The optimal solution for a

swarm of particles is not straightforward because they cannot all push at one position.

This chapter focuses on maximizing torque using the swarm’s position distribution.

Representative results are shown in Fig. 3.1: torque control using 56 mobile robots on a

pivoted and a free object.
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Figure 3.1: (a) Simulation of robots exerting torque on a hinged “door”. (b) Orientation
control of a free long rod. (c) Hardware robots applying torque to an object.
See video attachment.
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3.2 Related work

Unlike caging manipulation, where robots form a rigid arrangement around an

object [32, 55], our swarm of particles is unable to grasp the blocks they push, and so

manipulation requires nonprehensile manipulation techniques, e.g., [34].

Robotic manipulation by pushing has a long and successful history [34,56–58]. Key

developments introduced the notion of stable pushes and a friction cone. A stable push

is a pushing operation by a robot with a flat-plate pushing element in which the object

does not change orientation relative to the pushing robot [34]. The friction cone is the

set of vector directions a robot in contact with an object can push that object with a

stable push. Stable pushes can be used as primitives in a rapidly-expanding random tree

to form motion plans. A key difference is that our robots are compliant and tend to flow

around the object, with similarities to fluidic trapping [35,36].

Though some particles self aggregate, e.g., ferrous particles tend to clump in a

magnetic field, many do not. The magnetotactic bacteria of [59, 60] are directed by the

orientation of the magnetic field and do not suffer from magnetic aggregation.

Controlling the shape, or relative positions, of a swarm of robots is a key ability for

a myriad of applications. Correspondingly, it has been studied from a control-theoretic

perspective in both centralized, e.g., virtual leaders in [61], and decentralized approaches,

e.g. decentralized control-Lyapunov function controllers in [62]. Most approaches assume

a level of intelligence and autonomy in the individual robots that exceeds the capabilities

of current micro- and nano-robots [59, 63]. Instead, this paper focuses on a centralized

technique that applies the same control input to each member of the swarm, as in [9].
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3.3 Torque control

We derive inspiration from recent work on pulling with a swarm [64]. The con-

tribution of this work is to map swarm distributions to torque production. To change

the output torque τ in (3.1), we can choose the direction and magnitude of the force

applied F , and the moment arm from the object’s center of mass (COM) O to the point

of contact P . We define a coordinate frame rooted at the COM, with the x-axis parallel

to the object’s longest axis. The resulting torque is:

τ = F × (P −O). (3.1)

We assume that the forces produced by individual particles add linearly. As [64] indicates,

this is often a simplification of the true dynamics. The swarm version of (3.1) is the

summation of the forces contributed by n individual particles:

τtotal =
n∑
i=1

ρiFi × (Pi −O) and (3.2)

Ftotal =
n∑
i=1

ρiFi. (3.3)

Here Fi is the force that the ith particle applies. Not all particles are in contact with

the object. ρi is an indicator variable: ρi = 1 if the particle is in direct contact with the

object or touching a chain of particle where at least one particle is in contact with the

object. Otherwise ρi = 0. The moment arm is the particle’s position Pi to the object’s

COM O = [Ox, Oy]
>. If all particles are identical and the control input is uniform, the

force is equivalent for every particle and so Fi equals some constant.

3.4 Instantiating torque from swarm distribution

Consider a swarm of particles whose marginal distribution along x has probability

density p(x), where x is defined as perpendicular to the object’s long axis. This section
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Table 3.1: Main results from Section 3.4 for maximizing torque with three common dis-
tributions.

Distribution The best µ to push Maximum possible torque

Pivoted Uniform µumax =

{
1−
√

3σ for σ < 1
2
√
3

1−
√

3σ < µ <
√

3σ for σ > 1
2
√
3

τumax =

{
1−
√

3σ for σ ≤ 1
2
√
3

1
4
√
3σ

for σ > 1
2
√
3

Pivoted Triangular µtmax =

{ √
12σ2 + 1−

√
6σ for 0 < σ < 1

2
√
3√

2
2

for σ ≥ 1
2
√
3

τtmax =

{
(1+12σ2)

3
2−1

18σ2 −
√

6σ for σ ≤ 1
2
√
3√

2−2+3
√
6σ

36σ2 for σ > 1
2
√
3

Free Uniform µufmax
=

{
1−
√

3σ for σ < 1
2
√
3√

3σ for σ > 1
2
√
3

τufmax
=

{
1−
√

3σ for σ ≤ 1
2
√
3

1
4
√
3σ

for σ > 1
2
√
3

Free Triangular µtfmax
=

{ √
12σ2 + 1−

√
6σ for σ < 2√

6

1 < µ <
√

12σ2 + 1−
√

6σ for σ ≥ 2√
6

τtfmax
=

{
(1+12σ2)

3
2−1

18σ2 −
√

6σ for σ < 2√
6

1
9σ2 for σ ≥ 2√

6

considers three canonical probability distributions: uniform, triangular, and normal, all

parameterized by mean µ and standard deviation σ. They are plotted in Fig. 3.2 and

described by:

pu(x) =

{
1

2
√
3σ
, for µ−

√
3σ ≤ x ≤ µ+

√
3σ

0, otherwise
, (3.4)

pt(x) =


x−µ+

√
6σ

6σ2 , for µ−
√

6σ ≤ x ≤ µ
−x+µ+

√
6σ

6σ2 , for µ < x ≤ µ+
√

6σ
0, otherwise

and (3.5)

pn(x) =
1

σ
√

2π
e−(x−µ)

2/2σ2

. (3.6)

The next sections examine where to steer the mean of the probability distribution to

maximize torque. We discuss two problems: pivoted object torque and free object torque.

All the results are summarized in Table 3.1, and the calculations are included in the

Mathematica file in the multimedia attachment.

3.4.1 Pivoted object torque

In this problem, the torque applied to a rod of length 1 pivoted at 0 when θ = 0 is

τp =

∫ 1

0

x p(x) dx. (3.7)
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Figure 3.2: Three distributions are examined in this work: uniform, triangular, and
normal. Each is plotted above with µ = 1 for representative σ values.
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Defining torque for distributions First, for simplicity of the following derivations,

the lower l and upper bound u are defined for the uniform distribution as

l = max(0, µ−
√

3σ) , u = min(1, µ+
√

3σ). (3.8)

Torque by a uniformly distributed swarm is

τup =
u2 − l2

4
√

3σ
. (3.9)

To simplify derivations for the triangular distribution, we define the bounds of integration

as

l1 = max(0, µ−
√

6σ) , l2 = max(0, µ), (3.10)

u1 = min(1, µ) , u2 = min(1, µ+
√

6σ).

Torque by a triangularly distributed swarm is

τtp =
τl + τr
36σ2

, (3.11)

where τl and τr are defined as:

τl = l1
2(2l1 − 3(µ−

√
6σ)) (3.12)

+ u1
2(2u1 − 3(µ−

√
6σ)),

τr = l2
2(2l2 − 3(µ+

√
6σ))

− u22(2u2 − 3(µ+
√

6σ)).

Torque by a normally distributed swarm is:

τnp =

(
e
µ2

2σ2 − e
(1−µ)2

2σ2

)
σ

√
2π

(3.13)

+
µ

2

(
erf

(
1− µ√

2σ

)
+ erf

(
µ√
2σ

))
.

The erf(·) is the error function. Torque is plotted as a function of µ for representative σ

values in Fig. 3.3.
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Maximum torque for distributions For a uniformly distributed swarm, the mean

position that maximizes torque on a pivoted object is:

µumax =

{
1−
√

3σ for σ < 1
2
√
3

1−
√

3σ < µ <
√

3σ for σ > 1
2
√
3

. (3.14)

As soon as the width of the uniformly distributed swarm is longer than the rod

(σ > 1
2
√
3
), there exists a range of optimal solutions: any µ such that the swarm covers

0 to 1.

The resulting torque is:

τumax =

{
1−
√

3σ for σ ≤ 1
2
√
3

1
4
√
3σ

for σ > 1
2
√
3

. (3.15)

For a triangularly distributed swarm, the mean position that maximizes torque is:

µtmax =

{ √
12σ2 + 1−

√
6σ for 0 < σ < 1

2
√
3√

2
2

for σ ≥ 1
2
√
3

. (3.16)

Thus the torque is:

τtmax =

{
(1+12σ2)

3
2−1

18σ2 −
√

6σ for σ ≤ 1
2
√
3√

2−2+3
√
6σ

36σ2 σ > 1
2
√
3

. (3.17)

For all distributions, the µ that maximizes torque if σ = 0 is 1. For the τp case,

the optimal µ moves in the −x direction, and for some distributions approaches a limit

as σ increases. This limit is µ =
√
2
2

for a triangularly distributed swarm. In a normal

distribution, the first derivative of (3.13) is:

dτ
dµ

=
1

2

(
erf

1− µ√
2σ

+ erf
µ√
2σ

)
− e

−(µ−1)2

2σ2

√
2πσ

. (3.18)

The limit as σ →∞ is 2−3µ
σ36
√
2π

which goes to zero as the swarm variance increases.

However, the zero of the numerator is µ = 2
3

which means as σ increases the best position

to push the rod asymptotically reaches µ = 2
3
.
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The central limit theorem explains why systems where all the particles have in-

dependent noise form a normal distribution. However, optimizing torque for a normal

distribution involves two error functions (erf). Instead, we have solved all the equations

for the triangular distribution. The numerical study illustrated in the left plot of Fig. 3.4

shows the triangular and normal distributions perform similarly.

3.4.2 Free object torque

In this problem, the torque applied to a free rod of length 2 from [−1, 0] to [1, 0],

is:

τf =

∫ 1

−1
x p(x) dx. (3.19)

a) Defining torque to a free rod for distributions:

To calculate free object torque for a uniformly distributed swarm, for simplicity of

derivations, lf and uf are defined:

lf = max(−1, µ−
√

3σ), uf = min(1, µ+
√

3σ). (3.20)

The torque applied by a uniformly distributed swarm is:

τuf =
u2f − l2f
4
√

3σ
for uf > lf . (3.21)

To simplify derivations for a triangularly distributed swarm, we define bounds of

integration as:

lf1 = max(−1, µ−
√

6σ), lf2 = max(−1, µ), (3.22)

uf1 = min(1, µ), uf2 = min(1, µ+
√

6σ).

The torque applied by a triangularly distributed swarm is:

τtf =
τfl + τfr

36σ2
, (3.23)

where τfl and τfr is defined as

τfl = uf1
2(2uf1 − 3(µ−

√
6σ))
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Figure 3.4: Best location to push and maximum torque plots for a pivoted object of
length 1, pivoted at 0. Generating code is in the attachment.
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− lf12(2lf1 − 3(µ−
√

6σ)),

τfr = −uf22(2uf2 − 3(µ+
√

6σ),

+ lf2
2(2lf2 − 3(µ+

√
6σ)).

The torque applied by a normally distributed swarm is:

τnf =

(
e
−(µ+1)2

2σ2 − e
−(µ−1)2

2σ2

)
σ

√
2π

+
1

2
µ

(
erf
(1− µ√

2σ

)
+ erf

(1 + µ√
2σ

))
. (3.24)

b) Maximum torque for distributions Maximum torque of a uniformly distributed

swarm to a free object has the same upper solution as with a pivoted object:

µufmax
=

{
1−
√

3σ for σ < 1
2
√
3√

3σ for σ > 1
2
√
3

. (3.25)

The major difference is the existence of only one solution for σ values for torque

on a free object. The left bound of the distribution must never be less than 0, or torque

applied left of the center will cancel torque to the right of the center. The maximum

torque produced is given by (3.15).

For a triangularly distributed swarm the optimal mean is:

µtfmax
=

{ √
12σ2 + 1−

√
6σ for σ < 2√

6

1 < µ <
√

12σ2 + 1−
√

6σ for σ ≥ 2√
6

. (3.26)

As with the uniform distribution in (3.14) the optimal solution with σ > 2√
6

has

a range of solutions. Setting µ = 1 maximizes force for the optimal torque. However,
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Figure 3.5: Best location to push and maximum torque plots for a free object of length
2, located from x = −1 to 1.
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moving the mean right reduces the negative torque applied by particles to the left of 0,

but this gain is canceled by a corresponding reduction in positive torque.

Therefore, the maximum torque is:

τtfmax
=

{
(1+12σ2)

3
2−1

18σ2 −
√

6σ for σ < 2√
6

1
9σ2 for σ ≥ 2√

6

. (3.27)

Again, for a normally distributed swarm, we have numerically found the maximum

torque and optimal pushing location µ. The results are closely approximated by the

upper bound solution for the triangular system. The results are plotted in Fig. 3.5.

3.5 Angle of repose

Consider a swarm of granular particles applying force to a rod. If the rod moves

slower than the particles, these particles will build up behind the rod in a characteristic

triangular shape defined by an apex angle. This piling up is common to all granular

media, and the angle formed is a function of the angle of repose. Three different values

of angle of repose is shown in Fig. 3.6. The center of mass of the rod is in the middle of

the rod, but center of mass of the granular particles changes for different values of angle

of repose. By measuring the angle of repose for the particles shown in the top plot of

Fig. 3.7, we can estimate the force and torque that the swarm is applying to the rod as

a function of the rod’s length, the angle of repose, and orientation of the rod. We define

the angle of repose as α, the rod’s orientation relative to 90◦ from the particle movement

vector as θ, and the rod’s length as `. By integrating over the triangular shape, the force

applied to the rod (when a unit area of particles produces 1 N of force) is:

F (θ, α, `) =

 −`2
(

cos(2θ)−cos(2α)
)

8 cosα sin θ
−α < θ < α

0 otherwise .

(3.28)
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faster than the rod.

(3.29)

The force for different angle of repose values are shown in the middle plot of Fig. 3.7.

Torque will also be similarly defined as

τ(θ, α, `) =

 `3

(
cos(2α)−cos(2θ)

)
sin θ

48 sin2 α
−α < θ < α

0 otherwise .

(3.30)

Torque is shown in the bottom plot of Fig. 3.7. Given sufficient particles to pile up to

the angle of repose, this torque tends to stabilize the object to be perpendicular to the

pushing direction. Force is maximized with θ = 0, but the θ value that maximizes torque

is a function of α:

θtmax =
sin(α)√

3
. (3.31)

To maximize the torque a particulate swarm applies on a thin rod, the swarm should

move in the direction −θtmax − 90◦ with respect to the long axis of the rod.
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Figure 3.7: Top plot shows colored particulate heaped up on pink-colored long rods.
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function of θ for four angle of repose values. The maximum torque values
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3.6 Simulation

This section examines three challenges for torque control of an object, arranged in

increasing difficulty. Each task uses a PD controller that regulates the swarm’s mean

position, as in [6]. The control input is the global force applied to each robot:

ux = Kp(goalx − x̄) +Kd(0− v̄x)

uy = Kp(goaly − ȳ) +Kd(0− v̄y) (3.32)

here Kp is the proportional gain, and Kd is the derivative gain. The swarm’s average

position is [x̄, ȳ]T and mean velocity is [v̄x, v̄y]
T . Each task uses a different algorithm to

select the swarm’s goal position [goalx, goaly]
T . The derivative gain Kd limits overshoot.

Maximizing torque on a pivoted body An object with a pivot point can rotate,

but not translate. A door is an example. If there was only one robot touching the object,

the robot should push at the point which maximizes the moment arm, at the extreme

end of the object furthest from the pivot point. The optimal pushing location provides

the maximum force, because it maximizes the distance r = ‖P −O‖ in (3.1). However,

given a swarm of robots, maximizing r is no longer the optimal solution. If the mean of

the swarm hits the object at the extreme edge, half of the robots will miss the object and

the swarm will be split. Because few robots remain, the force is significantly decreased

and torque is not maximized. In our simulation, the swarm applies torque until the

swarm’s mean position is beyond the object. Then the swarm will regather in a corner

before returning to torque control, a time-consuming task. The key parameter of interest

for a hinged door of length L is C, the position along the door where the mean of the

swarm will push. The goal position in (3.33) is set to:

goalx = Ox + C cos(Oθ)

goaly = Oy + C sin(Oθ), (3.33)
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Oθ = the orientation of the object’s major axis, measured from the world x-axis. Fig. 3.8

illustrates how different values of C result in different rates of turning. These simulations

tested C = {1/2, 3/4, 5/8, 1}L. The fastest turning rates occurred with C = 5/8L. Code

is available at [65].

Orientation of the object These simulations used a uniform density rectangle as

the object. This object was 30× larger than the robots. Using the pure torque control

discussed in the previous paragraph, the orientation of the object can be controlled

by applying force. The rectangular object is not pivoted, so it moves in addition to

rotating. The swarm still may split into multiple components. We use the hysteresis

variance control from [6] to gather the swarm when its variance grows too large. The

control law that chooses a goal position to regulate the orientation of the object is

goalx = Ox +Korient(Oθ − goalθ) cos(Oθ)

goaly = Oy +Korient(Oθ − goalθ) sin(Oθ) (3.34)

Here Korient is a positive gain on the control input.

Fig. 3.9 illustrates this controller with different starting positions. When the

plot traces are constant the swarm is no longer pushing the object and instead is being

regathered in a corner of the workspace.

3.7 Experiments

The previous sections assumed perfect transmission of force from each particle to

the object. Accurate swarm torque control is difficult. In 2D, a swarm of n particles has

2n degrees of freedom. The swarm, when steered toward an object, begins interacting

with the object at different times. The number of particles touching this object as a

function of time is difficult to predict and often impossible to directly measure. Stochas-
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Figure 3.8: Simulation results from a swarm applying force to a hinged door. The
swarm mean is steered toward a point C units along the object from the
pivot point. The red dashed line indicates the times that the swarm was in
variance control mode.

tic effects make long-term prediction challenging. Even when it is possible to predict

which particles will hit the object first, as particles interact with the object, the swarm’s

configuration changes. The challenge is not only limited to swarm-object interaction,

but also to swarm-swarm interactions when the swarm self-collides or is split into mul-

tiple components. As a result, the force the swarm will exert on the object is not easy

to predict. To demonstrate the analytical results from Section 3.4 hold, we performed

experiments using centimeter-scale hardware robots called Kilobots.

These allow us to emulate a variety of dynamics, while enabling a high degree of

control over robot function, the environment, and data collection. The Kilobot, from

[50,51], is a low-cost robot designed for testing collective algorithms with large numbers

of robots. It is available in an open source platform or commercially from [52]. Each

robot is approximately 3 cm in diameter, 3 cm tall, and uses two vibration motors to
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Figure 3.9: Plot demonstrating orientation control of a rectangular object. The green
line is the goal orientation. Other lines show different random starting posi-
tion of the swarm.

move on a flat surface at speeds up to 1 cm/s. Each robot has one ambient light sensor

that is used to implement phototaxis, moving towards a light source.

These experiments used up to n = 97 Kilobots, a glass-covered 1.5 m×1.2 m

whiteboard as the workspace, and 30 W and 50 W LED floodlights arranged 1.5 m

above the plane of the table at the midpoint of the east side of a 6 m square centered

on the workspace, as shown in Fig. 3.10. Above the table, an overhead machine vision

system tracks the position of the swarm. For the last two experiments, we designed the

object to rigidly hold the swarm, and programmed the robots to go straight.

3.7.1 Pushing a pivoted object

Fig. 3.12 shows snapshots of the experiment for a pivoted object at different mean

positions for the swarm when they are uniformly distributed. The object was designed

such that the Kilobots keep the starting uniform distribution with σ = 0.05L = 6.8 cm.
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Figure 3.10: Hardware platform: table with 1.5×1.2 m workspace, surrounded by eight
remotely triggered LED floodlights, with an overhead machine vision sys-
tem.

Kilobots were programmed to go straight so that they always apply force perpendicular

to the object. The results of different mean positions are shown in Fig. 3.11 for four

trials at µ = [0.5, 0.66, 0.8]. Mean positions near the optimal solution of (3.14) increase

torque.

The experiments from Section 4.7.a were manually demonstrated using this physical

swarm. Fig. 3.12 illustrates an experiment showing pure torque control with a swarm of

robots. In this figure a large-aspect-ratio rectangle (91×2 cm, colored pink in the image)

was hinged to one side of the table. Like a door, this object could only be moved around

this pivot. Two trials were performed. In each trial the swarm was initialized in the lower

right side of the table, and then commanded to push the object with the mean position of

the swarm directed toward a point distance C from the pivot point. Data was recorded
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Figure 3.11: Pivoted object using uniformly distributed Kilobots with σ = 0.05L =
6.8 cm, but different mean positions. Mean positions are normalized along
a rod of length 1.42 m.

for 150 seconds. In the first trial, C = L, so the robots were commanded to push the

door at the extreme edge of the door from the pivot. In the second trial C = 1/2L, and

so the swarm pushed the object in the center of the rectangle. As discussed in Section

4.7, the robots spread when commanded to push the object at the extreme end, and

half of the robots flowed past the end of the rectangle without engaging the rectangle.

This illustrates a key difference between robotic swarms and a single pusher robot. The

swarm exerts the most torque when (3.2) is maximized. (3.2) is maximized when the

majority of the swarm engages the object. For this reason in Fig. 3.13, the trial in the

second row of screenshots moves the door further than the trial in the first row.

3.7.2 Orientation control of a free object

Figure 3.14 shows snapshots of orientation control of a free rod using 97 Kilobots.

Kilobots were programmed to move toward the brightest light in the room. Therefore,
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Figure 3.12: Snapshots showing the effect of pushing a pivoted rectangular object at
different distances from the pivot point. The top row shows the frames
with the mean position is at 0.75 of the object length. The bottom row
show frames with swarm mean position µ = 1/2.

t = 0 s

t = 0 s

t = 30 s

t = 30 s

t = 120 s

t = 120 s

t = 150 s

t = 150 s

Figure 3.13: Snapshots showing the effect of pushing a pivoted rectangular object at
different distances from the pivot point. The top row of snapshots illustrate
the swarm pushing at the end of the object. The bottom row illustrates
that when the swarm pushes at the middle of the object the force provided
by the swarm remains constant.
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t = 0 s t = 10 s t = 60 s

t = 90 s t = 120 s t = 150 s

Figure 3.14: Snapshots showing orientation control of a free object using 97 hardware
robots that all get the same control input. Light direction is the global
control input and the robots are programmed to move toward the brightest
light in the environment.

the light is the global input. The goal orientation of the object changed periodically, and

the robots will go to a corner when the goal orientation is achieved.

3.8 Conclusion

This paper presented an analysis of torque applied by a swarm to a long rod. Three

distributions were studied: uniform, triangular and normal. Though particles are often

normally distributed, optimizing torque from normal distributions involves error func-

tions. We illustrated numerically that the triangular distribution well approximates the

normal distribution, and gave analytic solutions with uniform and triangular distribu-

tions. Analytic results for force and torque produced by granular media in configurations

defined by an angle of repose were also given.
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Chapter 4

Exploiting Non-Slip Wall Contacts to Position

Two Particles Using The Same Control Input

4.1 Introduction

Positioning is a foundational capability for a robotic system, e.g. placement of

brachytherapy seeds. 2D position of each particle in such a swarm is controllable if the

workspace contains a single obstacle the size of one particle [7]. However, requiring a

single, small, rigid obstacle suspended in the middle of the workspace is often an unrea-

sonable constraint, especially in 3D. This chapter relaxes that constraint, and provides

position control algorithms that only require non-slip wall contacts. We assume that

particles in contact with the boundaries have zero velocity if the uniform control input

pushes the particle into the wall.

The paper is arranged as follows. After a review of recent related work in Sec. 4.2,

Sec. 4.3 introduces a model for boundary interaction and two shortest path results for

representative workspaces. We provide an algorithm to arbitrarily position two particles

in Sec. 4.4. Section 4.7 describes implementations of the algorithms in simulation and

Sec. 4.8 describes hardware experiments, as shown in Fig. 4.1. We end with directions

for future research in Sec. 4.9.

This work analyses any convex workspaces and 3D positioning. This chapter also

implements the algorithms using a hardware setup inspired by the anatomy of the gas-

trointestinal tract.
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Figure 4.1: Workspace and magnetic setup for an experiment to position particles that
receive the same control inputs, but cannot move while a control input pushes
them into a boundary.

4.2 Related work

Controlling the shape, or relative positions, of a swarm of robots is a key ability

for a range of applications. Correspondingly, it has been studied from a control-theoretic

perspective in both centralized and decentralized approaches. For examples of each, see

the centralized virtual leaders in [61], and the gradient-based decentralized controllers

using control-Lyapunov functions in [62]. However, these approaches assume a level of

intelligence and autonomy in individual robots that exceeds the capabilities of many

systems, including current micro- and nano-robots. Current micro- and nano-robots,

such as those in [59,63,66] lack onboard computation.

This chapter focuses on centralized techniques that apply the same control input to

both particles. Precision control requires breaking the symmetry caused by the uniform

input. Symmetry can be broken using particles that respond differently to the uniform

control signal, either through agent-agent reactions [67], or engineered inhomogeneity
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[23, 68, 69]. The magnetic gradients of MRI scanners are uniform, meaning the same

force is applied everywhere in the workspace [70]. This work assumes a uniform control

with homogenous particles, as in [7], and breaks the control symmetry using obstacles in

the workspace.

Alternative techniques rely on non-uniform inputs, such as artificial force-fields.

Applications have included techniques to design shear forces for sensorless manipulation

of a single object by [71]. [72] demonstrated a collection of 2D force fields generated by

six degree-of-freedom vibration inputs to a rigid plate. These force fields, including shear

forces, could be used as a set of primitives for motion control to steer the formation of

multiple objects.

Similarly, much recent work in magnet control has focused on exploiting inhomo-

geneities in the magnetic field to control multiple micro particles using gradient-based

pulling [73, 74]. Unfortunately, using large-scale external magnetic fields makes it chal-

lenging to independently control more than one microrobot unless the distance between

the electromagnetic coils is at the same length scales as the robot workspace [73–75].

In contrast, this chapter requires only a controllable constant gradient in orthogonal

directions to position the particles.

If a control input causes the particles to collide with obstacles at different times,

inverting the control input does not undo the action. Due to this lack of time-reversibility,

techniques that require a bidirectional graph, e.g., PRM [76] and RRT* [77] are not

suitable. Instead, this chapter employs a greedy search strategy.

4.3 Theory

In the absence of obstacles, uniform inputs move a swarm identically. Independent

control requires breaking this symmetry. The following sections examine using non-slip

boundary contacts to break the symmetry caused by uniform inputs. Our algorithms
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rely on holding one particle stationary by pushing it into the boundary while moving the

other particle. We start with a boundary interaction model in subsection 4.6.2.

For some configurations, we can obtain the optimal solution. Subsections 4.3.2 and

4.3.3 provide shortest-path results for two representative workspaces, squares and disks.

4.3.1 Boundary interaction model

The system dynamics represent particle swarms in low-Reynolds number environ-

ments, where viscosity dominates inertial forces and so velocity is proportional to input

force [78]. In this regime, the input force command u(t) controls the velocity of the

particles. If the ith particle has position xi(t) and velocity ẋi(t), we assume the following

system model:

ẋi(t) = u(t) + F (xi(t),u(t)) , i ∈ [1, n]. (4.1)

F (xi(t),u(t)) =

−u(t)
xi(t) ∈ boundary and

N(boundaryxi(t)) · u(t) ≤ 0
,

0 else.

Here F (xi(t),u(t)) is the frictional force provided by the boundary, and N(boundaryxi(t))

is the normal to the boundary at position xi(t).

The same model can be generalized to particles moved by fluid flow where the vector

direction of fluid flow u(t) controls the velocity of particles, or for a swarm of particles

that move at a constant speed in a direction specified by a uniform input u(t) [50].

As in our model, fluid flowing in a pipe has zero velocity along the boundary. Similar

mechanical systems exist at larger scales, e.g. all tumblers of a combination lock move

uniformly unless obstructed by an obstacle. Our control problem is to design the control

inputs u(t) to deliver two particles to goal positions.
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Figure 4.2: The shortest three-move path that reconfigures two particles has the prop-
erty that the incident angle equals the reflected angle.

4.3.2 Example: shortest path in a square workspace

Changing the relative positions of particles in any workspace requires making one

particle contact the boundary. If the goal configuration cannot be reached in one move

but can be reached in three moves, the shortest path has a simple solution. The first

move, m1, makes one particle contact a wall, m2 adjusts the relative spacing error to

zero, and m3 takes the particles to their final positions. m2 cannot be shortened, so

optimization depends on choosing the location where the particle contacts the wall.

Since the shortest distance between two points is a straight line, reflecting the goal

position across the boundary wall and plotting a straight line gives the optimal contact

location, as shown in Fig. 4.2. There are four walls, and four candidate solutions, but

some candidate solutions may be invalid because a different boundary is hit before the

desired first contact position in move m1 (light grey regions) or invalid because m2 cannot

generate the goal relative spacing (dark grey regions).

This optimization result was implemented in our previous work using a square

workspace [79]. Fig. 4.3 shows solutions from a Mathematica implementation in a square
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workspace for six representative configurations.

4.3.3 Shortest path in unit disk that intersects circumference

The shortest path between two points in the unit disk that intersects the circum-

ference is composed of two straight line segments and has an optimal contact point,

as shown in Fig. 4.4. The problem can be simplified by choosing the coordinate sys-

tem carefully. We define the x-axis along the line from the circle center to the starting

point: S = (s, 0), and define the point of intersection by the angle θ from the x-axis:

P = (cos θ, sin θ). Define the final point E by a radius e and angle β: E = e(cos β, sin β).

Then the length of the two line segments is√
(s− cos θ)2 + sin2 θ +

√
(e cos β − cos θ)2 + (e sin β − sin θ)2, (4.2)

which is minimized by choosing an appropriate θ value.

The length of the two line segments as a function of θ is drawn in the right plot of

Fig. 4.4. There are several simple solutions. If s is 1 or e is 0 or β is 0, the optimal angle

θ∗ is 0. If e is 1 or s is 0, the optimal angle is β. Label the origin O. The optimal path

satisfies the law of reflection off the unit circle, with angle of incidence equal to angle of

reflection. The angle 6 OPS (from the origin to P to S) is the same as the angle 6 OPE

(from the origin to P to E). We name these angles α. This can be proved by drawing

an ellipse whose foci are S and E. When the ellipse is tangent to the circle, the point of

tangency is P . Since the distance from the origin to P is always 1, we can set up three

equalities using the law of sines: From triangle OSP : sinα
s

= sin(α+θ)
1

= sin θ
||SP || , and from

triangle OEP : sinα
e

= sin(β−θ)
||EP || . If we mirror the point S about line OP and label this

point C, from triangle CEO: sin(α+θ)
e

= sin(2θ−β)
||CE|| .

Simplifying this system of equations results in s = e csc θ(s sin(2θ−β)+sin(β−θ)).

Solving this last equation results in a quartic solution that has a closed-form solution

with four roots, each of which can be either a clockwise or a counterclockwise rotation θ,
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Figure 4.3: Frames from an implementation of Alg. 3: two particle positioning using
walls with non-slip contacts.
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depending on the sign of β, with −π ≤ β ≤ π. We evaluate each and select the solution

that results in the shortest length path. For an interactive Mathematica demonstration

of this shortest path, see [80]. Because the closed form solution is long, it is included in

the paper attachments.

4.4 Position control of two particles using boundary interaction

This section presents algorithms that use non-slip contacts with walls to arbitrarily

position two particles in a convex workspace. Workspaces are 2D convex polygons with no

internal obstacles. Assume two particles are initialized at s1 and s2 with corresponding

goal destinations g1 and g2. Denote the current positions of the particles p1 and p2.

Values .x and .y denote the x and y coordinates, i.e., p1.x and p1.y denote the x and y

locations of p1. Algorithm 3 can now handle any convex workspace, including the special

limit case of a circular workspace. In the last subsection we present techniques to control
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3D positioning of two particles.

4.4.1 ∆ configuration space

The configuration space for two particles is a four dimensional manifold. Trans-

lating both particles the same amount is a trivial operation, but changing the relative

positions requires boundary interaction. For this reason, our algorithms use the two

dimensional ∆ configuration space. The ∆ configuration space is a set of all possible ∆p

values, defined as the difference in position of the first particle from the second particle:

∆p = p2 − p1. We use the ∆ configuration space to plan move sequences that achieve

the desired relative spacing. Once the particles have the correct relative spacing, they

can be delivered to the goal configuration in one move.

The ∆ configuration space for an n-sided convex polygon P can be constructed

in a method analogous to computing configuration space obstacles for polygons [81].

Translate n copies of P so that each copy moves a different vertex of P to (0, 0). Because

P is convex, the convex-hull of all these translated vertices is the boundary of the ∆

configuration space. For an n-sided convex polygon, the ∆ configuration space is a 2n-

sided convex polygon. Even-sided regular polygons are a special case in which half the

sides align and the ∆ configuration space is n-sided. An example ∆ configuration space

construction is shown in Fig. 4.5: a four-sided workspace is on the left, the four translated

copies with dashed lines outlining the convex hull is in the middle, and the resulting ∆

configuration space is on the right.

4.4.2 Two particle path planning

The 2-move reachable set is the locus of points in the ∆ configuration space corre-

sponding to any two-move sequence where the first move brings one particle into contact

with the boundary, and the second move translates the second particle without moving
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the first. For the given ∆s (starting configuration), the rightmost image of Fig. 4.5 draws

the 2-move reachable sets in transparent blue. Figure 4.6 shows the starting and ending

relative positions as ∆s and ∆g in the ∆ configuration space. The next subsections give

procedures to compute the 2-move reachable set.

The goal is to move the particles within δ of the goal positions using a shared

control input where δ is an arbitrary small number. We do this by first moving them

within δ of the correct relative position and then translating the particles to the goal.

The relative position is ||∆g −∆p||= ||(g2 − g1)− (p2 − p1)||.

Algorithm 3 assigns a uniform control input at every instance. It first computes

the 2-move reachable set. If the goal relative position is in the 2-move reachable set, we

move particles to achieve that relative position. If it is not in the 2-move reachable set,

we move particles to achieve the closest point on this reachable set from ∆g, which is

∆gc.

Achieving a ∆gc configuration requires two-moves, the first to move until one par-

ticle touches a wall, and the second to adjust the relative spacing. Once the correct

relative position has been achieved, a final translation delivers both particles to their

goal destinations. Otherwise, we iterate until we reach the goal.

4.4.3 Convex polygonal workspaces: 2-move reachable set

Figure 4.6 shows six workspaces, their ∆ configuration spaces, and the 2-move

reachable sets that correspond to representative initial conditions. Figure 4.7 highlights

the construction of the 2-move reachable sets for a square workspace. There are four 2-

move reachable sets, but the horizontal (and vertical) reachable sets are equivalent in the

∆ configuration space so we can plan in this space and choose between the two options

to minimize the total distance. Algorithm 4 computes the 2-move reachable set for any

convex workspace. The set is constructed by considering each edge of the workspace. We
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Algorithm 3 2-ParticlePathPlanning(s1, s2, g1, g2, P, ε)

Require: knowledge of starting (s1, s2) and goal (g1, g2) positions of two particles. P is
a description of the workspace. ε is a positive error bound.

1: (p1, p2)← (s1, s2) . p1, p2 are current positions
2: moves ← {}
3: ∆p← p2 − p1
4: ∆g ← g2 − g1
5: while ||∆p−∆g||> ε do
6: RSET ← Compute 2-move reachable set . use Alg. 4 or 5
7: ∆gc ←nearest point in RSET to ∆g
8: m←move-to-wall corresponding to ∆gc
9: moves ← Append m to moves

10: (p1, p2) ← ApplyMove m to (p1, p2)
11: ∆p← p2 − p1
12: end while
13: moves ← Append g2 − p2 to moves . translate to goal
14: return moves
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Figure 4.5: Workspace and ∆ configuration space is shown for an arbitrary convex poly-
gon with n = 4 sides. The 2-move reachable sets for this initial configuration
(shown by square markers) are drawn in transparent blue.

name each vertex as pi where 1 ≤ i ≤ n. If one particle contacts edge pipi+1 before the

other (one particle will always contact before the other unless the particles are parallel

to the wall), the corresponding 2-move reachable set is a polygon, constructed in lines

2-13 of Alg. 4. The union of these polygons for all n sides is the 2-move reachable set of

∆ configurations. Figure 4.8 illustrates the procedure to construct the 2-move reachable
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set generated by collisions with the pipi+1 edge.

Algorithm 4 ReachableSetPolygon(s1, s2, g1, g2, P )

Require: knowledge of starting (s1, s2) and goal (g1, g2) positions of two particles. P is
a list of the vertices of a convex polygon.

1: RSET←{}
2: for pi in P do
3: p′i ← s1 + s2 − pi
4: p′i+1 ← s1 + s2 − pi+1

5: L← p′ip
′
i+1 . line (p′i, p

′
i+1)

6: li, li+1 ← intersections of L and polygon P
7: if p′i not inside polygon P then
8: p′i ← li
9: end if

10: if p′i+1 not inside polygon P then
11: p′i+1 ← li+1

12: end if
13: D ← s2 − s1 − ([li, vmin, ..., pi]− p′i,

[pi+1, pi+2, ..., vmax, li+1]− p′i+1)
14: RSET ← Append polygon D to RSET

15: end for
16: Return RSET
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. ..
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Polygon generated by first contacts along pipi+1

Figure 4.8: Steps to generate the 2-move reachable set when one particle collides with
edge pipi+1 of a convex polygonal workspace.
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shown in the ∆ configuration as a blue region.
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4.4.4 Circular workspaces: 2-move reachable set

To compute the 2-move reachable set for a circular workspace, first consider all

possible first contact locations. The set of boundary points that a particle can touch

before the other particle touches are two arcs from ψmin to ψmax and from π + ψmin to

π + ψmax:

ψ ∈ [ψmin, ψmax] = θ+
[
sin−1

(
d12
2r

)
− π

2
, π
2
− sin−1

(
d12
2r

)]
, (4.3)

where d12 = ||s1 − s2||, r is the radius of the workspace, and the angle between two

particles is θ = arctan(p1.x−p2.x
p1.y−p2.y ).

A circle has an infinite number of sides, thus infinite reachable sets. However, the

2-move reachable set can be parameterized by the angle of first contact location ψ, as

shown in Fig. 4.9.

Each ψ value generates a 2-move reachable set that is a chord of the disk, with

interior angle γ parameterized by ψ:

γ(ψ) = cos−1
(

1− d⊥(ψ)

r

)
, where: (4.4)

d⊥(ψ) = 2||s1.pψ(ψ)− s2.pψ(ψ)|| and (4.5)

pψ(ψ) = r[cos(ψ), sin(ψ)]. (4.6)

The 2-move reachable sets with π difference in ψ value are equivalent in the ∆ configu-

ration space. The reachable ∆ configuration set for any first contact point defined by ψ

is the area under a chord from angle ψ− γ(ψ)
2

to ψ+ γ(ψ)
2

, for a circle of radius r centered

at c = r(cos(ψ−π), sin(ψ−π)). Two such chords are drawn in red and green in Fig. 4.9.

The equations for the four lines outlining the union of two-move reachable sets are

as follows:

l1 = r
(

cosψmin − cos(γ + ψmin) (4.7)

+ sinψmin − sin(γ + ψmin)
)

0 < γ < γ(ψmin),
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l2 = r
(

cosψmax − cos(γ + ψmax)

+ sinψmax − sin(γ + ψmax)
)

γ(ψmax) < γ < 0,

l3 = r
(

cosψ − cos(ψ + γ(ψ))

+ sinψ − sin(ψ + γ(ψ))
)

ψmin < ψ < ψmax,

l4 = r
(

cosψ − cos(ψ − γ(ψ))

+ sinψ − sin(ψ − γ(ψ))
)

ψmin < ψ < ψmax.

We combine these boundaries to compute the 2-move reachable set summarized in Alg. 5.

The motion-planner finds a ψ that would enable us to reach ∆gc, the nearest point in

the 2-move reachable set to ∆g. We first check if ∆gc is in the ∆ configuration space

chords defined by either ψmin or ψmax using the following two tests:

(∆gc.x− c.x)2 + (∆gc.y − c.y)2 > r2 and (4.8)

(c.x−∆gc.x) cosψ + (c.y −∆gc.y) sinψ > r cos γ.

If ∆gc is not in either chord, we draw a line from ∆gc to the current relative

position, ∆p. This line is a chord of the circle centered at c. The ψ to this chord obeys:

ψ = tan−1
(∆p.x−∆gc.x

∆p.y −∆gc.y

)
. (4.9)

The particles achieve ∆gc in two moves. The first move causes one particle to touch

the wall at pψ, (4.6). The second move achieves the required relative position.

4.4.5 3D workspaces: cylinders and prisms

Extending path planning to 3D is possible only if the two particles do not initially

have the same x and y positions. For ease of analysis, we assume the workspace bound-

aries extend in the ±z direction to form either right cylinders or right prisms. If the 3D
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Algorithm 5 ReachableSetCircle(s1, s2, g1, g2)

Require: knowledge of starting (s1, s2) and goal (g1, g2) positions of two particles.
1: Calculate ψmin and ψmax . use (4.3)
2: Calculate γ(ψ) . use (4.4)
3: Calculate l1, l2, l3, l4 . use (4.7)
4: Return the union of (l1, l2, l3, l4)

z

x

y

z

x

y

Figure 4.10: Illustration on how boundary contacts enable 3D positioning. Once one
particle contacts a boundary, the other particle’s 2-move reachable set is a
prism formed by extending the 2D 2-move reachable set in the ±z direction.

projection is at a different angle, redefine the 2D workspace as a region perpendicular

to the projection. First, we move the closest particle to the boundary, which prevents

its z-coordinate from changing. We next apply actuation in either the ±z direction to

achieve the desired ∆z. Then the particles are actuated away from the boundary and

to the appropriate z positions. Path planning continues using Alg. 3 to position the

particles to the desired x and y positions. As an example, consider Fig. 4.10 which shows

a cylindrical workspace. The blue particle starts in the blue disk and the red particle

starts in the red disk. The two candidate shortest-length paths that touch the wall are

shown with parallel arrows. Each arrow will cause one of the particles to touch the wall,

enabling the other particle to move freely in the z-axis to achieve the required relative
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position. This can be extended to other 3D workspaces if the workspace can be locally

approximated as a 3D prism or cylinder. Other workspaces may be better handled by

other path planners, such as [7], which used collisions with protrusions of the workspace

to rearrange particles.

4.5 Position control of n robots using boundary interaction

The ideas from Alg. 3 can be extended to control the position of n particles using

walls with non-slip contact. The solution is complete, but not optimal, and requires the

starting and final configurations of particles to be disjoint. The solution described here

is an iterative procedure with n loops. The kth loop moves the kth robot from a staging

zone to the desired position in a build zone. All robots move according to the uniform

input, but due to non-slip wall contacts, at the end of the kth loop, robots 1 through k

are in their desired final configuration in the build zone, and robots k+ 1 to n are in the

staging zone. See Fig. 4.11 for a schematic of the build and staging zones.

Assume an open workspace with four axis-aligned walls with non-slip contact. The

axis-aligned build zone of dimension (wb, hb) containing the final configuration of n robots

must be disjoint from the axis-aligned staging zone of dimension (ws, hs) containing the

starting configuration of n robots. Without loss of generality, assume the build zone is

above the staging zone. Let d be the diameter of the particles. Furthermore, there must

be at least ε space above the build zone, ε below the staging zone, and ε+d to the left of the

build and staging zone. The minimum workspace is then (ε+d+max(wb, ws), 2ε+hs, hb).

The n robots position control algorithm relies on a DriftMove(α, β, ε, θ) control

input, described in Alg. 7 and shown in Fig. 4.12. For θ = 0◦, a drift move consists

of repeating a triangular movement sequence {(β/2,−ε), (β/2, ε), (−α, 0)}. Any particle

touching a top wall moves right β units, while every particle not touching the top moves

right β − α.
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Figure 4.11: Illustration of Alg. 6, n robot position control using walls with non-slip
contact.
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Figure 4.12: A DriftMove(α, β, ε, 0◦) repeats a triangular movement sequence
{(β/2,−ε), (β/2, ε), (−α, 0)}. At the sequence end, robot A has moved
β units right, and robot B has moved β − α units right.

Let (0, 0) be the lower left corner of the workspace, pk the x, y position of the kth

robot, and fk the final x, y position of the kth robot. Label the robots in the staging

zone from left-to-right and bottom-to-top, and the fk configurations top-to-bottom and

right-to-left as shown in Fig. 4.13.

Algorithm 6 PositionControlnRobots(k)

1: Move( −ε, d/2− pky)
2: while pkx > d/2 do
3: DriftMove(ε,min(pkx − d/2, ε), ε, 180◦)
4: end while
5: m← ceil(

fky−d/2
ε

)

6: β ← fky−d/2
m

7: α← β − d/2−pky−ε
m

8: for m iterations do
9: DriftMove(α, β, ε, 90◦)

10: end for
11: Move (d/2 + ε− fkx, 0)
12: Move (fkx − d/2, 0)

Algorithm 7 DriftMove(α, β, ε, θ)

particles touching the wall move β units, while particles not touching the wall move β−α
units.

1: R =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
2: Move(R · [β/2,−ε]>)
3: Move(R · [β/2, ε]>)
4: Move(R · [−α, 0]>)
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Alg. 6 proceeds as follows: First, the robots are moved left away from the right

wall, and down so all robots in kth row touch the bottom wall. Second, a set of DriftMoves

are executed that move all robots in kth row left until k touches the left wall, with no net

movement of the other robots. Third, a set of DriftMoves are executed that move only

robot k to its target height and return the other robots to their initial heights. Fourth,

all robots except robot k are pushed left until robot k is in the correct relative x position

compared to robots 1 to k− 1. Finally, all robots are moved right until robot k is in the

desired target position. Running time is O(n(w + h)).

The hardware platform depicted in Fig. 4.13 is an assembled practical setup that

assumes that ε = 1 cm. The workspace is a 7 × 7 cm grid space. All particles are

3D-printed plastic whose top is a 1cm diameter cylinder with a narrower base that

encapsulates a steel bearing ball. Non-slip wall contact is generated by a toothed wall

design to keep particles from moving out of place while implementing the drift move.

The workspace boundary is mounted on top of a white sheet of cardboard. Underneath

the cardboard, a grid of 3mm diameter magnets glued with 1 cm spacing to a thin board

generates the uniform control input. A video attachment shows the algorithm at work.

This discretized setup requires several modifications to Alg. 6. In this demonstration, all

moves are 1 cm in length. All drift moves are a counterclockwise square move of size 1

cm×1 cm. Once the kth particle gets to its designated location in each loop, a correction

step is implemented. This correction step increases by two the total number of moves

required per particle. Fig. 4.11 shows there are only 6 stages per particle involved in

Alg. 6. The fixed step algorithm requires 8 stages per particle as shown in Fig. 4.13.

A significant difference between Alg. 6 and the fixed move implementation of it is

that Alg. 6 enables placing particles at arbitrary, non-overlapping locations, while the

fixed move implementation requires goal locations at the center of grid cells.
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Figure 4.13: Illustration of Alg. 6, discretized n robot position control using walls that
enforce non-slip contact.

4.6 Covariance control

Covariance control as well as mean position and variance control is needed when

the swarm is moving through narrow passageways. This section discusses ideas to control

covariance of the swarm using boundaries.

4.6.1 Using boundaries: stable configurations of a swarm

One method to control a swarm’s shape in a bounded workspace is to simply push

in a given direction until the swarm conforms to the boundary. Like fluid settling in a

tank, the stable final configuration minimizes potential energy.
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Figure 4.15: Pushing the swarm against a circular boundary wall allows limited control of
the shape of the swarm, as a function of the fill level h and the commanded
movement direction β. Left plot shows locus of possible mean positions for
four values of h.

Square workspace We first examine the mean (x̄, ȳ), covariance (σ2
x, σ

2
y, σxy), and

correlation ρxy of a large swarm of robots as they move inside a square workspace under

the influence of a force pulling in the direction β. The swarm is large, but the robots are

small in comparison, and together occupy a constant area A, A ∈ [0, 1]. Under a global

input, the swarm moves to a side of the workspace and forms a polygonal shape that

minimizes potential energy, as shown in Fig. 4.14, see also [82].
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The range for the global input angle β is [0,2π). In this range, the swarm assumes

eight different polygonal shapes. These shapes alternate between triangles and trapezoids

when the area A<1/2, and between squares with one corner removed and trapezoids when

A>1/2.

Computing means, variances, covariance, and correlation requires integrating over

R, the region containing the swarm:

x̄ =

∫∫
R
x dx dy

A
, ȳ =

∫∫
R
y dx dy

A
, (4.10)

σ2
x =

∫∫
R

(x− x̄)2 dx dy

A
, σ2

y =

∫∫
R

(y − ȳ)2 dx dy

A
, and (4.11)

σxy =

∫∫
R

(x− x̄) (y − ȳ) dx dy

A
, ρxy =

σ2
x

σxσy
. (4.12)

The region of integration R is the polygon containing the swarm. For example, if

A < 1/2 and the force angle is β, the mean when R is a triangular region in the lower-left

corner is:

x̄(A, β) =

∫√2A tan(β)

0

(∫ cot(β)
(√

2A tan(β)−x
)

0 dy

)
x dx

A

=

√
2

3

√
A tan(β) (4.13)

ȳ(A, β) =

∫√2A tan(β)

0

(∫ cot(β)
(√

2A tan(β)−x
)

0 y dy

)
dx

A

=

√
2

3

√
A cot(β). (4.14)

The full equations are included in the appendix [83], and are summarized in Fig. 4.14.

A few highlights are that the correlation is maximized ±1/2 when the swarm is in a

triangular shape. The covariance of a triangle is always ±(A/18). Variance is minimized
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in the direction of β and maximized orthogonal to β when the swarm is in a rectangular

shape. The range of mean positions are maximized when A is small.

Circular workspace Though rectangular boundaries are common in artificial workspaces,

biological workspaces are usually rounded. Similar calculations can be made for a circu-

lar workspace. The workspace is a circle centered at (0,0) with radius 1 and thus area π.

For notational simplicity, the swarm is parameterized by the global control input signal

β and the fill-level h. Under a global input, the robot swarm fills the region under a

chord with area

A(h) = arccos(1− h)− (1− h)
√

(2− h)h. (4.15)

For a circular workspace, the locus of mean positions are aligned with β and the mean

position is at radius r(h) from the center:

r(h) =
2(−(h− 2)h)3/2

3
(√
−(h− 2)h(h− 1) + arccos(1− h)

) . (4.16)

Variance σ2
x(β, h) is maximized at β = π/2 + nπ and h ≈ 1.43, while covariance is

maximized at β = π3/4 + nπ and h ≈ 0.92. For small h values, correlation approaches

±1. Results are displayed in Fig. 4.15, see also [84].

4.6.2 Using boundaries: friction and boundary layers

Global inputs move a swarm uniformly. Shape control requires breaking this uni-

form symmetry. A swarm inside an axis-aligned rectangular workspace can reduce vari-

ance normal to a wall by simply pushing the swarm into the boundary. If the swarm can

flow around each other, pushing the swarm into a boundary produces the limited set of

configurations presented in Sec. 4.6.1. Instead of pushing our robots directly into a wall,

the following sections examine an oblique approach using boundaries that generate fric-

tion with the robots. These frictional forces are sufficient to break the symmetry caused

88



by uniform inputs. Robots touching a wall have a friction force that opposes movement

along the boundary. This causes robots along the boundary to move more slowly than

robots in free-space.

Let the control input be a vector force ~F with magnitude F and orientation θ with

respect to a line perpendicular to and into the nearest boundary. N is the normal or

perpendicular force between the robot and the boundary. The force of friction Ff is

nonzero if the robot is in contact with the boundary and sin(θ) < 0. The resulting net

force on the robot, Fforward , is aligned with the wall and given by

Fforward = F sin(θ)− Ff

where Ff =

{
µfN, µfN < F sin(θ)

F sin(θ), else
(4.17)

and N = F cos(θ).

Fig. 4.16 shows the resultant forces on two robots when one is touching a wall. Though

each receives the same inputs, they experience different net forces. For ease of analysis,

the following algorithms assume µf is infinite and robots touching the wall are prevented

from sliding along the wall. This means that if one robot is touching the wall and

another robot is free, the touching robot will not move when the control input is parallel

or into the wall. There are many alternate models of friction that also break control

symmetry. Fig. 4.16c shows fluid flow along a boundary. Fluid in the free-flow region

moves uniformly, but flow decreases to zero in the boundary layer [85]. Force in such a

system can be calculated as

Fforward(y) = F − Ff

{
h−y
h
, y < h

0, else
. (4.18)

The next section shows how a system in a rectangularly bounded workspace with

friction model (4.17) can arbitrarily position two robots.
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Figure 4.16: (a,b) Wall friction reduces the force for going forward Fforward on a robot
near a wall, but not for a free robot. (c) velocity of a fluid reduces to zero
at the boundary.

4.6.3 Maximizing correlation using wall friction

Using the environment to individually move n particles to goal positions in Alg.

6 requires O(n2) time, while Alg. 3 can only control two particles. The controllers in

Section 4.3 are efficient because they require only a single move but the range of possible

configurations are limited. This section presents an efficient technique to generate desired

correlations.

Assume an obstacle-free, bounded, unit-size, square workspace. As shown in

Fig. 4.14, the maximum correlation occurs when the swarm is pushed in the direction

β = 3π/4. This correlation as a function of swarm area A is never larger than 1/2,

and the maximum correlation decays to 0 as A grows to 1. By (4.12), this maximum

correlation is:

ρxy =

{
1
2
, 0 ≤ A ≤ 1

2
3A(2(A−2)A+1)

4A3−24A+
√
2(12A−12)

√
1−A+17

− 1, 1
2
≤ A ≤ 1

. (4.19)

If friction obeys the linear boundary layer model of (4.18) with boundary layer thickness

h and maximum friction Ff equal to the maximum applied force F , we can generate

larger correlations. If the swarm size is smaller than ≈ 0.43 and the boundary layer is

sufficiently thick we can generate correlations larger than 1/2 using boundary friction.

Assume that the swarm is initialized in the lower-left corner, in a rectangle of

width w and height A/w. Such a rectangular configuration can be accomplished using
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the variance controllers from [6]. If the swarm is then commanded to move a distance

L to the right, components of the swarm outside the boundary friction layer of height h

move further than components near the boundary. The swarm is contained in a region R

composed of no more than three stacked components: at bottom a parallelogram inclined

to the right top, at middle a rectangle, and at top a parallelogram inclined to the left

top. These regions can be defined by the rectangle’s left side, bottom, and top:

rleft = min(L, 1− w),

rbottom = min

(
A

w
, h
rleft
L

)
and

rtop = min

(
A

w
, 1− hrleft

L

)
. (4.20)

If A
w
≤ rtop the top parallelogram has no area. Similarly, if rtop ≤ rbottom the rectangle

has no area. The mean, variance, and correlation are calculated using (4.10), (4.11), and

(4.12) over the region R:∫∫
R

f(x, y) dx dy =

∫ rbottom

0

∫ L
h
y+w

L
h
y

f(x, y)dx dy (4.21)

+

∫ rtop

rbottom

∫ rleft+w

rleft

f(x, y)dx dy

+

∫ A
w

rtop

∫ rleft+w−
L(y−rtop)

h

−
L(y−rtop)

h
+rleft

f(x, y)dx dy.

Given an environment parameterized by A and h, efficient correlation control con-

sists of choosing the w,L pair that generates the desired positive correlation. Negative

correlations can be generated by initializing the swarm in the upper left, or lower right.

4.6.4 Efficient control of correlation

This section examines maximum correlation values as a function of w,L using

(4.21) from Section 4.6.3. The maximum correlation using boundary layer friction
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Figure 4.17: Analytical results comparing maximum correlation ρxy under the boundary
layer friction model of (4.21) with four boundary layer thicknesses h and
the stable triangular configuration (4.19).

max
w,L

(ρ(A, h, w, L)) can be found by gradient descent, as shown in Fig. 4.17. For swarms

with small area, this method enables generating the full range of correlations ±1, while

the stable configuration method from Section 4.3 could only generate correlations ±1/2.

As the swarm area A increases above ≈ 0.43, the stable configuration method is more

effective. Larger boundary layers h enable more control of correlation. The multimedia

attachment shows efficient control of correlation with simulations using the 2D physics

engine Box2D [44] and 144 disc-shaped robots with boundary layer model (4.18).

4.6.5 Hardware experiment: control of covariance

To demonstrate covariance control, up to 100 kilobots were placed on the workspace

and manually steered with lights, using friction with the boundary walls to vary the
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Nega%ve	
  Covariance	
   Posi%ve	
  Covariance	
  

Figure 4.18: Hardware demonstration steering ≈ 50 kilobot robots to desired covariance.
The goal covariance is negative in first 100 seconds and is positive in the
next 100 seconds. The actual covariance is shown in different trials. Frames
above the plot show output from machine vision system and an overlaid
covariance ellipse.

covariance from -4000 to 3000 cm2. The resulting covariance is plotted in Fig. 4.18,

along with snapshots of the swarm.

4.7 Simulation

Algorithm 3 was implemented in Mathematica using particles with zero radius.

Figure 4.19 shows frames of the algorithm in two representative workspaces, square and

disk, with two arbitrary starting and goal configurations.

The contour plots in Fig. 4.20 left show the length of the path for two different
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Figure 4.19: Frames from reconfiguring two particles. Top six images show a polygonal
workspace and the corresponding ∆ configuration space with its 2-move
reachable sets. Bottom six images show a disk-shaped workspace and the
corresponding ∆ configuration space with its 2-move reachable sets.
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Figure 4.20: Plots show performance with one goal on the boundary.

settings. Top row considers {s1, s2, g1} = {(0.2, 0.2), (−0.1,−0.1), (0, 0)} and bottom

row considers {s1, s2, g1} = {(0.2, 0.2), (−0.1,−0.1), (−0.2, 0)} each in a workspace with

r = 0.5, and g2 ranging over all the workspace. Fig. 4.20 right shows the number of moves

and left shows the total distance of the path. This plot shows the nonlinear nature of

the path planning. When the goal is in the middle of the workspace, a symmetry in the

path length is expected as the top row shows. The bottom row shows a shift in the goal

position which breaks the symmetry of the path length in the workspace.

The worst-case occurs when the ending points are at antipodes along the boundary

(π angular distance). This can never be achieved but can be asymptotically approached
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Figure 4.21: The worst-case path length occurs when particles must swap antipodes.
This can never be achieved but can be asymptotically approached. Plot
shows decreasing error as the number of moves grows.

as shown in Fig. 4.21. Figure 4.22 shows the same concepts in a square workspace.

Figure 4.22 top and middle row considers the particles for three arbitrary starting and

goal positions for the particles. Thus far, this paper has considered the particles to be

unique. If particles are interchangeable, the path lengths often decrease. The bottom

row of Fig. 4.22 considers interchangeable particles with the same configuration as the

middle row with unique particles. The worst-case path lengths decrease by 33%, 60%,

and 30% for the three test cases shown.

4.8 Experimental results

To demonstrate Alg. 3 experimentally, we performed several tests. Each used the

same magnetic setup shown in Fig. 4.1. Two different intestine models were employed,

the first a 3D-printed cross-section representation of a small intestine, and the second a
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Figure 4.22: Starting positions of particles 1 and 2 and goal position of particle 2 are
fixed, and ε = 0.001. The top row of contour plots show the distance if
particle 1’s goal position is varied in x and y. The middle row shows the
number of moves required for the same configurations. The bottom row
shows the same configuration but when the particles are interchangeable.
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Figure 4.23: Frames showing particle positions before and after control inputs. Top row:
small intestine phantom. Bottom row: cow stomach tissue.

cross-section of a bovine stomach.

4.8.1 Magnetic manipulation setup

The magnetic manipulation system has two pairs of electromagnetic coils, each

with iron cores at their centers, and arranged orthogonal to each other. The iron core

at the center of each coil concentrates the magnetic field towards the workspace. An

Arduino and four SyRen regenerative motor drivers were used for control inputs to the

coils. Finally, a FOculus F0134SB 659 x 494 pixel camera was attached to the top of the

system, focusing on the workspace which was backlit by a 15 W LED light strip.

To obtain experimental data, the test samples (the phantom intestine model and

the bovine cross section) were placed in laser-cut acrylic discs and then immersed in corn

syrup. Corn syrup was used to increase the viscosity to 12000 cP for the experiments.

Spherical 1 mm magnets (supermagnetman #SP0100-50) were used as our particles. Our

experimental setup did not perfectly implement the system dynamics in (4.1). In par-

ticular, the magnetic field in this setup is only approximately uniform. The magnetic

force varies in both magnitude and orientation. As shown in the video attachment, this
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non-uniformity causes the particle closer to the coil to move faster than the other par-

ticle. This phenomenon makes it easier to increase particle separation than to decrease

separation, but this can be compensated because boundary collisions easily decrease the

separation. Also, magnetic forces are not exactly parallel, but point toward the center of

the activated coil. Algorithm 3 still works despite these non-uniformities, but sometimes

requires additional iterations.

4.8.2 Intestine phantom model

The intestine phantom model was used first and was made to mimic the geometry

of an intestine and its villi. The model consists of a circular ring with an outer diameter

of 50 mm, an inner diameter of 46 mm, and 60 2 mm long protrusions on its inner surface

cut out of 6 mm thick acrylic to model the geometry of intestinal villi. Figure 4.23 top row

shows an experiment. Starting and ending positions were printed beneath the workspace

on transparency film. Our algorithm successfully delivered the particles to goal positions

in 10 out of 10 trials.

4.8.3 Bovine stomach cross-section

Strips of cow stomach approximately 5 mm thick were cut and sewn to acrylic

cylinder and then glued to an acrylic substrate using cyanoacrylate (superglue). This

assembly was then filled with corn syrup. The experiment is shown in Fig. 4.23 bottom

row. Our algorithm successfully delivered the particles to goal positions in 5 out of 5

trials. A video showing one trial of this experiment is available in the supplementary

materials.
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4.9 Conclusion

This chapter presented techniques for controlling the positions of two particles

using uniform inputs and non-slip boundary contacts. The chapter provided algorithms

for precise position control. The algorithms relied on calculating reachable sets in a 2D

∆ configuration space. Extending Alg. 3 to 3D was straightforward, but increased the

complexity. Hardware experiments illustrated the algorithms in ex vivo and in artificial

workspaces that mimic the geometry of biological tissue.

This chapter assumed friction was sufficient to completely stop particles in contact

with the boundary. The algorithms would require retooling to handle small friction

coefficients.
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Chapter 5

Conclusion

The small size of micro and nano particles makes individual control and autonomy

challenging, so currently these particles are steered by global control inputs such as

magnetic fields or chemical gradients.

Inspired by the human players in SwarmControl.net, this dissertation designed con-

trollers and controllability results using only the mean and variance of a particle swarm.

We developed a hysteresis-based controller to regulate the position and variance of a

swarm. We designed a controller for object manipulation using value iteration for path

planning, regions for outlier rejection, and potential fields for minimizing moving the ob-

ject backwards. All automatic controllers were implemented using 100 kilobots steered by

the direction of a global light source. These experiments culminated in an object manip-

ulation task in a workspace with obstacles. This dissertation also presented techniques

for controlling the orientation of an object by manipulating it using a swarm of simple

robots with global inputs. It provided algorithms for precise orientation control, as well

as demonstrations of orientation control. This dissertation finally presented techniques

for controlling the positions of two particles using uniform inputs and non-slip boundary

contacts. It provided algorithms for precise position control. The algorithms relied on

calculating reachable sets in a 2D ∆ configuration space. Extending Alg. 3 to 3D was

straightforward, but increased the complexity. Hardware experiments illustrated the al-

gorithms in ex vivo and in artificial workspaces that mimic the geometry of biological

tissue.
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5.1 Future work

Today there are more robots than ever before. This dissertation provides founda-

tional algorithms and techniques for steering swarms, object manipulation, and address-

ing obstacle fields, but there are many opportunities to extend the work. Extensions to

Chapter 2 and 3 is to perform assembly using particle swarms to manipulate and attach

components. Future efforts should be directed toward examining the effects of Brownian

noise, pose control for multiple-part assembly, trajectory prediction, and manipulation

in crowded workspaces. In Chapter 4 We assumed friction was sufficient to completely

stop particles in contact with the boundary. The algorithms would require retooling to

handle small friction coefficients.

Topics of interest include control with nonuniform flow such as fluid in an artery,

gradient control fields like that of an MRI, competitive playing, multi-modal control,

flexible workspaces, optimal-control, and targeted drug delivery in a vascular network.

In out experiments, size of particles were always in millimeter scale or bigger. Future

work should consider smaller particles and apply the proposed methods inside a fluid in

an MRI machine. That would open up possibilities for non-invasive surgeries and drug

delivery.
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