IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2018 1

Efficient Parallel Self-Assembly
Under Uniform Control Inputs

Arne Schmidt?!, Sheryl Manzoor?, Li HuangQ, Aaron T. Becker?, and Sandor P. Fekete!

Abstract—We prove that by successively combining subassem-
blies, we can achieve sublinear construction times for “staged”
assembly of micro-scale objects from a large number of tiny
particles, for vast classes of shapes; this is a significant advance
in the context of programmable matter and self-assembly for
building high-yield micro-factories. The underlying model has
particles moving under the influence of uniform external forces
until they hit an obstacle; particles bond when forced together
with a compatible particle. Previous work considered sequential
composition of objects, resulting in construction time that is linear
in the number N of particles, which is inefficient for large N.
Our progress implies critical speedup for constructible shapes;
for convex polyominoes, even a constant construction time is
possible. We also show that our construction process can be used
for pipelining, resulting in an amortized constant production time.

Index Terms—Computational Geometry, Underactuated

Robots, Additive Manufacturing

I. INTRODUCTION

HE new field of programmable matter gives rise to a

wide range of algorithmic questions of geometric flavor.
One of the tasks is designing and running efficient production
processes for tiny objects with given shape, without being able
to individually handle the potentially huge number of particles
from which it is composed, e.g., building polyominoes from
their tiles without the help of tools.

In this paper we use particles that can be controlled by a
uniform external force, causing all particles to move in a given
direction until they hit an obstacle or another blocked particle,
as shown in Fig. 1. Recent experimental work by Manzoor et
al. [11] showed this is practical for simple “sticky” particles,
enabling assembly by sequentially attaching particles emanating
from different depots within the workspace or supply channels
from the outside to the existing subassembly, as shown in Fig. 1.
The algorithmic challenge is to design the surrounding “maze”
environment and movement sequence to produce a desired
shape.

A recent paper by Becker et al. [3] showed that the decision
problem of whether a simple polyomino can be built or not is
solvable in polynomial time. However, this relies on sequential

Manuscript received: February 23, 2018; Revised May 29, 2018; Accepted
June 30, 2018.

This paper was recommended for publication by Editor Nancy Amato upon
evaluation of the Associate Editor and Reviewers’ comments.

IDepartment of Computer Science, TU Braunschweig, Germany. {s.fekete,
arne.schmidt} @tu-bs.de

2 Work from these authors was partially supported by National Science
Foundation IIS-1553063 and IIS-1619278. Department of Electrical and
Computer Engineering, University of Houston, USA. atbecker@uh.edu

Digital Object Identifier (DOI): see top of this page.

Polyomino P

1. Right

3. Right 4. Left 5. Down
"l A b
6. Right 7. Up 8. Right

Fig. 1. Convex polyominoes can be assembled in six movement steps. A copy
of the polyomino P is released every five steps after the first copy. See video
attachment for animation: https://youtu.be/_R_puOOsmPs.

construction in which one particle at a time is added, resulting
in a linear number of assembly steps, i.e., a time that grows
proportional to the number N of particles, which is inefficient
for large N. In this paper we provide substantial progress by
developing methods that can achieve sublinear and in some
cases even constant construction times. Our approaches are
based on hierarchical, “staged” processes, in which we allow
multi-tile subassemblies to combine at each construction step.

A. Contribution

We provide a number of contributions to achieving sublinear
construction times for polyomino shapes consisting of IV pixels
(“tiles”), which is critical for the efficient assembly of large
objects. Many of these results are the outcome of decomposing
the shape into simpler pieces; as a consequence, we can describe
the construction time in geometric parameters that may be
considerably smaller than V.

o We show that we can decide if a given polyomino P can
be recursively constructed from simple subpieces that are
glued together along simple straight cuts (‘“2-cuts”) in
polynomial time. The resulting production time depends
on the number r(P) of locally reflex tiles of P, which is
bounded by NN, but may be much smaller.

o We show that building a convex polyomino takes O(1)
steps.

https://youtu.be/_R_puO0smPs

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2018

o For a monotone polyomino P, we need O(logd(P))
steps, where d(P) < N is the number of cuts needed to
decompose P into convex subpolyominoes.

« For polyominoes with convex holes, we show that O(r)
steps suffice to build the polyomino.

o All methods we describe can be pipelined resulting in an
amortized constant construction time.

We also elaborate the running time for efficiently computing
aspects of the decomposition, as follows. Finding cuts for a
decomposition needs O(NV) time for monotone polyominoes.
Simple polyominoes require O(N + r%logr) time to find a
straight cut and O(r?>N log N) time to find an arbitrary cut.
Allowing convex holes increases the time to O(N + r3logr)
and O(r3N log N), respectively.

For all these constructions, we show that N - (Cp + /D)
obstacles suffice to construct D copies of an N-tile polyomino
that requires Cp steps to build.

B. Related Work

In recent years, the problem of assembling a polyomino
has been studied intensively using various theoretical models.
Winfree [14] introduced the abstract tile self-assembly model
in which tiles with glues on their side can attach to each
other if their glue type matches. Then, starting with a seed-
tile, the tiles continuously attach to the partial assembly. If no
further tile can attach, the process stops. Several years later,
Cannon et al. [5] introduced the 2-handed tile self-assembling
model (2HAM) in which sub-assemblies can attach to each
other provided that the sum of glue strengths is at least a
threshold 7. Chen and Doty [7] introduced a similar model:
the hierarchical tile self-assembling model. In 2008, Demaine
et al. [8] introduced the staged tile self-assembly model which
is based on the 2HAM. Here, sub-assemblies grow in various
bins which can then poured together to gain new assemblies.
This model was then further analyzed by Demaine et al. [9]
and Chalk et al. [6]. An interesting aspect in all models is that
the third dimension can be used to reach specific positions
within partial assemblies. In our paper however, the challenge
is to use two dimensions, i.e., an assembly can only bond to
another polyomino if the bonding site is completely visible.

All these models have in common that particles, e.g.,
DNA-strands, self-assemble to bigger structures. In this paper,
however, the particles can only move by global controls and
have one glue type on all four sides. This concept has been
studied in practice using biological cells controlled by magnetic
fields, see [10]. In addition, see [1]. Recent work by Zhang et
al. [15] shows there exists a workspace a constant factor larger
than the number of agents that enables complete rearrangement
for a rectangle of agents.

A more related paper is the work by Manzoor et al. [11].
They assemble polyominoes in a pipelined fashion using
global control, i.e., by completing a polyomino after each
small control sequence the amortized construction time of a
polyomino is constant. To find a construction sequence building
the polyomino only heuristics are used. Becker et al. [3] show
that it is possible to decide in polynomial time if a hole-free
polyomino can be constructed. However, both papers consider

adding one tile at a time. In this paper, we allow combining
partial assemblies at each step. We are also able to pipeline
this process to achieve an amortized constant production time.

The complexity of controlling robots using a global control
has been studied. Becker et al. [2] show that it is NP-hard to
decide if an initial configuration of a robot swarm in a given
environment can be transformed into another configuration by
only using global control but becomes more tractable if it is
allowed to design the environment. Finding an optimal control
sequence is even harder. Related work for reconfiguration of
robots with local movement control include work by Walter et
al. [13], Vassilvitskii et al. [12], and Butler et al. [4].

II. PRELIMINARIES

Workspace: A workspace WV is a planar grid filled with unit-
square particles and fixed unit square blocks (obstacles). Each
cell of the workspace contains either a particle, an obstacle,
or the cell is free.

Movement step: A movement step is one of the four directions
up, right, down, left. One movement step forces every tile
or assembly to move to the specified direction until the
tile/assembly is blocked by an obstacle.

Polyomino: For a set P C Z? of N grid points in the plane,
the graph G p is the induced grid graph, in which two vertices
p1,p2 € P are connected if they are at unit distance. Any set
P with connected grid graph Gp gives rise to a polyomino
by replacing each point p € P by a unit square centered at p,
which is called a tile; for simplicity, we also use P to denote
the polyomino when the context is clear, and refer to G p as the
dual graph of the polyomino. A polyomino is called hole-free
or simple if and only if the grid graph induced by Z2 \ P
is connected. A polyomino P is column convex (row convex,
resp.) if the intersection of any vertical (horizontal, resp.)
line and P is connected, i.e., the polyomino is x-monotone
(y-monotone, resp.). Furthermore, a polyomino P is called
(orthogonal) convex if P is column and row convex.

Tiles: A tile ¢ is an unit-square of a polyomino and also
represent particles in the workspace. There are two kinds of
tiles: blue and red tiles. Two tiles stick together if their color
differs.

Constructibility: A polyomino P is constructible if there
exists a workspace WV and a sequence ¢ of movement steps
that produce P.

Cuts: A cut is an orthogonal curve moving between points
of Z2. If any intersection of a cut with the polyomino P
has no turn, the cut is called straight. A p-cut is a cut that
splits a polyomino P into p subpolyominoes. Furthermore,
a cut is called valid if all induced subpolyominoes can be
pulled apart into opposite directions without blocking each
other. A polyomino P is called (straight) 2-cuttable if there is
a sequence of valid (straight) 2-cuts that subdivide P into
monotone subpolyominoes. If the subpolyominoes can be
pulled apart in horizontal (vertical) directions, we call the
cut vertical (horizontal) An example for 2-cuts can be seen in
Fig. 2. In the following we only consider 2-cuts for non-convex
polyominoes.

SCHMIDT et al.: EFFICIENT PARALLEL SELF-ASSEMBLY UNDER UNIFORM CONTROL INPUTS 3

T -+
B
B

\ b

B (| [%

Fig. 2. Left: (Counter-)Examples for straight 2-cuts: #; is not a 2-cut because
we cannot move the left component to the right or left without getting blocked
by the other component. £3 is not a 2-cut because we get more than two
components. £3 is a 2-cut because we get two components which can be
pulled apart. £4 is not a straight cut. Right: Decomposition tree with straight
2-cuts where the leaves are convex polyominoes.

23 3

ITII. MONOTONE ASSEMBLIES
This section focuses on convex and monotone polyominoes.

Lemma 1. Any convex polyomino P can be assembled in six
movement steps.

Proof. The idea of this proof is simple: Subdivide P into
vertical lines of width one, build the lines in two steps (see
Fig. 1.1 and 1.2), and connect these lines with a right and left
movement (see Fig. 1.3 and 1.4). With two more movements
we can flush P out of the labyrinth (see Fig. 1.5 and 1.6).

Assembling a column: To construct a column of length n,
we build n containers, each below the previous. Each
container releases a new tile after each left, down, right
movement combination. After the right movement all n
tiles move to a wall and then have the same z-coordinate.
With an up movement all n tiles stick to a column once
the first tile hits the top wall.

Assembling the polyomino: Assume we have built each col-
umn of the polyomino in parallel. With obstacles we can
stop each column at the appropriate respective heights. A
right movement combines all columns left of the column
with the maximum height, and a left movement completes
the assembly of P. To remove the polyomino from the
assembly area we use a down, right movement. Note that
the last three movements are left, down, and right, by
which we start the next copy of P.

Without further precautions, a polyomino could get stuck in
narrow corridors. This problem can be avoided with a simple
case analysis. First, observe that the leftmost of the topmost
tiles of the polyomino is blocked by an obstacle. Let ¢ be this
tile and let z; be the corresponding z-coordinate. Also, let s
be a tile stuck in a corridor having z-coordinate z4. Only two
cases can occur. (a) s < x4: We place an additional obstacle
directly where ¢ was blocked. This forces the polyomino to
stop one position earlier. (b) zs > z;: We shift every obstacle
with z-coordinate higher than the corridor one unit to the right
and we add an additional obstacle at the corridor end. The
polyomino is then stopped by this obstacle. O

Definition 1. Let P be an x-monotone polyomino. The
decomposition number d(P) is the minimum number of vertical
cuts required to obtain subpolyominoes that are all convex.

Fig. 3. A polyomino P. Light grey tiles define P, dark grey tiles define
P1,. Blue framed rows are minima in Py, red framed rows are maxima in
Py,. Decomposition number d(P) = 3, because three vertical lines suffice
and three line are necessary because every line hits a maxima/minima.

The upper envelope P, C P consists of (1) all tiles T' on
the boundary that have no tiles above, and (2) tiles connecting
T along the boundary. Analogously define the lower envelope
P, C P.

We call a straight row M = {mi,...,my} C Py a
minimum of P, if there are two tiles t1 and to, for which t,
is connected to the top side of m1 and ts is connected to the
top side of my. Analogously define maximum for P,

To construct an z-monotone polyomino make vertical cuts
through the maxima/minima of P, and P, respectively.
There are at most d(P) many cuts. We now can choose
a cut, such that on both subpolyominoes P’ and P” the
decomposition number d(P’) < d(P”) < 1d(P); this can
be done with a median search. Repeating this procedure on
each resulting subpolyomino yields a decomposition tree with
depth log d(P) whose leafs are convex polyominoes.

Lemma 2. Let P be a polyomino. For each minimum and
maximum M there must be a vertical cut { going through M
in order to decompose P into convex subpolyominoes.

Proof. Suppose we do not need such line ¢. Let P’ be a
subpolyomino having a minimum M’, through which no cut
is made. Consider the two tiles ¢t; and to as defined above.
Both t; and t5 must be in the same subpolyomino (because
there is no cut through M’). Then, a horizontal line through ¢,
and t9 enters P’ twice and therefore, P’ cannot be an convex
polyomino. O

Lemma 3. Letr P be an x-monotone polyomino. The decom-
position number d(P) and the corresponding cuts can be
computed in O(N) time.

Proof. Finding the minima and maxima of P,, and P,
respectively, can be found in O(N) time by sweeping from
the left boundary to the right boundary. Having the minima
M, and maxima M, both in sorted order from left to right,
we repeat the following procedure:

e Let My € My, and M) € M, be the leftmost
minima/maxima, resp.

o If the projection of My and M| to the z-axis overlaps
with at least two tiles, then output a vertical line going
through M, and M{, and remove both from M,, and
M, resp.

« If this is not the case, output a vertical line going through
the minima/maxima that ends first, and remove this
minima/maxima from M., or M, resp.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2018

(c) Left

(d) Down (e) Right (f) Up

Fig. 4. Assembling two subpolyominoes P; and P2, where the topmost tile of
P lies above the topmost tile of P». These are the same movements as seen
in Fig. 1 for convex polyominoes. Thus, we can combine two subpolyominoes

while constructing the next convex subpolyomino.

Py

P

(e) Right (f) Up

Fig. 5. Assembling two subpolyominoes P; and P->, where the topmost tile of
P> lies above the topmost tile of P;. These are the same movements as seen
in Fig. 1 for convex polyominoes. Thus, we can combine two subpolyominoes
while constructing the next convex subpolyomino.

This procedure costs O(d(P)) time. In total, this is O(N) time.
The correctness follows from Lemma 2. O

Theorem 1. Any x-monotone polyomino P with decomposition
number d(P) > 0 can be assembled in O([log(1 + d(P))])
unit steps. Furthermore, this process can be pipelined yielding
a construction time of amortized O(1) unit steps.

Proof. As a first step we search for the vertical cuts as
described above. Having this subdivision into convex subpoly-
ominoes, we can use Lemma 1 to create all subpolyominoes in
parallel. We now can use the combining gadget seen in Fig. 4
and Fig. 5 to combine two adjacent subpolyominoes in each
cycle. Thus, for each cycle the number of subpolyominoes de-
creases by a factor of two and we have at most [log(14d(P))]
cycles to combine all subpolyominoes to obtain P.

As already described in Lemma 1, we start a new copy
after every cycle. Thus, to create D copies of P we need
O([log(14d(P))] + D) cycles. This is an amortized constant
time per copy if we create Q(log d(P)) copies. Note that d(P)
is in (1) and O(N). O

Fig. 6. A complete example constructing P with d(P) = 3. State shown
is after an up-movement and its previous state in translucent colors. Top-left
box: A polyomino P with locally convex tiles (red), locally reflex tiles (blue),
and tiles that are both locally convex and locally reflex (orange, striped).

IV. ASSEMBLING NON-MONOTONE SHAPES

In this section we show how to decide constructibility for
special classes of polyominoes, namely simple polyominoes
and polyominoes with convex holes. We end this section by
showing how much space is needed for the workspace in which
we can assemble the polyominoes.

A. Simple Polyominoes

To prove if a simple polyomino can be constructed we look
at the converse process: a decomposition. As defined in the
preliminary section we use 2-cuts to decompose a polyomino.
If the polyomino cannot be decomposed by 2-cuts then the
polyomino cannot be constructed by successively putting two
subpolyominoes together. We show with the next lemma that
we can greedily pick any valid straight 2-cut.

Lemma 4. Any valid straight 2-cut preserves decomposability.

Proof. Consider a straight 2-cut ¢ and a sequence o =
(l1,...,4n) of cuts, decomposing P into single tiles. Assume
¢ is part of the cut sequence but not the first cut in o. Then,
there is a 2-cut ¢’ being made directly before ¢ in a polyomino
P* induced by cuts before ¢/. We can now swap ¢ and ¢
preserving their property of being 2-cuts: for ¢ we assume it is
a 2-cut in P, which is also true in any subpolyomino induced
by 2-cuts; the same holds for ¢, it is a 2-cut in P* and thus,
also in any subpolyomino induced by 2-cuts. After swapping
both cuts we have the same decomposition yielding a valid
decomposition of P. We can now repeat this procedure until ¢
is the first cut in P.

However, ¢ may not be in the cut sequence o. We now show
that we can use ¢ as a cut by exchanging cuts. Let £}, be the
last cut intersecting £. This cut separates two cuts ¢/ and £”
which lie on ¢. Because ¢ is a 2-cut, also ¢/ U ¢ must be a
2-cut in the polyomino where we use cut /5. Therefore, we can
first use the cut ¢/ U¢” and then the two cuts ¢}, and ¢}/ induced
by the intersection of ¢ and /;. By repeating this procedure,
we get ¢ as part of the cut sequence o. O

Definition 2. A tile t of a polyomino P is said to be locally
convex if there exists a 2 X 2 square solely containing t. If
the square only contains t and its two neighbors, then we call
t locally reflex. Note that a tile can be locally convex and
locally reflex at the same time (see Box in Fig. 6).

SCHMIDT et al.: EFFICIENT PARALLEL SELF-ASSEMBLY UNDER UNIFORM CONTROL INPUTS 5

4 L

P, Ps Py S me -7
Fig. 7. The original cut £ and
its shifted copy ¢/, which to-
gether split the polyomino into
three parts Py, P, P3.

Fig. 8. A not locally convex tile ¢ (red)
in Pp (gray area) blocked by g1 and g2
(purple). If the path g2q1 exists, there
is at least one blocked locally convex
tile above the black bold line. If g1¢q2
exists, we proceed analogously.
Lemma 5. Any non-convex, straight 2-cuttable polyomino P
can be decomposed into convex subpolyominoes by only using
straight 2-cuts cutting along a locally reflex tile.

Proof. W.l.o.g., consider a vertical straight 2-cut ¢ that may
not cut along a locally reflex tile. Then we can move a cut
¢’ to the left starting at £ until we reach a locally reflex tile
t such that the cut goes through the corner of ¢ that lies on
the boundary of P (if we cannot reach a locally reflex tile we
move ¢’ to the right). We obtain three subpolyominoes: P; to
the right of ¢, P, to the left of ¢/, and P between ¢ and ¢
(see Fig. 7).

Assume ¢ is not a valid 2-cut, i.e., a tile is blocked in Ps
or P5. (If there is a blocked tile in P;, then also ¢ would not
be a 2-cut.) Consider the first case, where P, has a blocked
tile . Then, ¢ has an y-coordinate which is at most as high as
the highest tile in Ps plus 1 and at least as high as the lowest
tile in P3 minus one (or else both blocking tiles must be in
P, and thus, ¢ would be no 2-cut). Let g; € P5 to the right of
t and g2 € P, U Ps to the left of ¢ be the two tiles blocking .
By replacing ¢; with its right neighbor we still have two tiles
blocking ¢. Because ¢ is a 2-cut we can repeat this procedure
until ¢; € P;. We can repeat the procedure for ¢o if g3 € Ps.
Thus, both blocking tiles are in P; and ¢ cannot be a 2-cut.

For the second case the blocked tile ¢ lies in Ps. Then, also
the right neighbor ¢’ of ¢ is blocked. This is also true for ¢'.
Therefore, we can go to the right until we reach P; and thus,
there is a tile in P; which is blocked. This means, also ¢ cannot
be a valid 2-cut, which is a contradiction to ¢ being a valid
2-cut.

As each cut ¢ reduces the number of locally reflex tiles by
at least one, the remaining polyominoes will be convex after a
limited number of cuts. O

Lemma 6. It is sufficient to consider locally convex tiles for
checking if a cut £ is a valid straight 2-cut.

Proof. Assume w.l.o.g. ¢ is a vertical cut splitting the poly-
omino in two subpolyominoes P; and P,. W.l.o.g., consider a
not locally convex tile t € P; blocked by two tiles q1, g2 € Ps.
Because { is a 2-cut and P is simple, there must be a path
from ¢; to go within Ps. This path must go around P; either
above or beneath t (see Fig. 8).

In case the path moves above ¢, consider a horizontal cut
directly above ¢ (see Fig. 8). This cut splits P; into components.
In each component there are at least four locally convex tiles
from which at most two became locally convex through the

cut. Thus, two of these locally convex tiles were also locally
convex in Pj. It is easy to see in the figure that both locally
convex tiles are also blocked by tiles on the path from ¢; to go.

In the second case we proceed analogously with the
difference that we use a horizontal cut directly below ¢. We
conclude that in any case there is a locally convex tile in P;
that is being blocked if there is a blocked, not locally convex
tile. Note that the other direction may not be true. O

Lemma 7. Checking if a 2-cut ¢ is valid can be done in
O(N + rlogr) time, where r is the number of locally reflex
tiles.

Proof. W.l.o.g. assume ¢ to be a vertical straight cut and also
assume that we are checking blue tiles only. As a first step
we scan through the polyomino and search for all tiles that
represent a corner, i.e., the tile is locally convex or locally
reflex. Additionally, we can store the neighbor corner tiles of
each corner tile (these are up to four tiles). Both steps can be
done with one scan, and thus in O(N) time.

Now, consider the cut ¢ splitting the polyomino into
subpolyominoes P, and P,. Finding the corner tiles in P}
and P, can be done in O(r) time by a breadth-first search. We
proceed with the following procedure for P; (analogously for
P. 2)2

1) Get all vertical lines connecting two corner tiles in P
and stretch this line by one tile if a corner tile is red
(this checks if a blue tile would pass a red tile).

2) Sort the set C,. of corner tiles in P, lexicographically
by y-coordinate and then by z-coordinate.

3) Start a sweep line from bottom to top having the tiles
in C. as event points.

4) On each event point p do the following update:

o If p is a start point of a vertical line but lies left of
the current vertical line, remove p from C...

o If p is a start point and lies to the right of the current
line add the tile of the current line to C,. and jump
to the new vertical line.

o If p is an end point of the current vertical line, then
jump to the nearest vertical line to the left and add
the tile of this line to C,..

o If p is an end point but not of the current vertical
line, remove p from C,..

5) Repeat steps 1-4, switching left and right, to get C
6) For each locally convex tile ¢ in P;:

« find ¢; € C, having highest y-coordinate below ¢,
and ¢o € C, having lowest y-coordinate above ¢.
(Both shall be the left-most tile in case of ties.)

« find ¢ € C; having highest y-coordinate below t,
and ¢ € C) having lowest y-coordinate above ¢.
(Both shall be the left-most tile in case of ties.)

o If ¢ lies to the left of segment g;g2 and to the right
of segment ¢} ¢5 return false.

This computes a left and right envelope of vertical lines in
P; and P, respectively. This allows an easy check if there is
a tile on the left/right blocking a tile from P; in this direction
(for an example, see Fig. 9).

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2018

| ' }—jj
|
Ho

- 2=
Py

(a) t1 is blocked to the right because it lies to the left of the
red line. ¢t and t3 are on the right side and there is no segment
blocking them to the right. The leftmost segment belongs to
bounding box of Ps.

]

| !

(b) t1 and to are blocked to the left because they lie to the right
of the red line. Only ¢3 is on the left side and there is no segment
blocking it to the left. The rightmost segment belongs to bounding
box of Ps.

Fig. 9. Example for the data structure used in Lemma 7. We observe that ¢; is always on the wrong side of the red line and is thus blocked in both directions.

Vertical lines are part of Px.

The runtime is in O(r log r'): Step 1 needs O(r) time because
there are O(r) corner tiles and at most two vertical lines per
corner tile. Sorting a set lexicographically in two dimensions
can be done in O(rlogr). With a careful view on step 4, we
can observe that each update of the O(r) event points costs
O(logr) and thus in total O(rlogr) time. Step 6 can be done
in O(logr) time for each locally convex tile. Therefore, we
need O(rlogr) time in total. O

The next theorem is straightforward to prove.

Theorem 2. Let r be the number of locally reflex tiles. We
can find a valid straight 2-cut in O(N + r?logr) time.

Theorem 3. A decomposition tree of valid 2-cuts for a
polyomino P can be used to build a labyrinth constructing P.
This labyrinth can also be used for pipelining.

Proof. Consider a cycle of the seven unit steps right, up, down,
up, right, left, down. This is the movement sequence which
was already seen for convex and monotone polyominoes but
with two more movements. This cycle preserves the ability to
construct monotone polyominoes in the labyrinth above. Also
observe that turning the gadgets seen in Figs. 4 and 5 by 90
degrees clockwise yields gadgets that put two polyominoes on
top of each other.

Transforming a decomposition tree of 2-cuts for a polyomino
P can easily be done: Consider the layers of the decomposition
tree, with the root being layer zero, its children being layer
one, and so on. In each vertex in one layer either a horizontal
or vertical cut is made. Corresponding to this cut we construct
a gadget putting the two children of this vertex together. At
some point only monotone subpolyominoes exist. These can
be build using the methods described above.

The length of a root-leaf-path may vary. In this case we can
build loops so we can put two polyominoes together at the
right time. O

Theorem 4. Any straight 2-cuttable polyomino P can be build
within O(r) unit steps, where r is the number of locally reflex
tiles in P. D copies require O(r + D) unit steps.

Proof. Doing cuts along locally reflex tiles reduces the number
of locally reflex tiles by at least one. This implies a maximum
depth of O(r) of the decomposition tree and thus, O(r) cycles
to produce P. As seen before, pipelining yields a construction

L

:

'l-l__l

Fig. 10. Left: A polyomino needing Q(N) steps to build as we cannot
separate the green nor the orange part efficiently from the grey part. Right:
Polyomino which is not 2-cuttable. Any cut splits the polyomino either in
two subpolyominoes which cannot be pulled apart or into more than two
subpolyominoes.

T [EREERERERERERRE]

time of (r + D) unit steps, which is an amortized constant
construction time if D € Q(N). O

Unfortunately, the number of locally reflex tiles r can be in
Q(N) and thus, we may need (V) cuts to build the polyomino.
In particular, Fig. 10 left shows an example which needs Q(N)
cycles to build. Even scaling by some factor k, i.e., replacing
each tile by an k x k supertile, seems not to help. Moreover,
there are also polyominoes we cannot build by putting two
subpolyominoes together at the same time (see Fig. 10 right).

B. Non-Straight Cuts

Considering any 2-cut makes it more difficult to find cuts,
as there are exponential many possible cuts. However, we do
not need to consider all cuts. For a given start s and end e
on the boundary of a polyomino P, we can show that it is
sufficient to consider only one cut connecting s and e. The
proof is similar to the one of Lemma 5.

Theorem 5. Given a 2-cuttable polyomino P, we can find a
2-cut in time O(r?N log N), where 1 is the number of locally
reflex tiles in P.

Proof. The idea of this proof is to find O(r?) 2-cuts which
are then tested if they are valid. One necessary criterion is that
no cut moves three units to the left or right in case of vertical
cuts. This can be achieved with a directed graph Dp. As seen
in Fig. 11, we add a set of O(r) vertices that correspond to
corners of tiles lying on the boundary of P (giving rise to
the set V), or that correspond to corner tiles not lying on
the boundary (resulting in the set V7). We add edges between
adjacent vertices with weight ﬁ if both vertices are in V. If
both vertices are in Vg, then the edge has weight 2, otherwise 1.

SCHMIDT et al.: EFFICIENT PARALLEL SELF-ASSEMBLY UNDER UNIFORM CONTROL INPUTS 7

Fig. 11. A polyomino P (grey tiles) and the graph Dp (right). The vertices
in Vp are shown as squares, the vertices in Vy are shown as disks. Red bold
line in P is a 2-cut. Red path in the graph represents this cut.

A 2-cut is represented by a shortest path of weight at most
2.5 containing exactly two vertices of V. If we have at least
three vertices of V in the shortest path, it has length at least
3. Thus, paths from one vertex in Vg to another vertex of Vg
define cuts going through P. Finding all shortest paths from
one vertex in Vp lasts O(N log N) time, as there are O(NN)
edges in Dp. This implies a total time of O(rN log N) for
finding all shortest paths of length at most 2.5.

Because one cut can make O(N) turns, checking whether
the cut is valid takes time O(N log N). Thus, checking all
O(r?) cuts if they are valid needs time O(r2N log N). O

All techniques can be generalized for polyominoes with
convex holes. However, this increases the number of possible
cuts to be checked. In particular, there can be O(r}) possible
ways to go through a hole h with rj, locally reflex tiles. Thus,
the time to find a cut takes O(N + 13 logr) using straight cuts
and O(r3N log N) using non-straight cuts.

C. Workspace Size and Number of Obstacles

Theorem 6. Let P be a polyomino. Then, the workspace
needed to assemble D copies of P can be put into a rectangle
of width O(wpLp-(Cp++/D)) and height O(hp-(Cp++/D)),
where wp and hp are the width and height of P, Cp is the
number of movement steps needed, and Lp is the number
of cuts made to decompose P into convex subpolyominoes.
Furthermore, we only need O(N(Lp + /D)) obstacles in the
workspace.

Proof. Represent each gadget as a block. An example block
diagram shown in Fig. 12 illustrates the structure of the
workspace with width and height of each stage.

Consider the decomposition tree T' of P induced by cuts
whose leafs are convex polyominoes. For convex polyominoes
we can use the construction from Lemma 6 and for each
inner node of 7" we use the gadgets used in Theorem 1 to
combine two subpolyominoes. Let Pi,..., P, be the convex
polyominoes in the leafs of T' with width wy,...,w; and
height hq, ..., hi. To construct one P;, we need O(\/Bwl) X
O(V/Dhy) space, where hj; is the maximum height of all P;.

Now consider the j-th stage with ;5 < Cp where some
polyominoes are combined. Let P and P, be two such
polyominoes. After assembling these polyominoes the width
of the polyomino P; increases to w} < wj + w4. Thus, the
width of the workspace increases by at most w} + wj. We
observe that any width of Py, ..., P, appears at most Cp + 1
times. With w; < wp and k € O(Lp), this results in a total
width of Y277, wp (VD + Cp + 1) € O(wpLp(VD + Cp)).

= Pl = P/UP;
= P =PUPR| P=RUP
:g P | P Py | Py
| \\/Ew% \\/57“3 | | '11;.'3 j wi’ j

Fig. 12. Block diagram of the workspace to construct a monotone polyomino.

PIUP,
PUP, e

]
EEEE N

| L

Fig. 13. Gadgets assembling two subpolyominoes. Left: With unnecessary
obstacles. Right: Without unnecessary obstacles.

E

R —
fu)
NN
—_—
el
EEEEEEE

For the total height consider the maximum height A} of
all polyominoes in stage j < Cp. Because we need O(h})
space in the vertical direction for stage j, we have have a total
height of hpv/D + chil h; € O(hp(v/D + Cp)) resulting
in a rectangle of size O(wp(v/D +Cp)) x O(hp(vV/'D +Cp))
enclosing the workspace.

Although the workspace may be large, the number of
obstacles needed is smaller. First, ignore any obstacle not
needed as a stopper (see Fig. 13). This reduces the number of
obstacles to O(wp + hp). Because wp, hp < N this is O(N).
The same can be done for building the convex polyominoes.
However, to keep the D tiles in a container we need all O(v/D)
obstacles. Thus, we have O(N+/D) obstacles to build all
convex polyominoes and O(LpN) obstacles for the gadgets
which is in total O(N(Lp + v/D)). O

V. EXPERIMENTAL DEMONSTRATION

We implemented the algorithms for staged assembly at micro
and milli scale. A customized setup was used to generate a
magnetic field to manipulate the magnetic particles.

a) Experimental Platform: The magnetic setup used for
the experiments is shown in Fig. 14, consisting of three
orthogonal pairs of coils with separation distance equivalent to
the outer diameter (127.5 mm) of a coil. The coils (18 AWG,

Fig. 14. (a) Magnetic manipulation workspace (b) frames from an assembly
of one column of a polyomino. (c) frames from combining two polyominoes.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2018

C
AN

80 - 80

60 /

/ Ll

success rate (%)
m
success rate (%)

/ 1 mm Channel 0.5 mm Channel 2 mm Channel
Width / Width Width

1 1‘,5 é 2.‘5 3 3.5 4 (; 0.‘5 1‘ 1‘,5 ;
delay in each direction (seconds) channel width (mm)
Fig. 15. Results from assembly of a micro-scale three-tile column polyomino.
There are 10 trials per data point. (a) Success rate as a function of the duration
control inputs were applied in each of the four directions on a workspace with
1 mm width channels. (b) Success rate as a function of channel widths using
control inputs applied for 3 s in each direction.
1200 turns, Custom Coils, Inc) are actuated by six SyRenl0-
25 motor drivers, and a Tekpower HY3020E is used for the
DC power supply. The electromagnetic platform can provide
uniform magnetic fields of up to 101 G, and gradient fields
up to 150 mT/m along any horizontal direction in the center
of the workspace. With flux concentration cores, up to 900
mT/m gradient fields are observed in the experiment. Each
flux concentration core is a solid iron cylinder 73.1 mm in
diameter.

The workspaces used to demonstrate the sublinear assembly
algorithms were designed to replicate the column assembly
in Fig. 1 and the subpolyomino assembly in Fig. 4. Each
workspace is made up of two layers of acrylic cut using a
Universal Laser Cutter. The base layer is fabricated from 2
mm thick transparent acrylic, and it is glued to 5.5 mm thick
acrylic, which acts as an obstacle layout. In each experiment,
the workspace is placed in the center of our electromag-
netic platform. The particle tiles are composed of nickel-
plated neodymium cube-shaped magnets (supermagnetman.com
C0010). The magnet cubes have edge lengths of 0.5 mm for
micro-scale and 2.88 mm for milli-scale demonstrations. An
Arduino Mega 2560 was used to control the current in the
coils and the workspaces were observed with a IEEE 1394
camera, captured at 60 fps.

b) Experimental Results: In micro-scale experiments, we
filled the workspaces with vegetable oil and placed a magnet
cube with 0.5 mm edge length in each of the three hoppers.
The workspace used in these experiments was 18 mm wide and
30 mm long. To assemble the column polyomino, a gradient
magnetic field of 900 mT/m was applied in the direction
sequence (d,r,u,l). Each direction input was applied for a
fixed amount of time specified by a MATLAB program. A
successful trial requires that all three components are joined
and delivered to the top right of the workspace. Fig. 14b
shows the completed three-tile polyomino and Fig. 15 shows
representative experimental results for the assembly of the
column polyomino. Successful assembly depends on the
channel widths and the duration of the control inputs. Larger
channel widths and longer control durations led to high success
rates. Trials were always successful when the magnetic field
was applied at least 3 s in each direction and when the channel
width was at least 1 mm.

For milli-scale demonstrations we assembled two polyomi-
noes, as shown in Fig. 14c. Each polyomino is composed of
four magnet cubes glued together to form a square shape. The

43 mm X 62 mm workspace was placed in a uniform, 101 G
magnetic field to control the orientation of the polyominoes
and then manually tilted in the direction sequence (u, !, d,r, u).
See video attachment for experimental demonstrations.

VI. CONCLUSION AND FUTURE WORK

A spectrum of future work remains, most notably issues
of robustness in the presence of inaccuracies, as well as the
extension of our results to three-dimensional shapes. Questions
in 2D include the following. Can we guarantee sublinear
production times if the polyomino can be scaled by a constant?
Are straight cuts sufficient, i.e., if a polyomino P is 2-cuttable,
is P also straight 2-cuttable? How hard is it to decide if a
polyomino cannot be built at all? Can we efficiently assemble
polyomino P’ that approximates P?

REFERENCES

[1] D. Arbuckle and A. A. Requicha, “Self-assembly and self-repair
of arbitrary shapes by a swarm of reactive robots: algorithms and
simulations,” Autonomous Robots, vol. 28, no. 2, pp. 197-211, 2010.

[2] A. T. Becker, E. D. Demaine, S. P. Fekete, G. Habibi, and J. McLurkin,
“Reconfiguring massive particle swarms with limited, global control,”
in Proceedings of the International Symposium on Algorithms and
Experiments for Sensor Systems, Wireless Networks and Distributed
Robotics (ALGOSENSORS), 2013, pp. 51-66.

[3] A.T. Becker, S. P. Fekete, P. Keldenich, D. Krupke, C. Rieck, C. Scheffer,

and A. Schmidt, “Tilt Assembly: Algorithms for Micro-Factories that

Build Objects with Uniform External Forces,” in The 28th International

Symposium on Algorithms and Computation (ISAAC), vol. 92, 2017, pp.

11:1-11:13.

Z. Butler, K. Kotay, D. Rus, and K. Tomita, “Generic decentralized

control for lattice-based self-reconfigurable robots,” The International

Journal of Robotics Research, vol. 23, no. 9, pp. 919-937, 2004.

[5] S. Cannon, E. D. Demaine, M. L. Demaine, S. Eisenstat, M. J. Patitz,

R. Schweller, S. M. Summers, and A. Winslow, “Two hands are better

than one (up to constant factors),” in Proc. Int. Symp. on Theoretical

Aspects of Computer Science (STACS), 2013, pp. 172-184.

C. Chalk, E. Martinez, R. Schweller, L. Vega, A. Winslow, and T. Wylie,

“Optimal staged self-assembly of general shapes,” Algorithmica, pp. 1-27,

2016.

[71 H.-L. Chen and D. Doty, “Parallelism and time in hierarchical self-
assembly,” SIAM Journal on Computing, vol. 46, no. 2, pp. 661-709,
2017.

[8] E.D. Demaine, M. L. Demaine, S. P. Fekete, M. Ishaque, E. Rafalin, R. T.
Schweller, and D. L. Souvaine, “Staged self-assembly: nanomanufacture
of arbitrary shapes with O(1) glues,” Natural Computing, vol. 7, no. 3,
pp. 347-370, 2008.

[9]1 E. D. Demaine, S. P. Fekete, C. Scheffer, and A. Schmidt, “New geo-

metric algorithms for fully connected staged self-assembly,” Theoretical

Computer Science, vol. 671, pp. 4-18, 2017.

P.S. S. Kim, A. T. Becker, Y. Ou, A. A. Julius, and M. J. Kim, “Imparting

magnetic dipole heterogeneity to internalized iron oxide nanoparticles

for microorganism swarm control,” Journal of Nanoparticle Research,

vol. 17, no. 3, pp. 1-15, 2015.

S. Manzoor, S. Sheckman, J. Lonsford, H. Kim, M. J. Kim, and A. T.

Becker, “Parallel self-assembly of polyominoes under uniform control

inputs,” IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 2040—

2047, 2017.

S. Vassilvitskii, J. Kubica, E. Rieffel, J. Suh, and M. Yim, “On the

general reconfiguration problem for expanding cube style modular

robots,” in Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE

International Conference on, vol. 1. 1EEE, 2002, pp. 801-808.

J. E. Walter, J. L. Welch, and N. M. Amato, “Distributed

reconfiguration of metamorphic robot chains,” Distributed Computing,

vol. 17, no. 2, pp. 171-189, Aug 2004. [Online]. Available:
https://doi.org/10.1007/s00446-003-0103-y

E. Winfree, “Algorithmic self-assembly of DNA,” Ph.D. dissertation,

California Institute of Technology, 1998.

Y. Zhang, X. Chen, H. Qi, and D. Balkcom, “Rearranging agents in a

small space using global controls,” in IEEE/RSJ Int Conf on Intelligent

Robots and Systems (IROS), Sept 2017, pp. 3576-3582.

[4

[6

=

[10]

(11]

[12]

[13]

[14]

[15]

https://doi.org/10.1007/s00446-003-0103-y

	Introduction
	Contribution
	Related Work

	Preliminaries
	Monotone Assemblies
	Assembling Non-Monotone Shapes
	Simple Polyominoes
	Non-Straight Cuts
	Workspace Size and Number of Obstacles

	Experimental demonstration
	Conclusion and Future Work
	References

