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Abstract

Micro-robots are small enough to move through the passageways of the body, there-

fore they are suited for targeted drug delivery and micro-scale manufacturing. Due to

their small size, a single robot does not have enough force to deliver payloads, and it is

prohibitively difficult to have onboard computation. Therefore, these robots are usually

controlled by global inputs such as a uniform external magnetic field. This thesis presents

controllers and algorithms for steering such an under-actuated swarm. This work first

proves that the mean position of the swarm is controllable, and shows how an obstacle

can make the variance controllable. Then it derives automatic controllers for these and

a hysteresis-based switching control to regulate the first two moments of the swarm dis-

tribution. Finally, this work uses friction with boundary walls to break the symmetry

caused by the global input and uses it to steer two particles to arbitrary positions.
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Chapter 1

Introduction

1.1 Shaping a Swarm Using a Shared Control Input

Micro- and nanorobotics can be manufactured in large numbers. Our vision is for

large swarms of robots remotely guided 1) through the human body, to cure disease, heal

tissue, and prevent infection and 2) ex vivo to assemble structures in parallel. For each

application, large numbers of micro robots are required to deliver sufficient payloads, but

the small size of these robots makes it difficult to perform onboard computation. Instead,

these robots are often controlled by a global, broadcast signal. The biggest barrier to this

vision is a lack of control techniques that can reliably exploit large populations despite

incredible under-actuation. Additionally, it is not always possible to gather pose infor-

mation on each robot for feedback control. Robots might be difficult or impossible to

sense individually due to their size and location. For example, micro-robots are smaller

than the minimum resolution of a clinical MRI-scanner [1]. However, it is often possible

to sense global properties of the group, such as mean position and variance. To make

progress in automatic control with global inputs, we present swarm manipulation con-

trollers requiring only mean and variance measurements of the robot’s positions. These

controllers are used as primitives to perform a block-pushing task illustrated in Fig. 1.1.

A limitation was that variance control could only compress a swarm along the world x

and y axes. This means the swarm could not navigate workspaces with narrow corridors

with other orientations, such as those shown in Fig. 1.3. Challenges like these require a

controller that regulates the swarm’s position covariance, σxy. This thesis continues to

prove that two orthogonal boundaries with high friction are sufficient to arbitrarily posi-

tion two robots (Section 2.3), implements these position control algorithms in simulation
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Figure 1.1: A swarm of robots, all controlled by a uniform force field, can be effectively
controlled by a hybrid controller that knows only the first and second mo-
ments of the robot distribution. Here a mockup of a swarm of hardware
robots(kilobots) that pushes a green block towards the goal is shown.

(Section 2.4) and on a hardware setup with up to 64 robots (Section 2.5), and ends with

directions for future research.
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Figure 1.2: Navigating a swarm using global inputs, where each member receives the
same control inputs, is challenging due to many obstacles. This thesis demon-
strates how friction with walls can be used to change the shape of a swarm.
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Figure 1.3: Maintaining group cohesion while steering a swarm through an arbitrary
maze requires covariance control.
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Chapter 2

Stochastic Swarm Control with Global Inputs

2.1 Related work

Controlling the shape, or relative positions, of a swarm of robots is a key ability for

a myriad of applications. Correspondingly, it has been studied from a control-theoretic

perspective in both centralized, e.g. virtual leaders in [2], and decentralized approaches,

e.g. control-Lyapunov functions gradient based decentralized controllers in [3]. Most

approaches assume a level of intelligence and autonomy in the individual robots that

exceeds the capabilities of current micro- and nano-robots [4, 5].

Instead, this paper focuses on centralized techniques that apply the same control

input to each member of the swarm, as in [6].

2.1.1 Global-control of micro- and nanorobots

We are particularly motivated by harsh constraints in micro- and nanorobotic sys-

tems. Small robots are often powered and steered by a global, broadcast control signal.

Examples include scratch-drive microrobots, actuated and controlled by a DC voltage

signal from a substrate [7, 8]; light-driven nanocars, synthetic molecules actuated by a

specific wavelength of light [9], MagMite microrobots with different resonant frequencies

controlled by a global magnetic field [10]; and magnetically controlled nanoscale helical

screws [11, 12]. Large numbers of robots can be constructed, but the user interaction

required to individually control each robot scales linearly with robot population. In-

stead, user interaction is often constrained to modifying a global input: while one robot

is controlled, the rest are ignored. Making progress in targeted therapy and swarm
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manipulation requires the coordinated control of large robot populations.

2.1.2 Human user studies with large swarms

There is currently no comprehensive understanding of user interfaces for control-

ling multi-robot systems with massive populations [13]. Our previous work with over

a hundred hardware robots and thousands of simulated robots [6] demonstrated that

direct human control of large swarms is possible. Unfortunately, the logistical challenges

of repeated experiments with over one hundred robots prevented large-scale tests. To

gather better data, we designed SwarmControl.net , a large-scale online game to test how

humans interact with large swarms [14]. Our goal was to test several scenarios involving

large-scale human-swarm interaction, and to do so with a statistically-significant sample

size. These experiments showed that numerous simple robots responding to global con-

trol inputs are directly controllable by a human operator without special training, and

that the visual feedback of the swarm state should be very simple in order to increase

task performance. All code [15], and experimental results were posted online. The cur-

rent paper presents motion primitives and an automatic controller that solves one of the

games from SwarmControl.net.

2.1.3 Block-pushing and compliant manipulation

Unlike caging manipulation, where robots form a rigid arrangement around an

object [16, 17], our swarm of robots is unable to grasp the blocks they push, and so our

manipulation strategies are similar to nonprehensile manipulation techniques, e.g. [18],

where forces must be applied along the center of mass of the moveable object. A key

difference is that our robots are compliant and tend to flow around the object, making

this similar to fluidic trapping [19,20].

Our n-robot system with 2 control inputs and 4n states is inherently under-actuated,
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and superficially bears resemblance to compliant, under-actuated manipulators [21, 22].

Like these manipulators, the swarm conforms to the object to be manipulated. However

our swarm lacks the restoring force provided by flexures in [21] and the silicone in [22].

Our swarm tends to disperse itself, so we require artificial forces, such as the variance

control primitives in Section 2.2.4, to regroup the swarm.

2.1.4 Using shear forces to shape a set of particles

Shear forces are unaligned forces that push one part of a body in one direction, and

another part of the body in the opposite direction. These shear forces are common in

fluid flow along boundaries, as described in introductory fluid dynamics textbooks [23].

Similarly, a swarm of robots under global control pushed along a boundary will experience

shear forces. This is a position-dependent force, and so can be exploited to control the

configuration or shape of the swarm. Physics-based swarm simulations have used these

forces to disperse a swarm’s spatial position for accomplishing coverage tasks [24].

More research has focused on generating artificial force-fields. Applications have

included techniques to design shear forces to a single object for sensorless manipula-

tion [25]. Vose et al. demonstrated a collection of 2D force fields generated by 6DOF

vibration inputs to a rigid plate [26, 27]. This collection of force fields, including shear

forces, could be used as a set of primitives for motion control for steering the formation

of multiple objects.

2.2 Theory

2.2.1 Models

Consider holonomic robots that move in the 2D plane. We want to control position

and velocity of the robots. First, assume a noiseless system containing one robot with

mass m. Our inputs are global forces [ux, uy]. We define our state vector x(t) as the x
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position, x velocity, y position and y velocity. The state-space representation in standard

form is:

ẋ(t) = Ax(t) +Bu(t) (2.1)

y(t) = Cx(t) +Du(t)

and our state space representation as:


ẋ1
ẋ2
ẋ3
ẋ4

 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



x1
x2
x3
x4

+


0 0
1
m

0
0 0
0 1

m

 [ux, uy]. (2.2)

We want to find the number of states that we can control, which is given by the

rank of the controllability matrix

C = [B,AB,A2B, ..., An−1B]. (2.3)

Here C =


0 0
1
m

0
0 0
0 1

m

∣∣∣∣∣∣∣∣
1
m

0
0 0
0 1

m

0 0

∣∣∣∣∣∣∣∣
0 0
0 0
0 0
0 0

∣∣∣∣∣∣∣∣
0 0
0 0
0 0
0 0

 , (2.4)

and thus all four states are controllable.

2.2.2 Independent control with multiple robots is impossible

A single robot is fully controllable, but what happens with n robots? For holo-

nomic robots, movement in the x and y coordinates are independent, so for notational

convenience without loss of generality we will focus only on movement in the x axis.

Given n robots to be controlled in the x axis, there are 2n states: n positions and n

8



velocities. Our state-space representation is:


ẋ1,1
ẋ2.1

...
ẋ1,n
ẋ2,n

 =


0 1 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1
0 0 . . . 0 0




x1,1
x2,1

...
x1,n
x2,n

+


0
1
...
0
1

ux. (2.5)

However, just as with one robot, we can only control two states because C has rank two:

C =


0
1
...
0
1

∣∣∣∣∣∣∣∣∣∣∣

1
0
...
1
0

∣∣∣∣∣∣∣∣∣∣∣

0
0
...
0
0

∣∣∣∣∣∣∣∣∣∣∣

0
0
...
0
0

∣∣∣∣∣∣∣∣∣∣∣
, . . .

 . (2.6)

2.2.3 Controlling mean position

This means any number of robots controlled by a global command have just two

controllable states in each axis. We can not control the position of all the robots, but

what states are controllable? To answer this question we create the following reduced

order system that represents the average x position and x velocity of the n robots:

[
˙̄x1
˙̄x2

]
=

1

n

[
0 1 . . . 0 1
0 0 . . . 0 0

]

x1,1
x2,1

...
x1,n
x2,n



+
1

n

[
0 0 . . . 0 0
0 1 . . . 0 1

]


0
1
...
0
1

ux. (2.7)

Thus we have [
˙̄x1
˙̄x2

]
=

[
0 1
0 0

] [
x̄1
x̄2

]
+

[
0
1

]
ux. (2.8)

9



We again analyze C:

C =

[
0
1

∣∣∣∣ 10
]
. (2.9)

This matrix has rank two, and thus the average position and average velocity are con-

trollable.

Due to symmetry, only the mean position and mean velocity are controllable. How-

ever, there are several techniques for breaking symmetry, for example by allowing inde-

pendent noise sources [28], or by using obstacles [6].

2.2.4 Controlling the variance of many robots

The variance, σ2
x, σ

2
y, of the swarm’s position is computed:

x(x) =
1

n

n∑
i=1

x1,i, σ2
x(x) =

1

n

n∑
i=1

(x1,i − x)2,

y(x) =
1

n

n∑
i=1

x3,i, σ2
y(x) =

1

n

n∑
i=1

(x3,i − y)2. (2.10)

Controlling the variance requires being able to increase and decrease the variance.

We will list a sufficient condition for each. Both conditions are readily found at the micro

and nanoscale. Real systems, especially at the micro scale, are affected by unmodelled

dynamics. These unmodelled dynamics are dominated by Brownian noise. To model

this (2.1) must be modified as

ẋ(t) = Ax(t) +Bu(t) +Wε(t) (2.11)

y(t) = Cx(t) +Du(t),

where Wε(t) is a random perturbation produced by Brownian noise. Given a large free

workspace, a Brownian noise process increases the variance linearly with time:

σ̇2
x(x(t),u(t) = 0) = Wε. (2.12)

10



If robots with radius r are in a bounded environment with sides of length [`x, `y], the

unforced variance asymptotically grows to the variance of a uniform distribution,

[σ2
x, σ

2
y] =

1

12
[(`x − 2r)2, (`y − 2r)2]. (2.13)

A flat obstacle can be used to decrease variance. Pushing a group of dispersed

robots against a flat obstacle will decrease their variance until the minimum-variance

(maximum density) packing is reached. For large n, Graham and Sloan showed that

the minimum-variance packing σ2
optimal(n, r) for n circles with radius r is ≈

√
3
π

(nr)2 ≈

0.55(nr)2 [29].

We will prove the origin is globally asymptotically stabilizable by using a control-

Lyapunov function [30]. A suitable Lyapunov function is squared variance error:

V (t,x) =
1

2
(σ2(x)− σ2

goal)
2

V̇ (t,x) = (σ2(x)− σ2
goal)σ̇

2(x). (2.14)

We note here that V (t,x) is positive definite and radially unbounded, and V (t,x) ≡ 0

only at σ2(x) = σ2
goal. To make V̇ (t,x) negative semi-definite, we choose

u(t) =

{
move to wall if σ2(x) > σ2

goal

move from wall if σ2(x) ≤ σ2
goal.

(2.15)

For such a u(t),

σ̇2(x) =

{
negative if σ2(x) > max(σ2

goal, σ
2
optimal(n, r))

Wε if σ2(x) ≤ σ2
goal,

(2.16)

and thus V̇ (t,x) is negative definite and the variance is globally asymptotically stabiliz-

able.

2.2.5 Controlling both mean and variance of many robots

The mean and variance of the swarm cannot be controlled simultaneously, however

if the dispersion due to Brownian motion is much less than the maximum controlled speed,

11



σ2 < σ2
min

σ2 > σ2
max

Figure 2.1: Two states for controlling the mean and variance of a robot swarm.

we can adopt a hybrid, hysteresis-based controller to regulate the mean and variance

shown in Alg. 1. Such a controller normally controls the mean position according to

(2.19), but switches to minimizing variance if the variance exceeds some σ2
max. The

variance is lowered to less than σ2
min, and the system returns to controlling the mean

position. This is a standard technique for dealing with control objectives that evolve at

different rates [31,32], and the hysteresis avoids rapid switching between control modes.

The process is illustrated in Fig. 2.1.

Algorithm 1 Hybrid mean and variance control

Require: Knowledge of swarm mean [x̄, ȳ], variance [σ2
x, σ

2
y], the locations of the rectan-

gular boundary {xmin, xmax, ymin, ymax}, and the target mean position [xtarget, ytarget].
1: flagx ← false, flagy ← false
2: xgoal ← xtarget, ygoal ← ytarget
3: loop
4: if σ2

x > σ2
max then

5: xgoal ← xmin
6: flagx ← true
7: else if flagx and σ2

x < σ2
min

8: xgoal ← xtarget
9: flagx ← false
10: end if
11: if σ2

y > σ2
max then

12: ygoal ← ymin
13: flagy ← true
14: else if flagy and σ2

y < σ2
min

15: ygoal ← ytarget
16: flagy ← false
17: end if
18: Apply (2.19) to move toward [xgoal, ygoal]
19: end loop

A key challenge is to select proper values for σ2
min and σ2

max. The optimal packing

12
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Figure 2.2: The switching conditions for variance control are set as a function of n, and
designed to be larger than the optimal packing density. The above plot uses
robot radius r = 1/10.

variance is σ2
optimal(n, r) =

√
3
π
nr2. The random packings generated by pushing our robots

into corners are suboptimal, so we choose the conservative values shown in Fig. 2.2:

σ2
min = 2.5r + σ2

optimal(n, r)

σ2
max = 15r + σ2

optimal(n, r). (2.17)

2.2.6 Controlling covariance using friction

Global inputs move a swarm uniformly. Controlling covariance requires break-

ing this uniform symmetry. A swarm inside an axis-aligned rectangular workspace can

reduce variance normal to a wall by simply pushing the swarm into the boundary. Di-

rectly controlling covariance by pushing the swarm into a boundary requires changing

the boundary. An obstacle in the lower-right corner is enough to generate positive co-

variance. Generating both positive and negative covariance requires additional obstacles.

Requiring special obstacle configuration also makes covariance control dependent on the

local environment. Instead of pushing our robots directly into a wall, this paper exam-

ines an oblique approach, by using boundaries that generate friction with the robots.
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These frictional forces are sufficient to break the symmetry caused by uniform inputs.

Robots touching a wall have a negative friction force that opposes movement along the

boundary, as shown in Eq. (2.18). This causes robots along the boundary to slow down

compared to robots in free-space. This enables covariance control using boundaries with

arbitrary orientations.

Let the control input be a vector force ~F with magnitude F and orientation θ. The

force of friction Ff is

N = F cos(θ)

Ff =

{
µfN, µfN < F sin(θ)

F sin(θ), else
(2.18)

Fforward = F sin(θ)− Ff .

Fig. 2.3 shows the resultant forces on two robots when one is touching a wall. As

illustrated, bot experiences different net forces although each receive the same inputs.

For ease of analysis, the following algorithms assume µf is infinite and robots touching the

wall are prevented from sliding along the wall. This means that if one robot is touching

the wall and another robot is free, if the control input is parallel or into the wall, the

touching robot will not move. The next section shows how a system with friction model

(2.18) and two walls are sufficient to arbitrarily position two robots.

2.3 Position control of 2 robots using wall friction

This section describes an algorithm for positioning two robots and introduces con-

cepts that will be used for multi-robot positioning. As we can see in Alg. 2, assume two

robots are initialized at s1 and s2 with corresponding goal destinations e1 and e2. Denote

the current positions of the robots r1 and r2. Let the subscripts x and y denote the x and

y coordinates, i.e., s1x and s1y denote the x and y locations of s1. The algorithm assigns

a global control input at every instance. As a result, our goal is to adjust ∆rx = r2x−r1x

14
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Ff Fsin(θ) 

Fcos(θ) θ F

F

Fforward 

F

Figure 2.3: Wall friction reduces the force for going forward Fforward on a robot near a
wall, but not for a free robot.

from ∆sx = s2x − s1x to ∆ex = e2x − e1x and similarly adjust ∆ry = r2y − r1y from

∆sy = s2y − s1y to ∆ey = e2y − e1y with one global input at every instance. The key to

the algorithm is the position-dependent friction model (2.18).

Our algorithm uses a divide and conquer method to solve the positioning problem.

It finds the final position of the robots in two steps: (i) First, |∆rx − ∆ex| is reduced

to zero while ∆ry is kept constant in Alg. 3. (ii) Having fixed ∆rx to ∆ex as desired,

the algorithm next keeps ∆rx constant and adjusts ∆ry to ∆ey, as desired in Alg.. 4.

Though steps (i) and (ii) are similar from an algorithmic point of view, the following

subsections describe the process in detail.

2.3.1 Step (i): Fixing ∆rx

• Define e′1 = (e1x, s1y) and e′2 = (e2x, s2y). Our goal for defining e′1 and e′2 is to

understand the direction to which robots should move in order to adjust ∆rx. Let

e′top = arg maxi e
′
iy and e′bottom = arg mini e

′
iy. Now if e′top,x − e′bottom,x > 0, then the

15



global input to both robots would be toward left direction and if e′top,x−e′bottom,x < 0,

then the global input to both robots would be toward right direction. The two

robots continue their horizontal path until one of them reaches the ε-neighborhood

of one of the left or right walls.

• At this step, let ymin = mini riy, i.e., ymin is the minimum height of the two robots.

We move both robots downward by the amount of ymin such that one of the robots

would touch the bottom wall and hence friction force will not let that robot to

move left or right.

• The fact that the friction force of the bottom wall would not let the lower robot to

move right or left will let the other robot to move to right and left freely to adjust

∆rx according to ∆ex.

• Finally, even if with the free move of the upper robot ∆rx is not set to the ∆ex,

we can run the Step (i) (as described in the previous paragraphs) again to adjust

the ∆rx. It is easy to show that it is guaranteed that we can adjust ∆rx to ∆ex in

only two iterations.

2.3.2 Step (ii): Fixing ∆ry

Now that we have adjusted the difference in robots’ positions along one axis, we

focus to do the same on the other axis as well. Therefore, similar to Section 2.3.1, we

employ the following steps:

• Let s′1 and s′2 be the points we derived at the end of the steps in Section 2.3.1.

• Define e′′1 = (s′1x, e1y) and e′′2 = (s′2x, e2y). We define e′′1 and e′′2 to understand

the direction to which robots should move in order to adjust ∆ry. Let e′′right =

arg maxi e
′′
ix and e′′left = arg mini e

′
ix. Now if e′′right,y − e′′left,y > 0, then the global

input to both robots would be toward down direction and if e′′right,y − e′′left,y < 0,

16



then the global input to both robots would be toward up direction. The two robots

continue their vertical path until one of them reaches the ε-neighborhood of one of

the top or bottom walls.

• At this step, let xmin = mini rix, i.e., xmin is the minimum distance of the two robots

from the origin along the x-axis. We move both robots to the left by the amount of

xmin such that one of the robots would touch the left wall and hence friction force

will not let that robot to move up or down.

• The fact that the friction force of the left wall would not let one of the robots to

move up or down will let the other robot to move to up or down freely to adjust

∆ry according to ∆ey.

• Finally, even if with the free move of the robot which is not touching the wall

∆ry is not set to the ∆ey, we can run the Step (i) (as described in the previous

paragraphs) again to adjust the ∆ry. It is easy to show that it is guaranteed that

we can adjust ∆ry to ∆ey in only two iterations.

Once ∆rx and ∆ry are set to ∆ex and ∆ey, we can use global input to easily move both

robots from r1 and r2 toward e1 and e2.

Algorithm 2 WallFrictionArrange2Robots(s1, s2, e1, e2, L)

Require: Knowledge of starting (s1, s2) and ending (e1, e2) positions of two robots. (0, 0)
is bottom corner, s1 is rightmost robot, L is length of the walls. Current position of
the robots are (r1, r2).

1: (r1, r2) = GenerateDesiredx-spacing(s1, s2, e1, e2, L)
2: GenerateDesiredy-spacing(r1, r2, e1, e2, L)

2.4 Simulation

Our simulations use a Javascript port of Box2D, a popular 2D physics engine with

support for rigid-body dynamics and fixed-time step simulation [33]. All experiments

ran on a Chrome web browser on a 2.6 GHz Macbook. All code is available at [34].
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Algorithm 3 GenerateDesiredx-spacing(s1, s2, e1, e2, L)

Require: Knowledge of starting (s1, s2) and ending (e1, e2) positions of two robots.
(0, 0) is bottom corner, s1 is topmost robot, L is length of the walls. Current robot
positions are (r1, r2).

Ensure: r1y − r2y ≡ s1y − s2y
1: ε← small number
2: ∆sx ← s1x − s2x
3: ∆ex ← e1x − e2x
4: r1 ← s1, r2 ← s2
5: if ∆ex < 0 then
6: m← (L− ε−max(r1x, r2x), 0) . Move to right wall
7: else
8: m← (ε−min(r1x, r2x), 0) . Move to left wall
9: end if
10: m← m+ (0,−min(r1y, r2y)) . Move to bottom
11: r1 ← r1 +m, r2 ← r2 +m . Apply move
12: if ∆ex − (r1x − r2x) > 0 then
13: m← (min(|∆ex −∆sx|, L− r1x), 0) . Move right
14: else
15: m← (−min(|∆ex −∆sx|, r1x), 0) . Move left
16: end if
17: m← m+ (0, ε) . Move up
18: r1 ← r1 +m, r2 ← r2 +m . Apply move
19: ∆rx = r1x − r2x
20: if ∆rx ≡ ∆ex then
21: return (r1, r2)
22: else
23: return GenerateDesiredx-spacing(r1, r2, e1, e2, L)
24: end if

2.4.1 Controlling the mean position

We control mean position with a PD controller that uses the mean position and

mean velocity. Our control input is the global force applied to each robot:

ux = Kp(xgoal − x̄) +Kd(0− v̄x)

uy = Kp(ygoal − ȳ) +Kd(0− v̄y) (2.19)

hereKp is the proportional gain, andKd is the derivative gain. We performed a parameter

sweep to identify the best values. Representative experiments are shown in Fig. 2.4. 100

robots were used and the maximum speed was 3 meters per second. As shown in Fig. 2.4,
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Algorithm 4 GenerateDesiredy-spacing(s1, s2, e1, e2, L)

Require: Knowledge of starting (s1, s2) and ending (e1, e2) positions of two robots. (0, 0)
is bottom corner, s1 is rightmost robot, L is length of the walls. Current position of
the robots are (r1, r2).

Ensure: r1x − r2x ≡ s1x − s2x
1: ∆sy ← s1y − s2y
2: ∆ey ← e1y − e2y
3: r1 ← s1, r2 ← s2
4: if ∆ey < 0 then
5: m← (L−max(r1y, r2y), 0) . Move to top wall
6: else
7: m← (−min(r1y, r2y), 0) . Move to bottom wall
8: end if
9: m← m+ (0,−min(r1x, r2x)) . Move to left
10: r1 ← r1 +m, r2 ← r2 +m . Apply move
11: if ∆ey − (r1y − r2y) > 0 then
12: m← (min(|∆ey −∆sy|, L− r1y), 0) . Move top
13: else
14: m← (−min(|∆ey −∆sy|, r1y), 0) . Move bottom
15: end if
16: m← m+ (0, ε) . Move right
17: r1 ← r1 +m, r2 ← r2 +m . Apply move
18: ∆ry = r1y − r2y
19: if ∆ry ≡ ∆ey then
20: m← (e1x − r1x, e1y − r1y)
21: r1 ← r1 +m, r2 ← r2 +m . Apply move
22: return (r1, r2)
23: else
24: return GenerateDesiredy-spacing(r1, r2, e1, e2, L)
25: end if

we can achieve an overshoot of 1% and a rise time of 1.52 s with Kp = 4, and Kd = 1.

Fig. 2.5 shows an example of controlling mean position by making it trace the word

“SWARM”.

2.4.2 Controlling the variance

For variance control we use the control law discussed in Section 2.2.4. Moving

away from the wall and waiting is sufficient to increase variance because Brownian noise

naturally disperses the swarm in such a way that the variance increases linearly [35].
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Figure 2.4: Tuning proportional (Kp, top) and derivative (Kd, bottom) gain values in
(2.19) improves performance with n = 100 robots.

Figure 2.5: A frame from video attachment showing mean position control on a swarm
of 200 robots. The mean position of the swarm traces “SWARM”.

20



0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

Time (s)

σ
2
 (

m
2
)

 

 

σ
2

goal

W = 1

W = 2

W = 5

Figure 2.6: Increased noise results in more responsive variance control because stronger
Brownian noise causes a faster increase of variance.

If faster dispersion is needed, the swarm can be pushed through obstacles such as a

diffraction grating or Pachinko board [6].

The variance control law to regulate the variance to σ2
ref has three gains:

ux = Kp(xgoal(σ
2
ref )− x̄)−Kdv̄x +Ki(σ

2
ref − σ2

x)

uy = Kp(ygoal(σ
2
ref )− ȳ)−Kdv̄y +Ki(σ

2
ref − σ2

y). (2.20)

In a slight abuse of notation we call the gain scaling the variance error Ki because the

variance, if unregulated, integrates over time. Eq. (2.20) assumes the nearest wall is to

the left of the robot at x = 0, and chooses a reference goal position that in steady-state

would have the correct variance according to (2.13):

xgoal(σ
2
ref ) = r +

√
3σ2

ref . (2.21)

If another wall is closer, the signs of [Kp, Ki] are inverted, and the location xgoal is

translated. Results are shown in Fig. 2.6, with Kp,i,d = [4, 1, 1].

2.4.3 Hybrid control of mean and variance

Fig. 2.7 shows a simulation run of the hybrid controller in Alg. 1 with 100 robots

in a square workspace containing no internal obstacles. Fig. 2.8 shows the experiment of

running the hybrid controller.
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Figure 2.7: Simulation result with 100 robots under hybrid control Alg. 1, which controls
both the mean position (top) and variance (bottom). For ease of analysis,
only x position and variance are shown.

Figure 2.8: A frame from video, using Alg. 1 to control variance and mean position of
a swarm of 200 robots.
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Algorithms 2, 3, 4, were implemented in Mathematica using point robots (radius

= 0). Figs 2.9 and 2.10 show the examples of the implementation of our algorithm. In

both of these figures we have denoted the starting points and the destinations by small

circles. However, destination points are surrounded by larger circles so as to be distinct

from starting points.

In each of these figures we have five snapshots of the running of our algorithm

taken every quarter second. For the sake of brevity we have replaced straight moves (e.g.

upward, downward, etc) with oblique moves that shows a combination of two moves

simultaneously (e.g., left and down together).

As we can see, in Fig. 2.9 ∆rx is adjusted to ∆ex in the second snapshot, i.e., at

t = t1 where t1 < 0.25. The rest of the steps in this figure is dedicated to adjusting the

∆ry to ∆ey. As it is clear from Fig. 2.9, ∆ry is also adjusted at t = t2 where 0.75 < t2 < 1.

Finally, once ∆rx and ∆ry are adjusted, the algorithm gives a global input both of the

robots so as to move them toward their corresponding destinations. This is happening

in the time interval of (t2, 1].

Similarly, in Fig. 2.10 we can see that the ∆rx is adjusted in the third snapshot,

i.e., at t = t3 where 0.25 < t3 < 0.5 and ∆ry is adjusted in the last snapshot at t = t4

where 0.75 < t4 < 1. The final positioning steps are happening in the time interval of

(t4, 1].

As we pointed out earlier, adjusting each of ∆rx and ∆ry needs two iterations in

the worst case. In other words, both of the Alg. 3 and Alg. 4 are executed two times

in the worst case in positioning process of the robots. It is easy to see that we need two

iterations of Alg. 3 only if |∆ex −∆sx|> L. Similarly we need two iterations of Alg. 4

only if |∆ey −∆sy|> L.
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Figure 2.9: Frames from an implementation of Alg. 2: two robot positioning using walls
with infinite friction. Robot initial positions are shown by a crosshair, and
final positions by a circled square. Dashed lines show the shortest route if
robots could be controlled independently. The path given by Alg. 2 is shown
with solid arrows.

2.5 Block-pushing results

This section analyzes a block-pushing task attempted by both our hybrid, hysteresis-

based controller and by human users.

2.5.1 Human-controlled block-pushing

In previous work over 1000 human users completed an online version of this task

using varying levels of feedback. The original experiment explored manipulation with

varying amounts of sensing information: full-state sensing showed the position of all

robots; convex-hull drew a convex hull around the outermost robots; mean displayed

the average position of the population; and mean + variance added a confidence ellipse.
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Figure 2.10: Two robot positioning: switching positions using walls with infinite friction.

Fig. 2.11 shows screenshots of the same robot swarm with each type of visual feedback.

Full-state requires 2n data points for n robots. Convex-hull requires at worst 2n, but

usually a smaller number. Mean requires two, and variance three, data points. Mean

and mean + variance are convenient even with millions of robots. We hypothesized a

steady decay in performance as the amount of visual feedback decreased.

To our surprise, the results indicated the opposite: players with just the mean

Full-state Convex-hull Mean + var Mean

Figure 2.11: Screenshots from a block-pushing task with human users. This experiment
challenged players to quickly steer 100 robots (blue discs) to push an object
(green hexagon) into a goal region.
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Figure 2.12: Completion-time results for the four levels of visual feedback shown in
Fig. 2.11.

completed the task faster than those with full-state feedback. As Fig. 2.12 shows, the

levels of feedback arranged by increasing completion time are [mean, mean + variance,

full-state, convex-hull]. Interviews with beta-testers suggests that tracking 100 robots was

overwhelming—similar to schooling phenomenons that confuse predators—while working

with just the mean + variance was like using a “spongy” manipulator. Convex-hull

feedback was confusing and irritating because a single robot left behind an obstacle would

distort the entire hull, obscuring the information about the majority of the swarm.

2.5.2 Automated block-pushing

Fig. 2.13 shows snapshots during an execution of this algorithm. To solve this

block-pushing task, we discretized the environment. On this discretized grid we used

breadth-first search to determine M, the shortest distance from any grid cell to the goal,

and generated a gradient map ∇M toward the goal as shown in Fig. 2.14. The block’s

center of mass is at b and has radius rb. Three constants are needed, where k1 > k2 > 1
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Figure 2.13: Snapshots showing the block-pushing experiment with 200 robots under
automatic control.

and 1 > k2 > 0. All experiments used [k1, k2, k3] = [2.5, 1.5, 0.1]. The robots were

directed to assemble behind the block at b− k2rb∇M(b), then move to b− k3rb∇M(b)

to push the block toward the goal location. We use the hybrid hysteresis-based controller

in Alg. 1 to track the desired position, while maintaining sufficient robot density to move

a block by switching to minimize variance whenever variance exceeds a set limit. The

minimize variance control law (2.20) is slightly modified to choose the nearest corner

further from the goal than b with an obstacle-free straight-line path to b. The control

algorithm for block-pushing is listed in Alg. 5. Experimental results are summarized in

Fig. 2.15. Although larger populations of robots can apply more force, minimizing the

variance requires more time with larger populations and dominates task completion time.

Algorithm 5 is an imperfect solution and has a failure mode if the robot swarm

becomes multi-modal with modes separated by an obstacle, as shown in Fig. 2.16. In

this case, moving toward a corner will never reduce the variance below σ2
min.
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Figure 2.14: The BFS algorithm finds the shortest path for the moveable block (left),
which is used to compute gradient vectors (right).
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Figure 2.15: Completion-time results using the automatic controller from Alg. 5 for
different numbers of robots. Each bar is labelled with the number of trials.
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Algorithm 5 Block-pushing controller for a robotic swarm.

Require: Knowledge of swarm mean [x̄, ȳ], variance [σ2
x, σ

2
y], moveable block’s center of

mass b, map of the environment, and the locations of all convex corners C
Require: Robot distribution is unimodal
Require: Obstacle-free, straight-line path from swarm to moveable block
1: Compute M, the distance to goal, with breadth-first search
2: Compute the gradient, ∇M
3: C← sort(C) according to −M
4: while b is not in goal region do
5: σ2 ← max (σx, σy)
6: if σ2 > σ2

max then
7: while σ2 > σ2

min do
8: ci ← the nearest corner in C to [x̄, ȳ]
9: [xgoal, ygoal]← ci
10: if M(b) >M(ci) then
11: [xgoal, ygoal]← ci−1
12: Apply (2.19) to move toward [xgoal, ygoal]
13: end if
14: end while
15: else
16: if distance(b, [xgoal, ygoal]) > k1rb then
17: rp ← k2rb . guarded move
18: else
19: rp ← k3rb . pushing move
20: end if
21: [xgoal, ygoal]← b− rp∇M(b)
22: end if
23: Apply (2.19) to move toward [xgoal, ygoal]
24: end while

The first challenge is to identify when the distribution has become multi-modal.

Measuring just the mean and variance is insufficient to determine if a distribution is

no longer unimodal, but if the swarm is being directed to a corner, and the variance

does not reduce below σ2
min, the swarm has become separated. In this case, we must

either manipulate with a partial swarm, or run a gathering algorithm. For the ‘S’-

shaped workspace in this study, an open-loop input that commands the swarm to move

in succession {left, down, right, down} will move the swarm to the bottom right

corner. This is not true for all obstacle fields. In a ‘T’-shaped workspace, it is not possible

to find an open-loop input that will move the entire swarm to the bottom of the ‘T’.
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Figure 2.16: Algorithm 5 fails when some robots are separated by the maze and the
swarm can not achieve σ2 < σ2

min. These failures occured during 14% of
trials.

Using only the mean and variance may be overly restrictive. Many heuristics using

high-order moments have been developed to test if a distribution is multimodal [36].

Often the sensor data itself, though it may not resolve individual robots, will indicate

multi-modality. For instance CCD images reveal clusters of bacteria, and MRI scans show

agglomerations of particles [37]. This data can be fitted with k-means or expectation

maximization algorithms, and manipulation could be performed with the nearest swarm

of sufficient size.

2.5.3 Hardware system

Our experiments are on centimeter-scale hardware systems called kilobots. These

allows us to emulate a variety of dynamics, while enabling a high degree of control over

robot function, the environment, and data collection. The kilobot [38, 39] is a low-

cost robot designed for testing collective algorithms with large numbers of robots. It is

available commercially or as an open source platform [40]. Each robot is approximately

3 cm in diameter, 3 cm tall, and uses two vibration motors to move on a flat surface at

speeds up to 1 cm/s. Each robot has one ambient light sensor that is used to implement
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Figure 2.17: Hardware platform: table with 1.5×1.2 m workspace, surrounded by eight
remotely triggered 30W LED floodlights, with an overhead machine vision
system.

phototaxis, moving towards a light source. In these experiments as shown in Fig. 2.17,

we used n=64 kilobots, a 1.5 m×1.2 m whiteboard as the workspace, and four 30W LED

floodlights arranged 1.5 m above the plane of the table at the {N,E, S,W} vertices of a

6 m square centered on the workspace. The lights were controlled using an Arduino Uno

board connected to an 8 relay shield board. At top of the table, an overhead machine

vision system was added to track the position of the swarm. Laser-cut patterns for our

neon green fiducial markers and our Matlab tracking code are available at our github

repository [41].
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Figure 2.18: Two robot positioning using the hardware setup and two kilobot robots.
The walls have nearly infinite friction, as illustrated by this fig, the robot
with the blue path that is stopped by the wall until the light changes ori-
entation, while the orange robot in free-space is unhindered.

The walls of the hardware platform have almost infinite friction, due to the three

legged design of the kilobots. When a kilobot is steered into the wall, they pin themselves

to the wall until the light changes direction and they begin turning in the other direction.

This wall friction is sufficient to enable independent position control of two kilobots, as

shown in Fig. 2.18.

To demonstrate covariance control n = 64 robots were placed on the workspace

and manually steered with a single light source, using friction with the boundary walls

to vary the covariance from -5000 to 10,000. The resulting covariance is plotted in

Fig. 2.19, along with snapshots of the swarm.
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Figure 2.19: Hardware demonstration steering 64 kilobot robots to desired covariance.
Frames above the plot show output from machine vision system and an
overlaid covariance ellipse.
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Chapter 3

Conclusion and Future Work

Inspired by large-scale human experiments with swarms of robots under global

control, this thesis investigated controllers that use only the mean and variance of a

robot swarm. We proved that the mean position is controllable, and provided conditions

under which variance is controllable. We derived automatic controllers for each and a

hysteresis-based switching control that controls the mean and variance of a robot swarm.

We employed these controllers as primitives for a block-pushing task.

3.1 Future Work: Gathering Problem

Large populations of micro- and nanorobots are being produced in laboratories

around the world, with diverse potential applications in drug delivery and construc-

tion. These activities require robots that behave intelligently. Limited computation and

communication rules out autonomous operation or direct control over individual units;

instead we must rely on global control signals broadcast to the entire robot population.

It is not always practical to gather pose information on individual robots for feedback

control; the robots might be difficult or impossible to sense individually due to their size

and location. However, it is often possible to sense global properties of the group, such

as mean position and variance. In our experiments, we showed that controlling mean

is possible, and controlling variance with some constraints is possible. One of the con-

straints was that we had assumed that the swarm is clustered together and the swarm

was trying to keep the variance small. If we did not assume that and we had a world like

Fig. 3.1 or if during the experiment, a fraction of the swarm makes a new branch and

put the swarm to two or more clusters by hitting the obstacles in their path, we could
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Figure 3.1: If the robots were not grouped initially, how can we gather them all together
and what are the features of the map which is gather-able?

not gather them together again, and our algorithm for controlling variance was failed. So

the next problem is to design an algorithm that will gather all the robots to an specific

region with global input so that we can have the minimum variance.

For a S shaped maze it is easy to implement. Alg. 6 shows how to gather all the

particles of the swarm when we have a S shaped maze. With the same algorithm, we

have a solution for a mirrored S shaped maze. It is not an optimal way for a T shaped

map also, but works for it. The problem is: Is there a general way to gather all the

particles in any map?

Algorithm 6 Gather Robots in One Corner of an S-shaped or inverse S-shape Maze

Ensure: The maze is S -shaped
1: while σ2

x > σ2
min ∨ σ2

y > σ2
min do

2: Go Maximal Left
3: Go Maximal Down
4: Go Maximal Right
5: Go Maximal Down
6: end while
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Figure 3.2: How can we control torque of the object with a swarm of robots and a shared
input?

3.2 Future Work: Torque Control

Another remaining problem is that sometimes we do not want the block to rotate

during the experiment, or we want to rotate it to some angle. The problem statement

is how to control torque of the object, and discussing what features of the object make

torque controllable. Fig. 3.2 shows an example of torque control.
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