

c© Copyright by Parth Joshi 2018
All Rights Reserved

MOTION-PLANNING USING RRTS FOR A SWARM OF ROBOTS

CONTROLLED BY GLOBAL INPUTS

A Thesis

Presented to

the Faculty of the Department of Electrical and Computer

Engineering

University of Houston

in Partial Fulfillment

of the Requirements for the Degree

Master of Science

in Electrical Engineering

by

Parth Joshi

December 2018

MOTION-PLANNING USING RRTS FOR A SWARM OF ROBOTS

CONTROLLED BY GLOBAL INPUTS

Parth Joshi

Approved:
Chair of the Committee
Dr. Aaron T. Becker, Assistant Professor
Department of Electrical Engineering

Committee Members:
Dr. Rose Faghih, Assistant Professor
Department of Electrical Engineering

Dr. Nikolaos Tsekos, Professor
Department of Computer Science

Dr. Julien Leclerc, Postdoctoral Fellow
Department of Electrical Engineering

Dr. Suresh K. Khator, Associate Dean, Dr. Badrinath Roysam, Professor and Chair,
Cullen College of Engineering Electrical and Computer Engineering

Acknowledgements

I thank my thesis advisor Dr. Aaron T. Becker for his constant support and

invaluable guidance. He has set an example of excellence as a mentor and an instruc-

tor.

I am grateful to my committee members, Dr. Rose Faghih, Dr. Nikolaos Tsekos

and Dr. Julien Leclerc, for agreeing to serve as my master thesis committee and

spending their valuable time and feedback on my work.

I thank all my labmates at the Swarm Robotics lab for all the great time that

we spent together. Topics presented by my lab mates during weekly meeting helped

me develop many ideas for my work. I thank my friends Meet Shah, Jonathan Wang

and Mohammad Sultan for their ideas, support, and guidance.

I am grateful to my family for their unconditional love and support during all

these years. I would like to thank my family: My parents Jaya Joshi and Mukesh

Joshi. I want to especially thank my sister Jinal Joshi who never stopped encouraging

me, helped me achieve my goals, and motivated me throughout these years.

v

MOTION-PLANNING USING RRTS FOR A SWARM OF ROBOTS

CONTROLLED BY GLOBAL INPUTS

An Abstract

of a

Thesis

Presented to

the Faculty of the Department of Electrical and Computer

Engineering

University of Houston

in Partial Fulfillment

of the Requirements for the Degree

Master of Science

in Electrical Engineering

by

Parth Joshi

December 2018

Abstract

Small-scale robots have great potential to bring transformation in the field of

medical applications, defense systems, security, micro-assembly and many other areas.

Imagine a group of milli, micro or nano-robots that can navigate inside the body to

solve medical problems, or a swarm of robots that can paint a beautiful painting.

Robots containing iron can be steered using a magnetic field generated by an MRI

scanner, but all the robots will move in the same direction because the magnetic effect

is global and not local. This thesis uses a customized version of the motion-planning

technique called Rapidly Exploring Random Tree (RRT) to solve this problem for

multiple robots by using obstacles. This thesis project solves instances of this motion-

planning problem for more than one robot when steered using a magnetic field, and

develops a motion planner that searches for sequences of control inputs to simulations

steer the robots to desired goal positions.

vii

Table of Contents

Acknowledgements v

Abstract vii

Table of Contents viii

List of Figures xii

1 Introduction 1

1.1 Problem Definition . 1

1.1.1 Configuration Space . 3

1.1.2 2D Rigid Bodies . 4

1.1.3 Workspace of a Robot . 5

1.2 Definitions . 5

1.2.1 Robot . 5

1.2.2 Homeomorphism . 6

1.2.3 Manifold . 6

1.2.4 Cartesian Products . 7

1.2.5 1-D Manifolds . 7

viii

1.2.6 2-D Manifolds . 7

1.2.7 Particle . 7

1.2.8 The Degrees of Freedom (DOF) 7

1.2.9 Rigid Body . 8

1.3 Coupled and Decoupled approach . 8

1.3.1 Centralized Multi-robot Coordination 8

1.3.2 Decentralized Multi-robot Coordination 9

1.4 Difficulties in motion-planning with More Than One Robot 9

1.4.1 The Dimension of a Swarm of Robots 9

1.4.2 Curse of Dimensionality . 9

1.5 Proposed Method . 10

1.6 Environment Description . 10

2 Theory 12

2.1 Motion-Planning . 12

2.1.1 Sampling-based Planner [1] 13

2.2 Model of Movement Using Global Inputs 16

2.3 Calculation of Exploration of the Space 17

2.4 Algorithms . 18

2.4.1 Collision Avoidance . 18

2.4.2 Distance Function . 19

2.4.3 Nextpoint Function . 21

2.4.4 Grid Coverage . 22

ix

2.5 OMPL Library [2] . 22

2.6 OMPL motion-planning Problem with an Example. 24

2.7 Updated RRT Algorithm for Multiple Robots 25

3 Simulations and Results 27

3.1 Environment 1: L-Shaped Obstacle 27

3.1.1 Changing Step Size . 27

3.1.2 Changing the Number of Nodes 29

3.1.3 Changing Grid Size . 31

3.1.4 Changing the Initial Distance Between Robots 33

3.2 Environment 2: Short Narrow Passage 35

3.3 Environment 3: Long Narrow Passage 37

3.4 Environment 4: Zigzag Narrow Passage 39

3.5 Environment 5: Human Digestive System 41

3.6 Environment 6: Vascular Network . 42

3.7 Varying Narrow Passage Gap Experiment 44

4 Application 47

4.1 Multi-robot Motion-planning . 47

4.2 Reuse of RRT Tree . 50

4.2.1 Swapping the Goal Positions of two Robots 51

4.2.2 Reusing an RRT and swapping the goal positions for multiple

robots . 52

x

5 Conclusions, Discussion and Future Work 54

5.1 Conclusion . 54

5.2 Extension . 56

5.2.1 Practical Implementation in the Lab 56

5.2.2 Alternative to RRT . 56

5.2.3 Simulation of 1000+ Robots 56

5.2.4 Consideration of Velocity and Acceleration 57

5.2.5 Considering 6 Degrees of Freedom Per Robot 57

5.2.6 Extend to Different Shapes of the Robot 57

5.2.7 Map Coverage Algorithm . 57

5.2.8 Use Microorganism as a Robot Using our RRT 58

References 59

xi

List of Figures

1.1 Robots moving using global inputs. 3

1.2 A 2-link robot with two circular obstacle (left) and its configuration

space (right). Wolfram demonstration created by Dr. Aaron Becker

for class Intro to Robotics at the University of Houston. 4

1.3 Explanation of the homeomorphism. 6

1.4 6 DOF for the rigid body: translation (up, down and back) and rotation

movement (roll, pitch, and yaw), https://en.wikipedia.org/wiki/

File:6DOF_en.jpg. 8

1.5 Environment prototype and available inner space. 11

2.1 A basic RRT is generated incrementally by sampling newXrand, search-

ing for Xnear in the tree and finding Xnew to match the step size in

the direction of Xrand. Image from “fundamental sampling issues in

a motion-planning” presentation by Steven M. LaValle, University of

Illinois. 14

2.2 The sampling-based roadmap is constructed incrementally by attempt-

ing to connect each new sample, (α(i)), to nearby vertices in the

roadmap. Figure is taken from Planning Algorithms textbook [3] . . . 16

2.3 Example of a grid on an environment 18

xii

https://en.wikipedia.org/wiki/File:6DOF_en.jpg.
https://en.wikipedia.org/wiki/File:6DOF_en.jpg.

2.4 OMPL class structure reference https://ompl.kavrakilab.org/api_

overview.html. 23

3.1 The image represents the effect of step size in RRT on coverage of the

search space. RRT with time 0.5 sec and step size (a) 1, (b) 3, (c) 5,

(d) 50, (e) 200 units. 28

3.2 This shows the coverage of the space as a function of step size for a

fixed number of nodes 7500 nodes and grid size is 50 ×50× 50× 50. . 29

3.3 A graph of the percentage coverage of the map vs. a number of nodes

of the RRT tree. The image in the right-hand corner represents the

environment used for the experiment. 30

3.4 Comparison of the average percentage of coverage and robostep using

the environment shown in the right-hand corner. Also includes a com-

parison of the average percentage coverage and number of nodes of the

RRT Tree. 31

3.5 Represents the effect of grid size change on the average percentage

coverage. 32

3.6 Comparison of the average (of 10 trials per robot step size) percentage

coverage and robostep using the environment shown in the right-hand

corner when the grid size is 40. Also includes a comparison of the

average percentage coverage and number of nodes of the RRT tree. . 32

3.7 a) Maps with different cases. The initial distance between two robots

decreases as we go from case 1 to case 8 b) Graph of Percentage cov-

erage for all the cases in Figure 3.7 (a). 34

3.8 Solved environment 2 using our motion planner with the short narrow

passage. 36

xiii

https://ompl.kavrakilab.org/api_overview.html.
https://ompl.kavrakilab.org/api_overview.html.

3.9 Average percentage of area covered compared with robot step size for a

different number of nodes across 10 trials for each step for environment

2. The coverage was measured with grid size 50. 37

3.10 Solved environment 3 using our motion planner with the longer narrow

passage. 38

3.11 Average percentage of area covered compared with robot step size for a

different number of nodes across 10 trials for each step in environment

3. The coverage was measured with grid size 50. 39

3.12 Solved environment 4 using our motion planner with the narrow pas-

sage and a zigzag obstacle pattern. 40

3.13 Average percentage of area covered compared with robot step size for a

different number of nodes across 10 trials for each step for environment

4. The coverage was measured with grid size 50. 40

3.14 Solved environment 5 using our motion planner. This environment

represents the human digestive system. 41

3.15 Solved environment 5 using our motion planner. This environment

represents the human digestive system. The start and goal locations

of the robots are in different location of the digestive system than

Figure 3.14. 42

3.16 Leaf vascular network. 43

3.17 Solved environment 6 using our motion planner. This environment

represents the leaf vascular network . The environment developed from

Figure 3.16. 44

3.18 (a) Maps used to explore the effect of narrow passage on coverage. (b)

Plots for the coverage each of map in Figure 3.18(a). 46

xiv

4.1 Solving the environment 4, Zigzag narrow passage, with 3 robots mov-

ing under global inputs. 47

4.2 Solving the environment 3 long narrow passage with 4 robots moving

under global inputs. 48

4.3 Solving the environment with 8 robots moving under global inputs . . 49

4.4 Solved environment 6 with 3 robots moving under global inputs. . . . 50

4.5 Solving RRT for two robots using global inputs for environment 2 with

10000 nodes. 51

4.6 Reusing an RRT generated to reach the other goals for 2 robots. . . . 52

4.7 Solving environment 3 for four robots. 53

4.8 Reusing an RRT generated for four robots. 53

xv

Chapter 1

Introduction

Small-scale robots [4] have great potential to bring transformation in the field of

medical applications [5], defense systems [6], security, micro-assembly [7, 8] and many

other areas. Imagine a group of milli, micro or nanorobots which can navigate inside

the body to solve medical problems or a swarm of robots that can paint a beautiful

painting. Robots containing iron can be steered using magnetic field generated by

MRI scanner [9, 10, 11], but all the robots will move in the same direction because

the magnetic effect is global and not local. Many important problems require robots

to go to different locations, which is hard because the control input moves them

in the same direction. This thesis uses a customized version of the motion-planning

technique called Rapidly Exploring Random Tree (RRT) [12] to solve this problem for

multiple robots by using obstacles. This thesis project solves instances of this motion-

planning problem for more than one milli robot when steered using a magnetic field

and develops a motion planner that searches for sequences of control inputs to steer

the robots to different goal positions.

1.1 Problem Definition

This thesis investigates particle-like robots which are all moved by the same

force. Each robot will move together until its movement is obstructed by any obstacles

in the simulation environment created by us. The problem is trivial if there is only one

robot, but as the number of the robots increases the problem gets difficult because the

combination of goals might require robots to move in different directions. In another

1

perspective, each robot acts as a constraint for all others robots, so with the increase

in the number of robots, constraints increases too. In this thesis, we will perform

most of most experiments using two particles but the same process applies to larger

numbers of particles. We demonstrate the results with multiple robots in Chapter 4.

Our problem is a motion-planning problem for a swarm of robots. Our robots

are dumb, and we simulate as if they are controlled by a strong magnetic field device

like an MRI scanner [13]. Under a magnetic field, all the robots will move in the

same direction under global inputs [3, 14]. Though the swarm of robots moves under

global inputs, the problem is to make all the robots reach their individual goals. My

thesis will propose a solution to this problem. In Figure 1.1, the obstacle is shown

in white color and the robots are shown as white circles and discs. All robots move

under global inputs and both robots cannot reach their goals (green circles) if the

starting positions of both the robot has different vector-difference compared to the

goals. In this case only one robot can reach its goal at one time. What we seek is

to find a tool to solve problems where multiple robots can reach their individual goal

positions under global inputs. Along with that, we want to know which parameters

affect the coverage of maps [15]. Finally, we want to reuse the RRT exploration to

find a solution for multiple sets of goals.

2

Figure 1.1: Robots moving using global inputs.

To explore the effects of parameter variation, we move robots from start to goal

in different environments and calculate how well our robots explored the space. The

exploration of the space can be computed by dividing the whole space into smaller grid

cells and checking which fractions of the grid cells have been explored simultaneously

by both robots. Using this method, we check coverage of the map by robots. Once the

space then is explored, we change the goals of the robots, reusing the possible paths

we generated. We then apply the same for more numbers of robots to understand the

effect of increasing the number of the robots.

1.1.1 Configuration Space

If the robot has n degrees of freedom, the set of transformations is usually a

manifold of dimension n. This manifold [16] is called the configuration space of the

robot, and its name is often shortened to C-space [17]. The C-space can be considered

as a special state space. To solve a motion-planning problem, algorithms must conduct

3

a search in the C-space. The C-space provides a powerful abstraction that converts

the complicated models and transformations of robot configurations into the general

problem of computing a path that traverses a manifold. By developing algorithms

directly for this purpose, they apply to a wide variety of different kinds of robots

and transformations. Our problem will be addressed by representing obstacles in the

configuration space. These obstacles are called configuration space obstacles [3]. An

example showing a robots workspace and configuration space is Figure 1.2

Figure 1.2: A 2-link robot with two circular obstacle (left) and its configuration space
(right). Wolfram demonstration created by Dr. Aaron Becker for class
Intro to Robotics at the University of Houston.

1.1.2 2D Rigid Bodies

2D Rigid bodies: Since any xt, yt ∈ R2 can be selected for translation, this alone

yields a manifold M1 = R2. Independently, any rotation, [0, 2π), can be applied.

Since 2π yields the same rotation as 0, they are identical, which makes the set of

4

2D rotations into a manifold, M2 = S1. To obtain the manifold that corresponds

to all rigid-body motions, simply take C = M1 ×M2 = R2 × S1. The C-space is 3

dimensional, but the dimension for orientation wraps around from 2π to 0.

1.1.3 Workspace of a Robot

The workspace [16] of a robot can be defined as all the space reachable by the

end effector of the robot. The total volume that can be swept out by the end effector

will define a workspace. The mechanical joints and geometry of the robot and the

environment limitations bound the workspace. For example, a revolute joint restricted

to less than 2π cannot complete a 360◦ rotation. The workspace can be divided further

into the the reachable workspace and a dexterous workspace. The reachable workspace

[16] is the all the points reachable by manipulators while the dexterous workspace is

the part of the reachable workspace which reachable by the by end effector with any

orientation.

1.2 Definitions

1.2.1 Robot

The word robot was introduced in 1921 by the Czech playwright Karel Capek in

his satirical play R. U. R. (Rossums Universal Robots), where he depicted robots as

machines which resembled people but worked tirelessly [12]. The Oxford English Dic-

tionary gives the following definition: [A machine capable of carrying out a complex

series of actions automatically, especially one programmable by a computer]. This

thesis defines robots as particles that can move in 2D directions.

5

1.2.2 Homeomorphism

If shape 1 can stretch or bend to obtain a shape 2 they are called homeomorphic

and the property is called homeomorphism. A famous example is of a cup and a donut.

A cup and a donut are topologically the same as there is a continuous transformation

between the two. So, they are called homeomorphic. However, a sphere and a donut

are not homeomorphic because the donut has a hole.

Figure 1.3: Explanation of the homeomorphism.
https://en.wikipedia.org/wiki/Homeomorphism

1.2.3 Manifold

To reflect a true structure of the space of transformations it helps to understand

manifolds. According to the textbook on robotics by S. M. LaValle, a topological

space M ⊂Rm is a manifold if for every x ∈M , an open set O ⊂M exists such that:

(1) x ∈ O, (2) O is homeomorphic to Rn, and (3) n is fixed for all x ∈M . The fixed

n is referred to as the dimension of the manifold M. The second condition is the most

important. It states that in the vicinity of any point, x ∈ M the space behaves just

like it would in the vicinity of any point (y ∈ Rn) intuitively, the set of directions

that one can move appears the same in either case [12].

6

https://en.wikipedia.org/wiki/Homeomorphism

1.2.4 Cartesian Products

Suppose A and B are topological spaces. Then the new topological space is

given by the Cartesian product of A and B, i.e. A × B such that all the point in A

and all the points in B generates points in the Cartesian product of A and B.

1.2.5 1-D Manifolds

A manifold is a topological space that locally has features similar to Euclidean

space near each point. Lines and circles are examples of 1D manifolds, but not shapes

with crossing points such as figure eights (shape of 8)

1.2.6 2-D Manifolds

2D manifolds are basically outcomes of the Cartesian products of two 1D man-

ifolds. They are surfaces. The plane sphere and the torus are the examples of a 2D

manifolds.

1.2.7 Particle

The configuration space of a particle can be given as R3, if it can move in X, Y

and Z Cartesian coordinates in a Euclidean space.

1.2.8 The Degrees of Freedom (DOF)

If the configuration of any robot or group of robots (in our case) is defined by n

parameters, in robotics the degrees of freedom are the modes in which the system can

move or the independent movements possible at each joint of the robot. There are

three translation movements (X, Y and Z-direction) possible in the real world and

three rotational motions are possible (Roll, Pitch, and Yaw).

7

Figure 1.4: 6 DOF for the rigid body: translation (up, down and back) and rotation
movement (roll, pitch, and yaw),
https://en.wikipedia.org/wiki/File:6DOF_en.jpg.

1.2.9 Rigid Body

A rigid body is a solid body in which there is minimal or zero deformation. A

rigid body has six degrees of freedom.

1.3 Coupled and Decoupled approach

1.3.1 Centralized Multi-robot Coordination

Steering multiple robots in any environment is a complex problem of motion-

planning. One solution is to compute multiple robots as a single robot with each robot

as its degree of freedom. Basically, we will plan for all the robots simultaneously by

treating all of the robots as a single composite system with n degrees of freedom. This

8

https://en.wikipedia.org/wiki/File:6DOF_en.jpg.

is called centralized multi-robot planning. If we have n robots then the dimension of

the composite robot is n (n degrees of freedom) and the c-space is also n dimensional.

1.3.2 Decentralized Multi-robot Coordination

As the number of robots increases, the dimension of the state space increases

(due to increase of the degrees of freedom). Path-planning on multiple robots simul-

taneously is computationally a challenge. This is often called ”the curse of dimension-

ality”. The solution to this problem can be given by a decentralized plan-planning

approach. In a decentralized robot, each robot in the swarm is treated as an indi-

vidual robot rather than considering all the robots as one composite robot. This is

not possible when all the robots are steered simultaneously by a shared control input.

The problem in this thesis is under-actuated.

1.4 Difficulties in motion-planning with More Than One Robot

1.4.1 The Dimension of a Swarm of Robots

As the number of the robots in the swarm increases the dimensions of the robot

increases. The the degrees of freedom for each robot add to create a composite robot.

For two robots in the 2D space, the dimension of the configuration space is 4D (X

and Y coordinate of each robot) while for 8 robots who can move in X and Y there

are 16 dimensions in the configuration space.

1.4.2 Curse of Dimensionality

The centralized multi-robot concept [16], considers multiple robots as one com-

posite robot. As the number of robots increases the configuration space dimension

increases and the data required to find the solution of such problems increases expo-

9

nentially. In other words, the volume of the space increases so fast that it becomes

difficult and computationally challenging to search the space and find a solution.

1.5 Proposed Method

Using the C++ language and OMPL libraries, we created a simulations of

swarms of particles in different environments. We define start and goal for each

robot in the swarm in a specific environment. The aim of the robots is to reach

their individual goals despite obstacles by using the obstacles to adjust differences

in position between swarm members. We use a motion-planning algorithm to find a

solution, in which the particles perform a random walk. We simulate different paths

and measure coverage of the map to check the performance of the motion-planning

algorithms. We created five different environments in C++ to see how our robots will

perform in these environments and drove our conclusion.

There are several assumptions in this work. The robots are treated as points

(zero radius), are not affected by friction other than collisions with the obstacles, and

move with constant velocity.

1.6 Environment Description

All the environments we use have a workspace of 400× 400 units, which means

the robots are bounded and cannot cross the limit of 400 units. Along with that, the

environment has boundary obstacles that are 50 units thick on each side, as shown in

Figure 1.5. The available workspace for the robot is 300×300 units less the obstacles

inside the workspace. The configuration space has dimension 300×300×300×300 for

2 robots. The dimension of the configuration space rises to the 2n dimension where

n is the number of robots.

10

Figure 1.5: Environment prototype and available inner space.

11

Chapter 2

Theory

This thesis provides a probabilistically complete algorithm for the problem of

motion-planning for a swarm of robots. This means that if a solution exists, we will

find it with probability 1, as the size of our exploration tree grows to infinite size. We

simulate the approach using the open source motion-planning package OMPL. This

section will discuss different tools for motion-planning and the algorithms used in

this thesis. We will also discuss the structure of the OMPL (Open Motion-Planning

Library) and how we have used the OMPL package for our thesis. If the step size is

fixed then the algorithm is not probabilistically complete but it is resolution complete,

meaning that a solution will only be found if one exists for this step size. However, if

the step size is determined by the collision checking the algorithm is probabilistically

complete.

2.1 Motion-Planning

Motion-planning [16] of the robot includes planning a collision-free path. We

have the initial and the final configuration of the robots and the problem is to plan a

path for the robot that avoids the robot passing through any obstacles space. How-

ever, our algorithm uses obstacles to achieve its goal. Planning paths and trajectories

are considered some of the most difficult problems in computer science. An algorithm

which finds a solution whenever one exists is called a complete algorithm. However,

the computational complexity of complete algorithms increases exponentially with

the number of degrees of freedom of the robot. In this thesis, we use an algorithm

12

which is a so-called probabilistically complete algorithm. This algorithm finds the

solution if there is one but does not determine if there is no solution.

2.1.1 Sampling-based Planner [1]

The configuration space (C-space) has infinite resolution, since each degree of

freedom is a real number. Therefore, a planner which can sample the space in a

finitely large number of states can be considered better in terms of space explo-

ration. Rapidly-exploring random trees (RRT) and Probabilistic Road Maps (PRM)

are sampling-based planners.

• Rapidly Exploring Random Tree (RRT)

A Rapidly Exploring Random Tree (RRT) [18] is a tree-based algorithm that

can be used to search non-convex high dimensional spaces. The tree begins with

one initial node (called the root node) or the start node and randomly samples

to find the next node. From every random node, it will search for the nearest

neighbor [19]-[20] already in the tree and try to expand that node by generating

a new node from this neighbor towards the random node. If the connection is

valid it will connect it. RRT will keep on expanding until it finds the required

goal or reaches its limit of time or memory.

For given start state S, and total k vertices, an RRT tree is constructed as

shown in Algorithm 1.

Step 3 in the algorithm: If the environment has obstacles the random sample

should also be checked for collision with an obstacle and reject the samples in Cobs.

Step 4 in the algorithm: To find the nearest neighbor the node nearest to the

random sample must be calculated. This can be achieved by calculating distance

function in Algorithm 2.

13

Algorithm 1 Basic RRT ALGORITHM: GENERATE RRT (S, k,∆t).

1: procedure
2: Tree.int(S);
3: for all i in k do
4: Xrand ← SAMPLE RANDOM STATE;
5: Xnear ← FIND NEAREST NEIGHBOR(Xrand);
6: Xnew ← NEW STATE(Xnear, stepsize);
7: Tree.add vertex(Xnew);
8: Tree.add edge(Xnear, Xnew, u);
9: end for
10: return Tree
11: end procedure

Algorithm 2 FIND NEAREST NEIGHBOR

1: procedure FIND NEAREST NEIGHBOR(qrand, T ree)
2: for all n in N do
3: if dist (qrand, n) < d then
4: Xnear = n;
5: d← dist(qrand, n);
6: return qrand
7: end if
8: end for
9: return Xnear

10: end procedure

Figure 2.1: A basic RRT is generated incrementally by sampling new Xrand, searching
for Xnear in the tree and finding Xnew to match the step size in the
direction of Xrand. Image from “fundamental sampling issues in a motion-
planning” presentation by Steven M. LaValle, University of Illinois.

14

• PRM

Probabilistic Road Maps (PRMS) [3] are a roadmap graph in the configuration

space, that can be used to generated paths. The goal of this method is to

generate a topological graph which can efficiently solve the motion-planning

problem. Such a type of graph is called a road map. The samples are generated

in the map using uniform or random sampling in the collision-free space. Then

we attempt to connect nearby sampled points to create a roadmap G(V,E). In

the algorithm below G represents a graph, N is the number of samples, Cfree is

the configuration space free of obstacles.

Algorithm 3 Basic PRM ALGORITHM[3]:BUILT ROADMAP

1: procedure
2: G.init(); i← 0;
3: while i < N
4: if α(i) ∈ Cfree then
5: G.add vertex(α(i));
6: i← i+ 1;
7: end if
8:

9: for all q ∈ NEIGHBORHOOD(α(i).G) do
10:11: end if((!G.same Component(α(i), q)) and CONNECT (α(i), q))
12: G.add Edge(α(i),q);
13:14: end if
15: return G
16: end procedure

15

Figure 2.2: The sampling-based roadmap is constructed incrementally by attempting
to connect each new sample, (α(i)), to nearby vertices in the roadmap.
Figure is taken from Planning Algorithms textbook [3]

.

2.2 Model of Movement Using Global Inputs

In this section we discuss more details about the global inputs and some as-

sumptions. In this thesis, we consider the situation where all the robots are moving

under the same field effect e.g., iron particles pulled by a magnetic field. When any

of the robots collide with an obstacle that robot will stop moving until it has free

space to move. However, the robots can slide along edge of obstacles.

Consider a group of the robots r(r1, r2, ..., rn) moving under the command to

move from the start S(s1, s2, ..., sn) towards their individual goal G(g1, g2, ..., gn).

Each move command is a force vector in 2D that can be written as M = (Mx +My).

Also, let each robot in 2D have an X and Y coordinate. So R can be given by R(x, y)

and the state evolution equation is given by

xnew = xold +Mx and ynew = yold +My. (2.1)

16

The above equations can be generalized in Algorithm 4.

Algorithm 4 Global inputs

1: procedure Move robots from S to G
2:

3: for all i < N do
4: xi(new) = xi(old) +Mx;
5: yi(new) = yi(old) +My;
6: if ri /∈ Cfree then
7: xi(new) = xi(old);
8: yi(new) = yi(old);
9: end if
10: ri = (xi(new), yi(new));
11: i← i+ 1;
12: end for
13: return r = (r1, r2, ..., rn)
14:

15: end procedure

2.3 Calculation of Exploration of the Space

In this section, we discuss the method used to calculate the coverage of the

configuration space by the robots. We want to compare the effect of changing a

different parameter in the algorithm to find out how we can improve exploration of

the space. It is important to find the exploration of the space as we also want to reuse

our previously generated RRT tree for different queries. To calculate coverage, we

divide the whole space into grids. The size of the grids can be decreased to improve

the precision (details in Section 4 Simulation and Results). As shown in Figure 2.3

the frame and the bounds remain the same in all the environments we have used for

this thesis.

17

Figure 2.3: Example of a grid on an environment

2.4 Algorithms

2.4.1 Collision Avoidance

Collision avoidance is an important algorithm, used in this thesis as we not only

have to avoid passing through obstacles, but also must use the obstacles to reach our

goal. There are many kinds of collision checks we must perform. OMPL library does

not have a collision detection/avoidance algorithm, so we had to develop our own

for the experiments. As our robot is just a particle, we will do the following three

collision checks.

IsValidPoint: Checks whether the point is valid as we assume that our robot

is just a point, not a circle. If point has the coordinate (x, y) and the plane is given

18

by (xmax, ymax) and (xmin, ymin) then the algorithm can be given by:

Algorithm 5 IsValidPoint(x, y)

1: procedure Check if point is valid
2: return xmin ≤ x ≤ xmax AND (ymin ≤ y ≤ ymax)
3: end procedure

DoSegmentIntersect: In algorithm 6, we check whether the line segments

are intersecting. Reference (developed during course “Algorithmic Robotics” at Rice

University).

IsValidPath: A collision check routine with the path (straight line segment)

and rectangle obstacle to check whether the path is valid and the robot is not jumping

over the obstacle. This checks line segment collision between the path and all the

sides of the rectangle. Let the obstacle sides be given by (o1, o2, o3, o4) and path of a

robot is given by (p1, p2).

2.4.2 Distance Function

The Euclidean distance is used in the RRT in the configuration space to find the

nearest point to be added to the tree and is given by the equation below. The distance

between two points is defined as the square root of the sum of the squares of the

differences between the corresponding coordinates of the points. Let Xs = [qs1, ..., qsn]

Xf = [qf1, ..., qfn]. The distance between two points is given by

distance =

√√√√ n∑
i=1

(qsi − qfi)2. (2.2)

19

Algorithm 6 DoSegmentIntersect((A,B), (C,D))

1: procedure Details
2: Given two segments with points (A,B) (C,D).
3: Check if both the line segments are parallel and check if they are vertical, return

false.
4: Check if intersecting on one endpoint, return that point.
5: Find if the line segments are overlapping.
6: Using line equations and slope and find intersecting point ycoordinate =
slopecoordinate + constant.

7: Confirm whether the intersecting point is on the line segment.
8: Algorithm in detail:
9: bool isValidSegment(Ax, Ay, Bx, By, Cx, Cy, Dx, Dy)
10:

11: if (Ax == Bx && Cx == Dx) then . check if the lines are parallel
12: return false;
13: else if Ax == Bx then . Check if the line is vertical
14: mCD = (Dy − Cy)/(Dx − Cx); . slope
15: bCD = Cy −mCD · Cx; . line equation
16: inty = mCD · Ax + bCD;
17:

18: if (Ax ≥ min (Cx, Dx) & Ax ≤ max (Cx, Dx) & inty ≥ min(Cy, Dy) &
inty ≤ max(Cy, Dy) & inty ≥ min(Ay, By) & inty ≤ max(Ay, By)) then

19: return true;
20: else
21: return false;
22: end if
23:

24: else if (Cx == Dx) then
25: mAB = (By − Ay)/(Bx − Ax);
26: bAB = Ay −mAB · Ax;
27: inty = mAB · Cx + bAB;

28: if (Cx ≥ min (Ax, Bx) & Cx ≤ max (Ax, Bx & inty ≥ min (Ay, By) &
inty ≤ max (Ay, By) & inty ≥ min(Cy, Dy) & inty ≤ max(Cy, Dy)) then

29: return true;
30: else
31: return false;
32:

33: end if
34: end if
35:

20

35: procedure Continue
36: mAB = (By −Ay)/(Bx −Ax); . compute line equations for line AB and line CD

endpoint
37: bAB = Ay −mAB · Ax;
38: mCD = (Dy − Cy)/(Dx − Cx);
39: bCD = Cy −mCD · Cx;
40: intx = (bCD − bAB)/(mAB −mCD); . Find intersection point

inty = mAB · intx + bAB;
41:

42: if (intx ≥ min(Ax, Bx) & intx ≤ max(Ax, Bx) & intx ≥
min(Cx, Dx) & intx ≤ max(Cx, Dx) & inty ≥ min(Ay, By) & inty ≤
max(Ay, By) & inty ≥ min(Cy, Dy) & inty ≤ max(Cy, Dy)) then . Check
if the intersection point intx and inty is on the line segments

43: return true;
44: else
45: return false;
46: end if
47: end procedure

Algorithm 7 IsValidPath

1: procedure InValidPath (Obstacle, Path)
2: IsV alidSegment(Obsside1, Path)||IsV alidSegment(Obsside2, Path)||
3: IsV alidSegment(Obsside3, Path)||IsV alidSegment(Obsside4, Path)
4: end procedure=0

2.4.3 Nextpoint Function

Suppose a point p is given by p = (x, y). In our RRT we use a list of 16 angles

φ = 22.5◦ · k, k ∈ [0, 15] and we compute which of these directions generates a state

that is closest to the randomly generated sample point.

Algorithm 8 Find Nextpoint algorithm

1: procedure Nextpoint (x, y, distance, angle)
2: xn = x+ distance · cos((angle · pi)/180)
3: yn = y + distance · sin((angle · pi)/180)
4: return (xn, yn)
5: end procedure

21

2.4.4 Grid Coverage

Suppose the grid is as shown in Figure 2.3 for 2 robots and each robot can move

in the x and y-direction. The configuration will be R4 and for these 2 robots, the grid

is created in a 4D configuration space. The grid discritizes the configuration space

into voxels of equal size. Our coverage function reads the tree and counts the total

number of the voxels covered. The covered voxels will give the percentage coverage

of the space.

2.5 OMPL Library [2]

The open motion-planning library (OMPL) is an open source motion-planning

library for sampling-based motion-planning [2]. There are many tools inbuilt in this

library that are helpful for easily creating a sampling-based planner. It is important

to understand some terms used in OMPL library.

• State space: The state space in the OMPL is same as the C-space of any con-

figuration discussed in the previous chapters. Translations and rotation can be

used to define the configuration for freely moving rigid bodies.

• Control Space: This is used to define the space for a dynamic robot. We are

not using Controls Space in this thesis.

• Sampler : Different states can be generated from the state space using different

sampler in OMPL. This is important for a sampling-based planner (geometric).

• State Validity Checker : This is an important routine which can be helpful to

find whether the sampled state is valid or not. It will check the bounds for the

robot and for collisions.

22

• Local Planner : Local planners are routines which within the geometric con-

straints can be used to solve some special requirements for the planner. In our

thesis, it is used to find the next valid point function.

Figure 2.4: OMPL class structure reference
https://ompl.kavrakilab.org/api_overview.html.

It is important to define a configuration space correctly in OMPL. If the robot

can perform only translation motions in X and Y then the C-Space is given by an

R2 configuration while if it can move in X, Y, Z direction, then it is given by R3.

In OMPL translation motion can be given by RealV ectorStateSpace. Similarly,

Rotations in three dimensions, Roll, Pitch and Yaw can be given by SO3StateSpace.

Combinations of such spaces can be modelled by using CompoundedStateSpace in

23

https://ompl.kavrakilab.org/api_overview.html.

OMPL. Also, a sampling of the space is important in sampling-based planners. OMPL

includes four types of samplers: state space samplers (StateSampler), valid state

samplers (V alidStateSampler), control samplers (ControlSampler), and directed

control samplers (DirectedControlSampler).

2.6 OMPL motion-planning Problem with an Example.

In this section we discuss an example of 2 robots that can move in the x and

y directions. The aim of the robots is to move from the start to the goal using a

planner from the OMPL library. The C++ code for the problem discussed above is

as follows:

//Check whether the s t a t e i s v a l i d us ing c o l l i s i o n check ing
// or o ther r e q u i r e d c r i t e r i a

Bool i s V a l i d S t a t e (s t a t e)
Return true or fa l se

// r4 i s the c o n f i g u r a t i o n f o r a 2 p o i n t robo t which moves in 2D
// s e t the S t a t e space bounds

ompl : : base : : StateSpacePtr r4
(new ompl : : base : : RealVectorStateSpace (4)) ;

ompl : : base : : RealVectorBounds bounds (4) ;

// Define the environment to be between 0 to 400

bounds . setLow (0) ;
bounds . setHigh (4 0 0) ;

r4 −>as <ompl : : base : :
RealVectorStateSpace>()−>setBounds (bounds) ;

ompl : : geometr ic : : SimpleSetup s s (r4) ;
s s . s e tS ta t eVa l id i tyChecke r ((i s V a l i d S t a t e)) ;

// Set s t a r t and Goal p o s i t i o n f o r the r o b o t s

ompl : : base : : ScopedState<> s t a r t (r4) ;

24

s t a r t [0] = 240 ;
s t a r t [1] = 340 ;
s t a r t [2] = 260 ;
s t a r t [3] = 260 ;

ompl : : base : : ScopedState<> goa l (r4) ;
goa l [0]= 320 ;
goa l [1]= 95 ;
goa l [2]= 320 ;
goa l [3]= 313 ;

s s . setStartAndGoalStates (s ta r t , goa l)

// S e l e c t the Motion p lanner from OMPL l i b r a r y or
// User d e f i n e d . Here i t i s RRT

ompl : : base : : PlannerPtr planner
(new ompl : : geometr ic : :RRT

(s s . getSpaceIn format ion ())) ;

s s . s e tP lanner (p lanner) ;

// Run s o l v e r and s e l e c t the time f o r a s o l v e r to run

ompl : : base : : PlannerStatus so lved = s s . s o l v e (1 . 0) ;

I f { so lved }{

ompl : : geometr ic : : PathGeometric &
path = s s . getSo lut ionPath () ;

// Once s o l v e d p r i n t the path

path . printAsMatrix (std : : cout) ;
}

2.7 Updated RRT Algorithm for Multiple Robots

For given multiple start positions and multiple goal positions, an RRT Tree

and total k vertices are constructed as shown in the algorithm as follows. Starting

postions of the individual robots combines as Sh in a higher dimension and goals as

25

Gh, kh is the vertex of the tree in higher dimensions. For finding the next step we

have used 16 angles and a fixed step size. Our planner will select the configuration

nearest to our random sample

Algorithm 9 Updated RRT ALGORITHM

1: procedure GENERATE RRT (Sh, kh,∆t)
2: Tree.int(Sh);
3: for all i in kh do
4: Xrand ← SAMPLE RANDOM STATE; . Higher dimension
5: Xnear ← FIND NEAREST NEIGHBOR(Xrand);
6: Xnew ← NEW STATE(Xnear, stepsize, angles[16]);
7: Tree.add vertex(Xnew);
8: Tree.add edge(Xnear, Xnew, u);
9: end for
10: return Tree
11: end procedure

Step 3: If the environment has obstacles, the random sample should be checked

for collisions with obstacles and reject samples in the collision. Also we must check

for collisions during the path.

Step 4: To find the nearest neighbor, the node nearest to the random sample

must be calculated. We have predetermined the step size and use 16 angles and must

calculate which is nearest to the random sample. This can be achieved by using the

distance function as follows:

Algorithm 10 FIND NEAREST Neighbor

1: procedure FIND NEAREST Neighbor(qrand, T ree)
2: d =∞;
3: for all n in N do
4: if dist (qrand, n) < d then
5: Xnear = n;
6: d← dist(qrand, n);
7: return qrand
8: end if
9: end for
10: return Xnear

11: end procedure

26

Chapter 3

Simulations and Results

This chapter presents the simulation results. With these results, the approach of

solving the motion-planning problem for the multiple robots under global inputs can

be evaluated. Results are evaluated by changing the different parameters including

(1) number of nodes, (2) step size of the robot in RRT, (3) environment, (4) changing

grid sizes, (5) changing distances between the start and goal and, (6) changing the

initial location of robots. This approach gives us an idea of how each factor listed

above affects exploration of the space.

3.1 Environment 1: L-Shaped Obstacle

As shown in Figure 3.1 Environment 1 has a border of obstacles (shown in black)

on the sides and an L-shaped obstacle (in black) in the center. The starting positions

for the robots are shown in the pictures as black and green discs for robot 1 and 2

respectively. The goals for the robot 1 and robot 2 are shown as a blue circle and red

circles respectively. Also, the RRT for robot 1 is shown in cyan color and the robot

2 is in yellow color. The whole space is in a 4D dimension, but the picture shows the

projection of the 4D space into 2D. The aim of each robot is to simultaneously reach

its individual goal even when moved by global inputs as described earlier.

3.1.1 Changing Step Size

In the RRT algorithm defined above (Section 2.1.1.1), at every random sample,

we move the robots with a fixed step and we call it the robostep. The aim of this

27

experiment is to observe how the robostep of the robot affects the coverage of the

C-space. To achieve this goal, we show pictures of our RRT Tree for 2 robots in

2D dimensions with an increasing number of steps to compare. The start and goal

positions of the robots is the same for each experiment, the grid size is 50×50×50×50,

and the coverage of the space is calculated as discussed in Section 2.3.

Figure 3.1: The image represents the effect of step size in RRT on coverage of the
search space. RRT with time 0.5 sec and step size (a) 1, (b) 3, (c) 5, (d)
50, (e) 200 units.

28

Figure 3.2: This shows the coverage of the space as a function of step size for a fixed
number of nodes 7500 nodes and grid size is 50 ×50× 50× 50.

3.1.2 Changing the Number of Nodes

The number of nodes in the RRT algorithm is proportional to the time we

allow the RRT to sample the space until it reaches the goal. The exploration of

the C-space will also depend on how long we keep sampling the space. In all our

experiments we increased the time taken by RRT to solve the problems, instead of

increasing the number of nodes. The relationship between the time taken to solve

the map is obtained and we measure the number of nodes in the RRT tree. Figure

3.3 clearly shows that the exploration of the space increases with the increase in the

number of nodes.

29

Figure 3.3: A graph of the percentage coverage of the map vs. a number of nodes
of the RRT tree. The image in the right-hand corner represents the
environment used for the experiment.

To compare the results from changing the number of steps and the number of

nodes, we can combine the data. These results are represented in Figure 3.4.

30

Figure 3.4: Comparison of the average percentage of coverage and robostep using the
environment shown in the right-hand corner. Also includes a comparison
of the average percentage coverage and number of nodes of the RRT Tree.

3.1.3 Changing Grid Size

In this experiment, we change the grid size to observe the effect on the coverage

percentage. The coverage is not actually changing, we make each voxel (the grid is

high dimension) smaller. The experiment is performed by changing the grid size to

40. It is the same as the environment before. The dimension of the grid increases

exponentially with the increase in the number of the robots in the swarm. As the

dimension increase, dividing the map into the grid becomes computationally complex

and time-consuming. However, for our work, it is an effective way of comparing the

outputs.

31

Figure 3.5: Represents the effect of grid size change on the average percentage cover-
age.

Figure 3.6: Comparison of the average (of 10 trials per robot step size) percentage
coverage and robostep using the environment shown in the right-hand
corner when the grid size is 40. Also includes a comparison of the average
percentage coverage and number of nodes of the RRT tree.

32

3.1.4 Changing the Initial Distance Between Robots

This section examines if the initial positions of the robots affects the perfor-

mance of the RRT with the same number of nodes and robostep. To study the effect

of initial position, we considered eight different cases, and in each case the initial

positions of the robots are closer. We change the initial positions of the robots and

measure its effect on coverage. As we go from case 1 to case 8 the distance decreases

as shown in Figure 3.7.

33

Figure 3.7: a) Maps with different cases. The initial distance between two robots
decreases as we go from case 1 to case 8 b) Graph of Percentage coverage
for all the cases in Figure 3.7 (a).

As shown in Figure 3.7 (b) the initial separation of the robots does not have

effect until a critical distance, after which the coverage drops quickly. We can infer

34

from these experiments that the motion planner could not cover the map area if the

robots are initialized too close together because it must separate the robots to achieve

the goal. If the goal locations of the robots are at the same relative distance as the

short positions, it would be easy for the motion planner to solve it.

3.2 Environment 2: Short Narrow Passage

As shown in Figure 3.8 environment 2 has obstacles (shown in black) on the sides

and two obstacles (in black) in the center creating a narrow passage. The starting

locations for the robots are shown in the pictures as black and green discs for robot

1 and 2 respectively. The goals for the robot 1 and robot 2 are shown respectively

as a blue and red circle. Also, the RRT for robot 1 is shown in cyan and robot 2 is

yellow. The whole space is in 4D dimensions, but the picture shows the projection of

the 4D space into 2D. The aim is to simultaneously bring each robot to its goal using

global inputs as discussed earlier.

35

Figure 3.8: Solved environment 2 using our motion planner with the short narrow
passage.

This environment has an obstacle in the middle, creating a narrow passage for

the robots. As shown in Figure 3.9, increasing robostep size from 0 to 40 increases

coverage. However, coverage is saturated after length step 40 till 120, where the step

size of the robot has not created much effect. Interestingly, for all numbers of nodes,

the coverage drops to zero for step length longer than 143 because further increase in

the length cause collisions with the obstacles.

36

Figure 3.9: Average percentage of area covered compared with robot step size for a
different number of nodes across 10 trials for each step for environment
2. The coverage was measured with grid size 50.

3.3 Environment 3: Long Narrow Passage

As shown in Figure 3.10 environment 3 has obstacles (shown in black) on the

sides and two obstacles (in black) in the center, creating a narrow passage. The

starting locations for the robots are shown in the pictures as black color and green

discs for robot 1 and 2 respectively. The goals for the robot 1 and robot 2 are shown

respectively as a blue and a red circle. The aim is to simultaneously bring each robot

to its goal using global inputs as discussed earlier.

37

Figure 3.10: Solved environment 3 using our motion planner with the longer narrow
passage.

As compared to environment 2, this environment has a broader narrow passage.

From Figure 3.11 we can infer that increasing the nodes after 12500 has no significant

effect. Also the coverage starts dropping after step size 100 and drops quickly after

180 because the robot cannot cross the narrow passage. After certain step-size, one

of the robot would collide with the obstacles and decreases the coverage if the step

size is too long.

38

Figure 3.11: Average percentage of area covered compared with robot step size for a
different number of nodes across 10 trials for each step in environment
3. The coverage was measured with grid size 50.

3.4 Environment 4: Zigzag Narrow Passage

Figure 3.12 environment 4 has obstacles (shown in black) on the sides, and

Obstacles in the center create a narrow but zigzag passage. The starting locations

for the robots are shown in the pictures as black and green discs for robot 1 and 2

respectively. The goals for the robot 1 and robot 2 are shown as a blue and a red

circle. The aim is to simultaneously bring each robot to its goal using global inputs

as discussed earlier.

39

Figure 3.12: Solved environment 4 using our motion planner with the narrow passage
and a zigzag obstacle pattern.

Figure 3.13: Average percentage of area covered compared with robot step size for a
different number of nodes across 10 trials for each step for environment
4. The coverage was measured with grid size 50.

40

3.5 Environment 5: Human Digestive System

As shown in Figure 3.14 environment 5 has obstacles (shown in black) on the

sides and other obstacles create an environment like a human digestive tract. The

outputs show the behaviors of robots in this difficult environment. The starting

locations for the robots are shown in the pictures as black and green discs for robot 1

and 2 respectively. The goals for the robot 1 and robot 2 are shown as a blue and a

red circle respectively. Also, the RRT for robot 1 is shown in cyan and the robot 2 is

in yellow. The whole space is in 4 dimensions, but the picture shows the projection

of the 4D space into 2D. The aim is to simultaneously bring each robot to its goal

using global inputs as discussed earlier.

Figure 3.14: Solved environment 5 using our motion planner. This environment rep-
resents the human digestive system.

This environment is designed using small rectangles to create the shape of the

41

human digestive system. In Figure 3.14 we showed that the robot is moving in the

area which does not have sharp corners. Our algorithms work fine with these different

shapes of the obstacles. Figure 3.15 shows that the robots can move to two entirely

different locations at the same time. Robot 1 with a start location shown by in a black

disc moves to the stomach area of the digestive system while the robot with the start

location in green moves to the large intestine area of the human digestive system. We

moved the robots to different parts of the digestive system simultaneously.

Figure 3.15: Solved environment 5 using our motion planner. This environment rep-
resents the human digestive system. The start and goal locations of the
robots are in different location of the digestive system than Figure 3.14.

3.6 Environment 6: Vascular Network

After solving some basic maps we applied the motion-planning to a complex

map of a leaf’s vascular network. Environment 6 has a border of obstacles creating

an environment of a vascular network space. The start for the robots are shown in

42

the pictures in black and green circles for robot 1 and 2 respectively. The goals for

the robot 1 and robot 2 are shown as a blue and a red circle respectively. The aim of

each robot is to reach it individual goal even being under the effect of global inputs

as discussed earlier.

Figure 3.16: Leaf vascular network.
http://browpicz.pw/Black-leaf-vein-pattern-WALL-PANELS-t-Leaves-Leaf.

html

We created this network from picture we found on the website. We converted

the Figure into an environment using boundary detection techniques in MATLAB

image processing tool box. We found the coordinates of the border and converted

43

http://browpicz.pw/Black-leaf-vein-pattern-WALL-PANELS-t-Leaves-Leaf.html
http://browpicz.pw/Black-leaf-vein-pattern-WALL-PANELS-t-Leaves-Leaf.html

the borders into small rectangles with a length and width of 1 unit. The robots

successfully solved the complex map as shown in Figure 3.17.

Figure 3.17: Solved environment 6 using our motion planner. This environment rep-
resents the leaf vascular network . The environment developed from
Figure 3.16.

3.7 Varying Narrow Passage Gap Experiment

In this section studies the effect of decreasing the narrow passage width for the

robots and studied the effects on the coverage. We performed this experiment with

two robots keeping the same initial and goal positions for all five maps. Also, the

number of nodes for the tree was set to 12500 nodes and the step size for both robots

was set to 5 units. We kept all the other variables constant and just changed the size

of the narrow passage and plotted the result on the map as shown in Figure 3.18 (b).

The map used for this simulation is also shown in Figure 3.18 (a).

44

Figure 3.16 b demonstrates that when the narrow passage becomes more difficult

for the planner to solve, the coverage of the map decreases. This suggests that we

need to exploit the map more when we have a small narrow passage in our map. The

coverage does not seem to have much effect on the Environment 1, 2 and 3 but for

Environments 4 and 5, there is a drastic effect on the coverage.

45

Figure 3.18: (a) Maps used to explore the effect of narrow passage on coverage. (b)
Plots for the coverage each of map in Figure 3.18(a).

46

Chapter 4

Application

4.1 Multi-robot Motion-planning

In this section, we generalize the implementation of our RRT planner to more

than 2 robots. The time to solve an RRT increases exponentially with the number of

the robots. In other words, the number of nodes required to find the solution for the

group of robots increases according to Zn, where n is the number of robots.

Figure 4.1: Solving the environment 4, Zigzag narrow passage, with 3 robots moving
under global inputs.

We implemented the algorithm for 3 robots in environment 4-Zigzag narrow

47

passage, the same environment we used in earlier chapters. The result can be seen in

Figure 4.1

As shown in Figure 4.2 we have four robots moving from their start to the

goals and all the robots are moving under the global inputs. Every robot acts as a

constraint for every other robot to reach the goal. Some of the functions are affected

by the number of the robots. The planner in the RRT uses a distance function to find

the shortest distance to the sampled points. To reach the goal, the distance function

should satisfy the goal of each robot. Also, the grid function is directly proportional

to the number of robots kn, where n is the number of robots and k is the number of

cells in one dimension. It is difficult to compute the coverage with the method we

used because the memory required for the grid increases exponentially as the number

of the robots.

Figure 4.2: Solving the environment 3 long narrow passage with 4 robots moving
under global inputs.

48

Figure 4.3: Solving the environment with 8 robots moving under global inputs

We did a similar experiment for 8 robots. As shown in Figure 4.2, it took a

larger number of nodes for RRT to solve the environment for 8 robots because the

degree of freedom of the robot increases. With increased number of nodes of the

robots, it could not reach all the goals. We also solved environment 6 leaf vascular

network for 3 robots as shown in Figure 4.4.

49

Figure 4.4: Solved environment 6 with 3 robots moving under global inputs.

4.2 Reuse of RRT Tree

To reduce the computation time for building a new RRT for every change in

goal position, we want to reuse the RRT tree developed for the same environment

with the same initial positions. Also, this method will allow us to reach different

goals in the same environment. However, the percentage coverage of the map is an

important factor as we cannot reach an area which is not explored by the RRT. All

the experiments we performed in chapter 3 are helpful to give us insight into the

question, How good is our RRT? We proved in earlier sections that parameters such

as the number of nodes, RRT step size, narrow passage length, initial positions affect

the coverage of the map. Mapping the paths for the environment and reusing it

enables multiple queries using one tree. This allows us to quantify distances in this

high dimensional space.

50

4.2.1 Swapping the Goal Positions of two Robots

We have used environment 2 and selected the start and the goal positions. We

generate a RRT tree for this environment as shown in Figure 4.5. We then reuse the

same RRT and swap the goal to reach the new goals as shown in Figure 4.6. From

the Figure 3.9 we discovered that 10000 nodes and a step size of 40 to 80 is ideal to

achieve almost 100 % coverage of this map.

As before, the environment 2 in Figure 4.5 and Figure 4.6 has obstacles in black.

The start for the robots are shown in the pictures in black and green circles for robot

1 and 2 respectively. The goals for the robot 1 and robot 2 are shown as a blue and

a red circle respectively.

Figure 4.5: Solving RRT for two robots using global inputs for environment 2 with
10000 nodes.

51

Figure 4.6: Reusing an RRT generated to reach the other goals for 2 robots.

4.2.2 Reusing an RRT and swapping the goal positions for multiple robots

To solve the problem for multiple robots, we ran the algorithm for a longer time

to create a dense RRT tree. Once the tree is finished we can reuse it to solve multiple

problems for 4 robots. As shown in the Figures 4.7 and 4.8 we solved the problem for

4 robots and reuse the developed tree to solve the problem for 4 robots in the same

environment but with different goals.

52

Figure 4.7: Solving environment 3 for four robots.

Figure 4.8: Reusing an RRT generated for four robots.

53

Chapter 5

Conclusions, Discussion and Future Work

5.1 Conclusion

Motion-planning for a swarm of robots is a challenging task when all the robots

are moving under a global input. The motion performed by robots to reach from

one state to another must be planned while considering other robots. The main

goal of the thesis is to use a preexisting motion-planning algorithm to solve the

motion-planning problem for a swarm of robots moving under a global input and

study the effect of different parameters and environments on the coverage of the

configuration space. The motion-planning becomes complicated when we consider a

swarm of robots because the planning must be performed in a higher dimension and

dimensions increase exponentially with the number of robots for a coupled approach

(the so-called curse of dimensionality).

We use open source planners and libraries to create a motion planner to satisfy

our goals. We used a Rapidly-exploring Random Tree (RRT) [12] for developing

our motion planner. We modeled our robots as small particles in simulation and

used rectangle-shaped obstacles to create the different environments. When moving

under global inputs all the robots move in the same direction until their motion is

obstructed by an obstacle. We also assumed that the robots can slide on the edges of

the obstacles to create the simulation. Our first goal was to move the robots under

global inputs and find a goal for individual robots from their start positions using

our planner which is developed using RRT. We implemented RRT for a swarm of

robots and successfully solved the motion-planning problem using the OMPL library.

54

Our second goal was to study the effect on the coverage of the map by changing one

parameter and keeping another parameter constant. To study the map coverage, we

divided the map into a grid, found the voxels filled by all the robots of the swarm, and

calculated the percentage of filled voxels. We created the grid in 2n dimensions when

we have n robots which can move in the X and Y direction. As the number of robots

increases, the memory requirement for the grid increases exponentially. We tested

changes in the parameters, including the step size of the robot, the number of nodes of

the RRT tree, the grid size of grid we use to measure coverage, the initial positions of

the robots, changing narrow passage width between the obstacles in the environment,

and different environments and observed its effects on their map coverage. As RRT

is based on a distance function from moving from one state to another, restricted

the distance the robot can move at every sample (step size). We experimentally

proved that the step size of the robot is directly proportional to map coverage for

small step sizes. However, there are diminishing returns and the percentage coverage

starts decreasing after a certain step size. We observed from the experiments that the

motion planner can cover the maximum area when the robot step size fits most of the

places in the environment, because it covers the maximum area without colliding the

obstacles. We observe that as the number of nodes increases the coverage increases to

a fixed value and saturates after a certain number of nodes. The effect of the grid size

is proportional to the coverage. The result from the test of changing initial positions

allowed us to find its relationship with the performances of the robots in terms of

coverage. The coverage percentage drops drastically when robots are very near to

each other. We also discovered that when the narrow passage width decreases, the

coverage decreases. We extended our result on the parameters affecting RRT and

discovered that we can reuse the RRTs for the same environment and have the same

initial locations but different goals.

55

5.2 Extension

This thesis has opened new areas on the possibility of using available motion-

planning tools for the swarm of robots with global controls. An observation which

has been made during this research has provided new directions for future research

which are recommended as follows:

5.2.1 Practical Implementation in the Lab

During this thesis, the entire research was performed using OMPL and sim-

ulations. However, the idea can be implemented using small iron particles and a

magnetic manipulator or magnetic MRI scanner. This implementation could prepare

for implementation of these ideas for practical use [21].

5.2.2 Alternative to RRT

We used RRT as our motion planner but have not compared other sampling-

based planner such as PRM to solve this problem. We could use a planner called

DRRT which will sample the environment using PRM and grow an RRT using PRM

sampling points [22].

5.2.3 Simulation of 1000+ Robots

In this thesis, we are worked with coupled robots and implemented the program

for 8 robots. The same can be implemented for 1000+ robots and to measure the cov-

erage with more robots. However, a more efficient coverage measurement algorithm

must be designed for the larger number of robots in the swarm [23].

56

5.2.4 Consideration of Velocity and Acceleration

During this thesis, we have not considered practical particle parameters like

friction, velocity or acceleration of the robots. The same problem could be solved by

using a control space function and differentiating the equations.

5.2.5 Considering 6 Degrees of Freedom Per Robot

The robots described in this thesis only move in X and Y direction, so the

entire thesis uses 2D workspaces. However, robots can move in 3 planar directions

X, Y and Z. Also, the robot can have roll, pitch, and yaw movement. We could

develop a different sampling method to increase exploration and exploitation of the

space (For example using a genetic algorithm and finding the optimum step).

5.2.6 Extend to Different Shapes of the Robot

The robot we considered is circular but the same algorithm can be implemented

by using different shapes. It is an open problem to discover which shape works the

best.

5.2.7 Map Coverage Algorithm

The method used in this thesis for measuring coverage can be improved. Cur-

rently, we divide the space in the grids in the dimension 2n, n is number of robots in

the swarm (considering all the robots are in 2D). We can improve this algorithm by

using the concept of Voronoi bias [24].

57

5.2.8 Use Microorganism as a Robot Using our RRT

When seeding a culture tube containing the microorganism called T. pyriformis

and iron oxide nanoparticles, we can create a steerable robot that responds to the

magnetic field as per [25]. Future work could extend our thesis idea for swarms of

microorganisms and practical implementation in a biological system.

58

References

[1] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars, “Probabilis-

tic Roadmaps for Path Planning in High-dimensional Configuration Spaces,” in

IEEE Trans. Robot. Automat., Aug 1996, pp. 566–580.

[2] I. A. Sucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning Library,”

in IEEE Robotics and Automation Magazine, 2012, pp. 72–82.

[3] S. M. LaValle, “Planning Algorithms,” in Cambridge University Press, 2006.

[4] I. Paprotny and S. Bergbreiter, “Small-Scale Robotics: From Nano-to-millimeter-

sized Robotic Systems and Applications,” in ICRA, 2013.

[5] B. J. Nelson, I. K. Kaliakatsos, and J. J. Abbott, “Microrobots for Minimally

Invasive Medicine,” in Annual Review of Biomedical Engineering, 2010.

[6] Y. TAN and Z. yang ZHENG, “Research Advance in Swarm Robotics,” in De-

fence Technology, vol. 9, 2013, pp. 18–36.

[7] D. J. Cappelleri, M. Fatovic, and Z. Fu, “Caging Grasps for Micromanipulation

Microassembly,” in International Conference on Intelligent Robots and Systems,

2011.

[8] A. Das, P. Zhang, W. Lee, D. Popa, and H. Stephanou, “µ3 : Multiscale De-

terministic Micro-nano Assembly System for Construction of On-wafer Micro-

Robots,” in International Conference on Robotics and Automation (ICRA), 2007.

59

[9] A. Chanu, O. Felfoul, G. Beaudoin, and S. Martel, “Adapting the Clinical MRI

Software Environment for Real-time Navigation of an Endovascular Untethered

Ferromagnetic Bead for Future Endovascular Interventions,” in Magn Reson

Med, 2008, pp. 1287–1297.

[10] P. Vartholomeos, M. Akhavan-Sharif, and P. E. Dupont, “Motion Planning for

Multiple Millimeter-scale Magnetic Capsules in a Fluid Environment,” in IEEE

International Conference Robotics and Automation, 2012, pp. 1927–1932.

[11] P. Vartholomeos, C. Bergeles, L. Qin, and P. E. Dupont, “An MRI-powered and

Controlled Actuator Technology for Tether-less Robotic Interventions,” in Int.

J. Rob. Res, 2013, pp. 1536–1552.

[12] S. M. LaValle, “Rapidly-exploring Random Trees: A New Tool for Path Plan-

ning,” in TR 98-11, Computer Science Dept., Iowa State University, Oct 1998.

[13] A. T. Becker, O. Felfoul, and P. E. Dupont, “Simultaneously Powering and

Controlling Many Actuators with a Clinical MRI Scanner,” in IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), Chicago, IL,

USA, 2014, pp. 2017–2023.

[14] S. Shahrokhi and A. T. Becker, “Object Manipulation and Position Control Using

a Swarm with Global Inputs,” in IEEE International Conference on Automation

Science and Engineering (CASE), 2016.

[15] C. Rodriguez, J. Denny, S. A. Jacobs, S. Thomas, and N. M. Amato., “Blind

RRT: A Probabilistically Complete Distributed RRT,” in IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, 2013.

[16] M. W. Spong, S. Hutchinson, and M. Vidyasagar, “Robot Modelling and Con-

trol,” in Robot Modeling and Control, 2004.

60

[17] T. Lozano-Perez and M. A. Wesley, “An Algorithm for Planning Collision-free

Paths among Polyhedral Obstacles,” in Communications of the ACM, Oct 1979,

pp. 560–570.

[18] A. T. Becker, “Controlling Swarms of Robots with Global Inputs: Breaking Sym-

metry,” in Microbiorobotics: Biologically Inspired Microscale Robotic Systems by

Ed. M.J. Kim, A.A. Julius, and U.K. Cheang, Elsevier, 2017, pp. 3–20.

[19] A. Atramentov and S. M. LaValle, “Efficient Nearest Neighbor Searching for

Motion Planning,” in Proceedings IEEE International Conference on Robotics

and Automation, 2002, pp. 632–637.

[20] A. Yershova and S. M. LaValle, “Improving Motion Planning Algorithms by

Efficient Nearest-neighbor Searching,” in IEEE Transactions on Robotics, 2007,

pp. 151–157.

[21] S. Shahrokhi, J. Shi, B. Isichei, and A. T. Becker, “Exploiting Non-Slip Wall

Contacts to Position Two Particles Using the Same Control Input.”

[22] K. Solovey, O. Salzman, and D. Halperin, “Finding a Needle in an Exponential

Haystack: Discrete RRT for Exploration of Implicit Roadmaps in Multi-robot

Motion Planning,” in The International Journal of Robotics Research, 2016, pp.

501–513.

[23] A. Shkolnik and R. Tedrake, “Path Planning In 1000+ Dimensions, Using a

Task-Space Voronoi Bias,” in IEEE International Conference on Robotics and

Automation, 2009.

[24] S. R. Lindemann and S. M. LaValle, “Incrementally Reducing Dispersion by

Increasing Voronoi Bias in RRTs,” in IEEE International Conference on Robotics

and Automation, 2004.

61

[25] P. Seung, S. Kim, A. T. Becker, Y. Dal, H. Kim, A. A. Julius, and M. Kim,

“Magnetic Swarm Control of Microorganisms,” in Microbiorobotics: Biologically

Inspired Microscale Robotic Systems, Second Edition, 2017, pp. 221–243.

62

	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	Introduction
	Problem Definition
	Configuration Space
	2D Rigid Bodies
	Workspace of a Robot

	Definitions
	Robot
	Homeomorphism
	Manifold
	Cartesian Products
	1-D Manifolds
	2-D Manifolds
	Particle
	The Degrees of Freedom (DOF)
	Rigid Body

	Coupled and Decoupled approach
	Centralized Multi-robot Coordination
	Decentralized Multi-robot Coordination

	Difficulties in motion-planning with More Than One Robot
	The Dimension of a Swarm of Robots
	Curse of Dimensionality

	Proposed Method
	Environment Description

	Theory
	Motion-Planning
	Sampling-based Planner 6KavrakiPRM

	Model of Movement Using Global Inputs
	Calculation of Exploration of the Space
	Algorithms
	Collision Avoidance
	Distance Function
	Nextpoint Function
	Grid Coverage

	OMPL Library 19OMPLlib
	OMPL motion-planning Problem with an Example.
	Updated RRT Algorithm for Multiple Robots

	Simulations and Results
	Environment 1: L-Shaped Obstacle
	Changing Step Size
	Changing the Number of Nodes
	Changing Grid Size
	Changing the Initial Distance Between Robots

	Environment 2: Short Narrow Passage
	Environment 3: Long Narrow Passage
	Environment 4: Zigzag Narrow Passage
	Environment 5: Human Digestive System
	Environment 6: Vascular Network
	Varying Narrow Passage Gap Experiment

	Application
	Multi-robot Motion-planning
	Reuse of RRT Tree
	Swapping the Goal Positions of two Robots
	Reusing an RRT and swapping the goal positions for multiple robots

	Conclusions, Discussion and Future Work
	Conclusion
	Extension
	Practical Implementation in the Lab
	Alternative to RRT
	Simulation of 1000+ Robots
	Consideration of Velocity and Acceleration
	Considering 6 Degrees of Freedom Per Robot
	Extend to Different Shapes of the Robot
	Map Coverage Algorithm
	Use Microorganism as a Robot Using our RRT

	References

