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Abstract

Millirobots propelled by magnetic fields show promise for minimally invasive

surgery or drug delivery. MRI scanners can generate magnetic gradients to apply

propulsive forces on ferromagnetic objects. However, MRI gradient forces are insuf-

ficient for tissue penetration. This project presents a millirobot design and control

methods to produce pulsed forces. A ferromagnetic sphere inside a hollow robot body

can move back and forth between a spring and an impact rod. Repeated impacts con-

vert the kinetic energy of the sphere into large pulsed forces that can penetrate tissue.

An estimator helps achieve the maximum possible average impact velocity with mini-

mal sensing, for a given set of material and geometric parameters, and input magnetic

gradient force. Prototypes were 3D printed and tested on a custom magnetic test bed.

Analytical, numerical and experimental results are presented.
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Chapter 1

Introduction

Minimally invasive surgery (MIS) is a rapidly advancing field in medical treat-

ment. The main advantage being that recovery times are much shorter for patients.

Although catheters and endoscopes are currently the most widely used MIS tools,

wireless control of miniature, untethered robots through passageways in human bod-

ies is being seen as the next rung on the technological ladder [1, 2, 3]. These methods

could provide advantages over current MIS methods such as preventing tissue dam-

age by tethers and reducing chances of blood vessel blockage, especially for complex

pathways [4]. Untethered navigation can be achieved by placing a ferromagnetic piece

inside the robot and producing a controlled magnetic field around a patient. Propul-

sion and steering of millirobots can be accomplished by either moving a permanent

magnet assembly around a patient [5] or by controlling the current inside electro-

magnets [6]. The latter solution is often realized with an MRI scanner which already

includes electromagnets. In an MRI, the background field magnetizes the ferrous

components of the robot, and the gradient coils generate the magnetic gradient nec-

essary to produce forces. The MRI scanner can be used simultaneously to provide

real-time imaging of the operating area as well as positioning of the robot.

The force generated on the millirobots is proportional to the field gradient

strength. Commercial MRI scanners produce gradients in the range of 20 to 40

mT/m. These gradients are sufficient to maneuver milli-robots inside fluid-filled re-

gions of the body, such as vessels [7], but insufficient for tissue penetration that

requires larger forces [8]. Tissue penetration is required for many procedures, includ-

ing brachytherapy and micro-biopsy. This paper presents a control method, denoted
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Figure 1.1: Design and prototype of the magnetic hammer millirobot

magnetic hammer actuation, that can generate large pulsed forces for tissue penetra-

tion. As in 1.1, the millirobot has a tubular structure in which a ferromagnetic sphere

can move back and forth.

This movement is produced by alternately changing the gradient direction. On

the posterior side of the millirobot, a spring allows the sphere to change direction

smoothly. On the anterior side, a hard rod creates a surface for the sphere to impact,

the impact rod. Repeated impacts result in large pulsed forces that enable progressive

tissue penetration. Simulations and experimental results of three different control
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methods are also discussed, where each method varies the frequency and duty cycle

of the magnetic gradient force input. The three methods are discussed as open-

loop, partially closed-loop and ideally closed-loop systems. In the open-loop system,

there is no sensing and the magnetic gradient force is switched based on an arbitrary

constant frequency. For the partially closed-loop system, the impact of the sphere

at the anterior end is sensed using a sensor. This is used to switch the direction of

the magnetic gradient force at the impact end. The switching time at the posterior

end is set manually and swept through a range of values. Finally for a fully-closed

loop system, sensing is used at both ends to switch the direction of the magnetic

gradient force such that it is always aligned with the direction of sphere motion.

An in-house magnetic test bench has then been used to test these different control

strategies and demonstrate tissue penetration. The test setup includes coils, sensors,

power electronics, and a real-time controller.

The first part of the following chapter reviews literature about magnetic actua-

tion of particles or objects for minimally invasive applications. The second part of the

literature review covers forces involved in tissue penetration by needle insertion. The

third chapter explains the millirobot design, the underlying mechanical and magnetic

models, and a description of the experimental methods used. The chapter after that

discusses numerical, analytical and experimental results obtained. The last section is

a conclusion of the study and lists possible areas for future work.

Chapters 3 and sections of chapters 4 and 5, have been submitted for IROS

2017 in a paper titled ”Magnetic Hammer Actuation for Tissue Penetration using

Millirobot”, which is currently under review. This paper focuses on the design of

the millirobot and initial experiments. Another paper titled ”Validation of Control

Methods for Magnetic Hammer Millirobot Actuation” is under preparation and will

cover the testing and validation of the three control strategies explained in Chapter

4.
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Chapter 2

Literature Review

This chapter presents a review of existing literature that is relevant to the orig-

inal work done as part of this thesis. The first section deals with different untethered

micro- and millirobot designs for minimally invasive applications. The second sec-

tion reviews current methods of modeling tissue penetration through needle insertion.

Though these models provide valuable insights into the mechanics of tissue penetra-

tion, they cannot be directly adopted for the millirobot design discussed in this thesis.

The reasons for this are explained in the second section as well. The third and final

section deals with the optimal control of a vibratory piledriver to maximize its output

force. The millirobot design presented in this paper uses a similar oscillating mech-

anism to produce pulsed forces for tissue penetration. Given the limited magnetic

gradient strength available in the MRI, providing an optimal control input to the

millirobot could produce much higher penetration forces.

2.1 Magnetic actuation of miniature, untethered robots

As mentioned in Chapter 1, many recent studies have been dedicated to the

wireless control of miniature, untethered robots for MIS applications, using magnetic

fields. The most commonly studied methods of propulsion have been torque gen-

eration using a rotational magnetic field, and force generation using magnetic field

gradients. One of the first studies in the former field was by Honda et al. (1996),

who proposed a microrobot design that consisted of a spiral Copper wire with a cubic

permanent magnet at one end [9]. The mechanism rotates due to magnetic torque

and the spiral design caused it to move linearly, much like a corkscrew. The linear ve-
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locity increased with the excitation frequency of the external rotating magnetic field.

Further studies by Sendoh et al. (2002) extended this concept and demonstrated

the individual directional control of micromachines [10]. In their designs, the linear

motion was achieved using an external rotational magnetic field. In separate studies,

Sendoh et al. (2002) and Sato et al. (2002) demonstrated the inclusion of heating

elements in their micromachine designs, which could be used for local hyperther-

mia [11, 12]. These elements were heated using alternating magnetic fields. Explicit

temperature sensing was compensated for by using heating elements with predefined

Curie temperatures. Dreyfus et al. (2005) enabled the propulsion of a red blood cell

in the presence of external uniform and rotating magnetic fields, by attaching a linear

chain of molecules to the cell [13]. This was inspired by the propulsion mechanisms

found in microorganisms such as bacteria and eukaryotic cells . These organisms use

hair-like structures known as flagella, which are found in multiple structures and ex-

hibit different movement patterns. Abbott et al. (2009) demonstrated that a helical

propeller becomes preferable to pulling with magnetic field gradients as microrobot

size decreases or as the distance from the magnetic field sources increases [14]. How-

ever, an external rotating magnetic field is required to propel a helical microrobot.

The aim of our project however, is to enable millirobot control within an MRI scanner

which has constant magnetic gradients in all three Cartesian directions. Simultaneous

imaging is an added advantage which can be used as a real-time sensing modality. A

rotational magnetic field would require additional hardware within the MRI environ-

ment, while using gradient based pulling would require only a software upgrade for

the MRI scanner [15].

Early studies on magnetic gradient based pulling and tissue penetration were

done by Grady et al. (1989) and Molloy et al. (1990) . They demonstrated the

movement of a milli-scale devices of spherical and cylindrical shapes using a cus-

tomized external magnetic gradient field, for local hyperthermia . The devices were
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used to penetrate canine brain tissue and phantom gelatin. However, the gradient

field strength required to achieve penetration was 8 T/m. This is much more than

what current MRI scanners can offer, which generate gradient fields in the range of

20 to 40 mT/m. More recent studies have shown that navigation of miniature de-

vices through the blood stream is possible with the gradient fields in commercial MRI

scanners [4, 7, 16, 17]. Becker et al. (2015) developed self-assembled Gauss guns that

generated impulsive forces by converting magnetic potential energy into kinetic en-

ergy [8]. These could be used for tissue penetration and were demonstrated to achieve

higher penetration forces than normal gradient-based pulling. The drawback of this

mechanism is that it is hard to re-assemble the mechanism after a single release. This

thesis presents a magnetic hammer millirobot design that is able to achieve tissue

penetration through repeated impacts of a magnetized sphere on an impact plate,

using the gradient fields in MRI scanners.

2.2 Estimation of tissue penetration forces

Many studies have been dedicated to modeling tissue penetration forces for

surgical needle insertion. Simone et al. (2002) proposed modeling the penetration

force during constant velocity needle insertion as the combination of three different

forces: tissue stiffness, friction and cutting [18]. The capsule stiffness was modeled as

a non-linear spring, friction by a modified Karnopp model and cutting was assumed to

be constant for a given needle-tissue combination. Forces were measured by mounting

a load cell on the robot arm holding the needle. The idea was to compare real-time

force data to the models to control the puncture of interior structures during robot-

assisted interventions. This model was tested on a bovine liver for different needle

diameters and tip types by Okamura et al. (2004) [19]. Bevel tipped needles were

prone to more bending and were easily affected by variations in tissue density. Larger

diameter needles required higher penetration forces due to increased cutting and

6



friction force components. Mahvash and Dupont (2010) used a non-linear viscoelastic

model to predict the relationship between tissue deformation and rupture force at

different velocities [20]. Their model predicted that tissue penetration forces could

be reduced by increasing insertion velocities. This was proven experimentally as well.

Other models have considered effects of needle insertion velocities, friction during

the cutting phase and velocity-dependent cutting forces. While these models offer

valuable insights into tissue penetration through quasi-static needle insertion, they

cannot directly be adopted for our magnetic hammer millirobot due to its highly

dynamic nature. This thesis does not cover the modeling of tissue penetration forces.

However, this would prove valuable and we intend to perform tissue indentation tests

in the future.
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Chapter 3

Forces on the Millirobot

3.1 Mechanical model

The motion of the sphere between two consecutive impacts can be divided into

two phases, based on the forces that act on it. The magnetic gradient force Fmag

and friction force Ffriction act on the sphere during its motion along the free length of

the tube, L (See Fig. 3.1 (i),(iii)). When the spring is compressed, its reaction force

Fspring acts on the ball as well (See Fig. 3.1 (ii)). The directions of Fmag and Ffriction

change depending on the direction of motion of the sphere.

Inside the homogeneous region of an MRI scanner, the magnitude of Fmag is

constant [21]. The same has been assumed for developing analytical and numerical

models in this paper. The formula for calculating Fmag is presented in section 3.2.

Friction is considered to be negligible, but the assumption will be relaxed in later

sections. The spring force is straightforward, and is given by

Fspring = kx, (3.1)

where x is the compression length, and k is the spring constant.

3.2 Magnetic field calculation

The magnetic field generated by an MRI scanner can be separated into two

components. The first is a constant and strong magnetic field B0 along the z-axis.

This field is used to align the magnetic moments of the protons. Commercial MRI

scanners have B0 typically ranging from 1.5 to 3 T. The second component of the

8



Fmag

Ffriction

Fmag
Fspring

Ffriction

(ii) (iii)

(i)

L

xs= Lxs= 0xs=-xcs

L

2rs

Figure 3.1: (i) Free length of sphere travel, L; (ii) Free body diagram of sphere when
spring is compressed, (iii) when spring is not compressed

field is the magnetic gradient. It is used to encode the MRI signal spatially. The

flux density G produced by the gradient coils is added to B0 and linearly varies with

position. A computer controls this value. The total field inside the uniformity sphere

of an MRI scanner is given by

B = B0 + G. (3.2)

B0 is given by

B0 =

 0
0
B0

 , (3.3)
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and G, which is directly proportional to the current inside the gradient coils, is given

by

G =

kxIxkyIy
kzIz

 . (3.4)

In the above equation, kx, ky and kz are the coil constants (T/A) and Ix, Iy and Iz

are the electrical current values.

The flux density is more complicated to calculate outside of the uniformity

sphere. The same problem is present in our desktop experiment because the flux

density and gradient are not constant. To calculate forces accurately, it is necessary to

compute the magnetic field precisely. A semi analytical method was used to calculate

the field produced in all space by a solenoid assembly. It was tested on our desktop

experiment.

According to [22], the magnetic flux density produced by a current loop in all

space can be calculated using equations (3.5)-(3.8) and Fig. 3.2. E(k) and K(k)

are the complete elliptical integrals of first and second kind respectively. Bz can be

expressed as

Bz =
µ0I

2πδ2β

[(
a2 − ρ2 − z2

)
(E(k2) + δ2K(k2))

]
. (3.5)

Bθ can be expressed as

Bθ =
µ0I · z
2πδ2βρ

[(
a2 − ρ2 − z2

)
(E(k2)− δ2K(k2))

]
. (3.6)

where δ is given by

δ =
√
a2 +R2

m + Z2
m − 2aRm, (3.7)

and β is given by

β =
√
a2 +R2

m + Z2
m + 2aRm. (3.8)

10
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Figure 3.2: Geometry and variables used in equations (3.5)-(3.8)

The cross-section S of any solenoid can be divided into infinitesimal sections dS.

Each dS is subjected to a current dI = JdS. This current dI forms an infinitesimal

loop, and the field it produces can be calculated using (3.5)-(3.8). By integrating this

equation over the solenoid cross-section, one can obtain the value of the flux density

generated by the solenoid.

The flux density must be calculated for each solenoid. The total flux density is

the vectorial sum of the flux density produced by each solenoid. The results obtained

via this semi analytical method is compared to the solution obtained via finite element

calculations with the software FEMM [23] (see fig. 3.3). The results are identical.

The semi-analytical method is faster to compute for this model. Indeed, the magnetic

field only needs to be calculated at the sphere position. The semi-analytical method

can calculate the magnetic field at one point only whereas, finite elements methods

11



Figure 3.3: Comparison between the flux density computed with the semi-analytical
method with Matlab and the flux density computed via a finite element
method with FEMM.

must compute the magnetic field in the full domain.

3.3 Magnetic force calculation

This section calculates the force applied by the magnetic field to the sphere.

The ferromagnetic sphere is small compared to the coil system and can be

considered as a infinitely small magnetic moment m. Assuming a constant material

magnetization M, one can calculate m from (3.9). V is the volume of the sphere. The

12



ferromagnetic sphere is magnetized by the externally applied field Happ = Bapp/µ0.

Ferromagnetic materials create a demagnetizing field Hd when subjected to an exter-

nal field. The actual field H seen by the sphere is the sum of Happ and Hd. This effect

must be taken into account to calculate the magnetization accurately. Hd is related to

Happ by (3.10). The demagnetization factor N for a sphere is -1/3. Its magnetization

can be calculated using (3.11). Once the magnetic moment m is obtained, the force

on the sphere can be calculated using (3.12). m is given by

m = M.V (3.9)

Hd is expressed as

Hd = N.Happ. (3.10)

M is expressed as

M =
Happ (µr − 1)

2.N.µr − 1
, (3.11)

and F is expressed as

F = ∇(m.B). (3.12)

3.4 Buoyancy

The millirobot needs to be neutrally buoyant to float in the medium it travels

through. To satisfy this condition, the weight of the magnetic hammer needs to be

equal to the buoyant force. Assuming blood as the medium, the condition for neutral

buoyancy is represented by (3.13) as

mmr = ρbVmr. (3.13)

mmr, ρb and Vmr represent the mass of the entire millirobot, density of blood and

volume of blood displace by the millirobot, respectively.

13



Chapter 4

Control Strategies - Analytical and Numerical

Results

4.1 Ideally closed-loop system

To maximize the average impact velocity over an arbitrary n number of contacts,

the input magnetic gradient should always be in the same direction as the motion of

the sphere. This is equivalent to a perfectly closed-loop system where the gradient

signal switches direction when the sphere switches direction. An analytical model was

developed by solving the system ODE to predict the impact velocity for each impact,

given a set of input parameters. The sphere-impact plate system is assumed to have

a coefficient of restitution, e. This model assumes that the robot capsule does not

move. The impact velocities for different values of e are plotted in Fig. 4.1. For all

values of e, the impact velocity initially increases and ultimately saturates, reaching

a resonant value. This happens when the energy lost by the sphere during impact

equals the energy gained by it during the rest of the cycle. As expected, a higher

e results in a higher impact velocity. Fig. 4.2 shows a sample closed-loop pulsed

magnetic gradient input for 50 impacts. The frequency initially varies until it settles

to a constant value at resonance. An analytical formula was derived to predict the

resonant impact velocity, for a given set of input parameters. This is expressed as

vres =
2

√
Fmag

(
(e2+1)Fmag−kL(e2−1)+

√
(2−2e4)kLFmag+(1+e2)2F2

mag

)
kms

1−e2 .

(4.1)
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Figure 4.1: Closed loop impact velocity for 150 impacts; k = 50 N/m; e = 0.9; Fmag
= 1.5e-3 N; L = 0.03 m; ms = 5.58e-4 kg; rs = 2.5 mm.

In the above equation, ms is the mass of the sphere in kilograms. The radius of

the ball rs indirectly influences the impact velocity through Fmag and ms, both of

which depend on the volume of the sphere. The variation of vres with changes in

L, e, k,ms, rs, Fmag were plotted and they were all found to be monotonic functions

with no critical points. From eqn. (4.1), it is seen that vres → ∞ as e → 1. This

is expected because e = 1 represents a perfectly elastic collision with no energy lost

during the collision. Hence, the impact velocity increases with every impact. Further,

the time between impacts at resonance tres, is a constant value and is expressed as

tres = tpos,1 + tpos,2 + tant,1 + tant,2, (4.2)

where tpos,1, tpos,2, tant,1, tant,2, xcs and ω are expressed as follows:

tpos,1 =

√
e2v2res + 2LFmag

ms
− evres

Fmag

ms

, (4.3)

tpos,2 =

π − tan−1
(
k
√
e2v2res+

2LFmag
ms

ωFmag

)
ω

, (4.4)
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Figure 4.2: Closed loop input gradient for 50 impacts; k = 50 N/m; e = 0.9; Fmag =
1.5e-3 N; L = 0.03 m; ms = 5.58e-4 kg; rs = 0.0025 m.

tant,1 =
cos−1

(
Fmag

Fmag+kxcs

)
ω

, (4.5)

tant,2 =
vres −

√
v2res −

2LFmag

ms

Fmag

ms

, (4.6)

xcs =

√
e2kmsv2res + 2kLFmag + F 2

mag + Fmag

k
, and (4.7)

ω =

√
k

ms

. (4.8)

In the above equations, xcs is the maximum compression distance of the spring (See

Fig. 3.1 (i)), and ω represents the natural frequency of the spring-mass system.

The value of xcs can be used to select an appropriate free length for the spring, to

ensure that it does not bottom out during compression. The values tpos,1, tpos,2, tant,1

and tant,2 represent the time for the ball to move from xS = (i) L to 0, (ii) 0 to

−xcs, (iii) −xcs to 0, and (iv) 0 to L respectively, in a perfectly closed-loop system

with optimal gradient switching. To effectively compare the results between different

control strategies, the following parameter values have been assumed: k = 50 N/m,
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Figure 4.3: Comparison of average impact velocities between impacts 100 and 1100
for three different control inputs: Open-loop vs. Partially closed-loop vs.
Ideally closed-loop

e = 0.9, Fmag = 1.5e-3 N, L = 0.03 m, ms = 5.58e-4 kg, rs = 2.5 mm. For these

parameters, the average impact velocity for an ideally closed-loop system over 1000

impacts, has been plotted as the green circle in Fig. 4.3.

4.2 Partially closed-loop system

4.2.1 Zero friction model

With sensing at both ends, we can implement an ideally closed-loop system

where the magnetic gradient force is always in the same direction as the motion of the

ball. However, practically realizing perfect sensing at both the posterior and anterior

ends of the capsule is difficult. This motivated us to simulate a partially closed-loop

system which only senses impacts at the anterior end, while leaving the switching

time at the posterior end ts, to manual control. Experimentally, this was realized

by using a laser diode-receiver pair at the anterior end which detected the sphere
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Figure 4.4: Six domains for spring-end switching time; green and red represent Fmag
towards anterior and posterior respectively. Direction of colored arrow
represents direction of ball motion.

impacts. The switching time at the posterior end ts, was varied and the resultant

average impact velocities are plotted in fig. 4.3. In this figure, the x-axis represents

the driving frequency f , where f = 1/(2ts). The average impact velocity increases

and reaches a maximum when the partial closed-loop switching frequency is equal

to the ideal closed-loop switching frequency. This shows that a partially closed-loop

system tuned to the right frequency can produce the same average impact velocity

as an ideal-closed loop system, assuming all other system parameters are the same.

However, this model works only for cases where the Coulomb friction force is low. An

analytical model was developed to express the time between two successive impacts

∆t, as a function of the posterior switching time ts, initial (post-impact) velocity vo+ ,

and other parameters such as L, k, a and ms, where a is the acceleration on the sphere

due to Fmag. The expression is of the form
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∆t(ts, vo+ , a,ms, k, L) =



∆t1(ts, vo+ , a, L), v2o+ < 2aL & ts < tc1

∆t2(ts, vo+ , a,ms, k, L), tc1 ≤ ts ≤ tc2

∆t3(ts, vo+ , a,ms, k, L), tc2 < ts < tc3

∆t4(ts, vo+ , a,ms, k, L), ts = tc3

∆t5(ts, vo+ , a,ms, k, L), tc3 < ts < tc4

∆t6(ts, vo+ , a,ms, k, L), tc4 ≤ ts < tc5

tc5, tc5 ≤ ts

. (4.9)

In eqn. (4.9), ∆tn for n = 1 to 6 represent six possible and relevant cases of ball

motion based on the value of ts. These six cases are illustrated in Fig. 4.4. In

Fig. 4.4(i), the initial velocity v0+ and ts are low enough that the sphere reverses

direction before reaching the spring. In this case, v0+ < 2aL, where a = Fmag/ms.

Fig. 4.4(ii) represents the case when v0+ is high enough that spring compression is

unavoidable even for ts = 0. In Fig. 4.4(iii), the signal switch happens after spring

compression starts but before it bottoms out. Fig. 4.4(iv) represents perfect closed

loop switching. In Fig. 4.4(v), the signal is switched after maximum compression,

but before the sphere reaches xs = 0. Fig. 4.4(vi) represents switching after spring

rebound and before the next impact. There is also a possible seventh case where

the switching happens after one entire impact cycle. This case is not relevant and

serves more as an upper limit of practical ts values. tcn values for n = 1 to 5 are the

threshold switching time values for each case. These are calculated by analytically

solving the first order ODE for each case. The seven cases of motion are divided by

five different threshold values for ts which are expressed as follows:
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Figure 4.5: Plot of ∆t vs. ts for different values of vo+ .

tc1 =

√
4aL+ 2v2o+ − 2vo+

2a
, (4.10)

tc2 =

√
2aL+ v2o+ − vo+

a
, (4.11)

tc3 =

π − tan−1
(
k
√

2aL+v2
o+

a
√
kms

)
√

k
ms

+ tc2, (4.12)

tc4 =

2

(
π − tan−1

(
k
√

2aL+v2
o+

a
√
kms

))
√

k
ms

+ tc2, and (4.13)

tc5 = 2tc3. (4.14)

The variation of ∆t with ts for different values of vo+ are plotted in Fig. 4.5. For this

plot, the same parameter values as in section 4.1 have been assumed. The regions

labeled (i) to (vii) represent the respectively numbered cases in eqn. 4.9. Region

(i) is bounded by the black line on top, and the line ∆t = (2 +
√

2)ts on the right
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side. Case (iv) represents the ideal closed-loop switching time and is illustrated by

the middle line among the three almost-parallel lines.

Analytical expressions for equation (4.9)

For all six cases of ∆t, Fmag and ω are constant. ω represents the natural

frequency of the spring-mass system and is expressed as

ω =

√
k

ms

. (4.15)

Fmag is the force applied by the external magnetic system and is expressed as

Fmag = msa. (4.16)

In the following expressions, vi,j represents the sphere velocity in m/s at a certain

point during the impact cycle. Here, i represents the case number and takes val-

ues from 1 to 6. j represents different phases within each case and is chosen for

convenience. Similarly, si,j represents displacement in meters, and ti,j the duration

of motion in seconds. yi,0 represents the maximum length of spring compression in

meters for each case. All other parameters have been previously defined.

Expression for ∆t1:

∆t1 is expressed as

∆t1 (ts, vo+ , a, L) =

√
2

((vo+
a

+ ts

)
2 −

v2o+

2a2

)
+
vo+

a
+ 2ts. (4.17)

Expression for ∆t2:

∆t2 is expressed as

∆t2 (ts, vo+ , a,ms, k, L) = t2,1a + t2,2a + t2,1b + t2,2b + ts, (4.18)
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where t2,1a, t2,2a, t2,1b and t2,2b are given by the following equations:

t2,1a =
v2,ts − v2,1a

a
, t2,2a + t2,1b =

2

ω
tan−1

(
kv2,1a
ωFmag

)
, and (4.19)

t2,2b =

√
v22,1a + 2aL− v2,1a

a
. (4.20)

v2,1a and s2,1 in the above equations are given by the following equations:

v2,1a =
√
v21,ts − 2a (L− s2,1), and (4.21)

s2,1 =
at2s
2

+ vo+ts. (4.22)

Expression for ∆t3:

∆t3 is expressed as

∆t3 (ts, vo+ , a,ms, k, L) = t3,2a + t3,2b + ts, (4.23)

where the terms on the right hand side are given by the following equations:

(4.24)

t3,2a =
2

ω
tan−1

(√
k(2ω2Fmagy3,t1b+kv2

3,t1b
+kω2y2

3,t1b)+kv3,t1b

ω(ky3,t1b+2Fmag)

)
, and (4.25)

t3,2b =

√
v23,2a + 2aL− v3,2a

a
. (4.26)

The right hand side terms in the above two equations are given by the following

equations:

(4.27)

v3,t1b =
√

2aL+ v2o+ cos (ωt3,1b) +
ωFmag sin (ωt3,1b)

k
, (4.28)

y3,t1b =

√
2aL+ v2o+ sin (ωt3,1b)

ω
− Fmag cos (ωt3,1b)

k
+
Fmag

k
, (4.29)
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v3,2a =

√
2y3,0Fmag

ms

+
ky23,0
ms

, (4.30)

y3,0 =

√
F 2
mag − 2ck − Fmag

k
, (4.31)

c = −2Fmagy3,t1b −
1

2
ms

(
2aL+ v2o+

)
, and (4.32)

t3,1b = ts − tc2. (4.33)

c is a parameter assigned for conveniently presenting the calculations and has no

specific significance with respect to the dynamics of the system.

Expression for ∆t4:

∆t4 is expressed as

∆t4 (ts, vo+ , a,ms, k, L) = t4,for1 + t4,for2 + ts, (4.34)

where the terms on the right hand side are given by the following equations:

t4,for1 =
cos−1

(
Fmag

ky4,0+Fmag

)
ω

, and (4.35)

t4,for2 =
v4,imp − v4,4

a
. (4.36)

The right hand terms in the above two equations are given by the following equations:

y4,0 =

√
2kLFmag + F 2

mag + kmsv2o+ + Fmag

k
, (4.37)

v4,imp =
√
v24,4 + 2aL, and (4.38)

v4,4 =

√
2y4,0Fmag

ms

+
ky24,0
ms

. (4.39)
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Expression for ∆t5:

∆t5 is expressed as

∆t5 (ts, vo+ , a,ms, k, L) = t5,2b + t5,2c + ts. (4.40)

where t5,2b and t5,2c are given by the following equations:

t5,2b=
2
ω
tan−1


√

k(2ω2Fmagy5,2a+kv25,2a+kω2y25,2a)+kv5,2a

ω(ky5,2a+2Fmag)

, and (4.41)

t5,2c =
v5,imp − v5,2b

a
. (4.42)

The right hand side terms in the above two equations are given by the following

equations:

v5,2a =
ωFmag sin (ωt5,2a)

k
+
√

2aL+ v2o+ cos (ωt5,2a) , (4.43)

y5,2a=−
Fmag cos(ωt5,2a)

k
+

√
2aL+v2

o+
sin(ωt5,2a)

ω
+

Fmag
k
, (4.44)

t5,2a = ts − tc2, (4.45)

v5,imp =
√
v25,2b + 2aL, and (4.46)

v5,2b=
∥∥∥v5,2a cos(ωt5,2b)−

(
Fmag

k
+y5,2a

)
ω sin(ωt5,2b)

∥∥∥. (4.47)

Expression for ∆t6:

∆t6 is expressed as

∆t6 (ts, vo+ , a,ms, k, L) = t6,2b + ts. (4.48)

where t6,2b is expressed as

t6,2b =
v6,imp − v6,ts

a
. (4.49)
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Figure 4.6: Comparison of simulated impact velocities. The velocities for impacts
100 to 200 are averaged and plotted for different values of Coulomb fric-
tion force. Colored circles represent the ideal closed-loop values. Lines
represent the partially closed-loop values.

The right hand terms in the above equation are given by the following equations:

v6,imp =
√

2a (L− s6,ts) + v26,ts, (4.50)

s6,ts = v6,1 (ts − t6,1)−
1

2
a (ts − t6,1) 2, (4.51)

v6,ts = v6,1 − a (ts − t6,1) , (4.52)

v6,1 =
√

2aL+ v2o+ , and (4.53)

t6,1 = tc4. (4.54)

4.2.2 Effect of Coulomb friction

In all the above models, the friction force was assumed to be zero. Average

impact velocities over 100 impacts are plotted for varying values of the friction force

in Fig. 4.6. The circles represent the ideally-closed loop values, while the curves

represent the partially closed-loop values using impact times. Much like the step-
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Figure 4.7: 3D contour plot of ∆t vs. ts plotted for different values of vo+. ts is a
control parameter and ∆t can be obtained by sensing. Together, ∆t and
ts can be used to estimate vo+ with our estimator.

out frequency of a stepper motor, average impact velocities drop suddenly for the

partially closed-loop system beyond a cut-off driving frequency. This is due to the

sphere reversing direction before spring contact, leading to a drop in its net kinetic

energy. As friction force increases as a percentage of Fmag, the partially closed loop

system reaches its cutoff frequency, before resonance. This drop in impact velocity is

not seen in the fully closed-loop system, for any values of friction. Hence, partially

closed-loop control will not produce the maximum possible impact velocity for high

values of Coulomb friction force.
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Figure 4.8: Side view of 3D contour plot in Fig. 4.7. If ∆t and ts are known, we can
calculate vo+ in region B, or have two possible values in region A.

4.2.3 Post-impact velocity estimator

A 3D contour plot showing the variation of ∆t with ts for vo+ values from 0 to

1.5 m/s, are shown in figures 4.7 and 4.8. There exists a unique vo+ , or post-impact

velocity, for low values of ∆t and high values of ts. In this case, the post-impact

velocity can be easily estimated based on the measured ∆t and ts. However, for high

values of ∆t and low values of ts, there exist two possible values of vo+ . This is

also seen in Fig. 4.5 at the points of intersection of the different vo+ curves. Where

there are two solutions, we can determine the post-impact velocity if we could detect

contact of the sphere with the spring. The linear region represents the case where

the ball reverses direction before spring compression. If the spring was compressed,

we select the higher value for vo+ . If not, we select the lower value for vo+ , as seen in

Fig. 4.5. The estimated values of post-impact velocity could be used to progressively

tune ts towards the ideal closed-loop value.
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4.3 Open-loop control

In open-loop control, sinusoidal and square waveforms of constant frequencies

are used for Fmag. The average impact velocity of the sphere over 1000 impacts is

then calculated for a range of input frequencies as shown in Fig. 4.3. Excluding the

transient region for frequencies between 0 and 2.5 Hz, the average impact velocity

reaches a maximum between 5 and 10 Hz, for both the square and sinusoidal inputs.

The lack of a continuous trend is expected because the duration of ball motion in

both directions does not remain constant over 1000 impacts, as the open-loop fre-

quency increases. For both inputs, there are short linear regions followed by sudden

drops in the average impact velocity. Following the second drop, the average impact

velocity seems to oscillate about a low value of about 0.2 m/s. As seen in Fig. 4.3,

the maximum open-loop average impact velocity is about 3 times lower than the cor-

responding ideal closed-loop value. This validates the need for an ideally closed-loop

system or tuning a partially closed-loop system.
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Chapter 5

Experimental Setup and Results

5.1 Magnetic test bench description

A desktop-size, single-axis magnetic setup was built to reduce the cost related

to clinical MRI experiments. It is composed of two solenoid coils oriented along the

same axis and separated by a distance d. The coils are used to produce both the

magnetizing field and the gradient. The properties of the coils are shown in Table

5.1.

The system is shown in Fig. 5.1. The two coils are held by an acrylic tube. They

can slide along this tube and be locked in place to adjust the distance between the two

coils and therefore change the maximum field and gradient values. The acrylic tube is

transparent, allowing for visual access to the robot. Each coil is powered via a Syren

25 switch mode power supply. A Hall-effect-based current sensor is used to perform

a PID regulation of the current. It is necessary to control the current inside the coils

and not only the voltage. Indeed, the produced magnetic field is directly proportional

to the current whereas the voltage is related to the magnetic flux variation and the

voltage drop produced by Joule effect losses.

Robots are inserted inside the acrylic tube holding the coils. They are held by

a second, smaller tube that guides them along the system axis. Robots can be free

to move along the coil axis or held in place. A picture of the system is provided in

Fig. 5.1.
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Figure 5.1: Picture of the desktop-size magnetic setup.

Table 5.1: Properties of the coils used in the desktop-size test bench

Internal Radius 12.7 mm Electrical resistance 0.16 Ω
External Radius 45.8 mm Inductance 1.59 mH

Length 65 mm
Max current change rate
Voltage = 25 V

15.7 kA/s

Wire 10 AWG Max continuous current 15 A

Wire cross-section 5.26 mm2

Flux density on
system center
I = 15 A, d = 50 mm

11 mT

Number of turns 265
Gradient on
system center
I = 15 A, d = 50 mm

0.45 T/m
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Figure 5.2: Experimental setup for measuring the coefficient of restitution e

5.2 Coefficient of restitution measurements

The coefficient of restitution e was determined using the time interval between

two consecutive bounces of the sphere when dropped from a given height onto the

impact rod. A microphone sensor was used to detect the impact. The measurements

were made using short impact rods for five different materials. Three rod diameters

were tested for all the materials: 1
8
”, 3

16
” and 1

4
”. Impact rods were held by a drill

chuck. 15.0 mm of the impact rods were sticking out of the chuck. The experimental

setup is shown in Fig. 5.2.

31



0.450

0.500

0.550

0.600

0.650

0.700

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

C
o

e
ff

ic
ie

n
t 

o
f 

R
e

st
it

u
ti

o
n

, e

Diameter of Sample [mm]

Steel

Copper

Brass

Aluminum

Titanium

Figure 5.3: Measured coefficient of restitution e as a function of rod diameter for
different materials

The results, shown in fig. 5.3, show that titanium offers the largest coefficient

of restitution, for all three selected diameters. The densities of aluminum, titanium,

stainless steel, brass, and copper are 2720, 4500, 7600, 8500, and 8940 kg/m3 respec-

tively. This data, coupled with a desire for a lightweight millirobot suggests that

titanium is the best material for an impact plate. Bio-compatibility of the material

used is another constraint that needs to be considered.
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Figure 5.4: Magnetic hammer millirobot with laser diode-receiver pairs for measuring
velocity, mounted at both ends.

5.3 Sphere motion sensing

5.3.1 Partial positioning and velocity measurement using lasers

Two laser diodes and two light sensors enable measuring the velocity of the

sphere at each side of the MRbot (see fig. 5.4). When moving, the sphere interrupts

the laser beam during a time ti inversely proportional to the sphere’s velocity vs. By

measuring ti one can calculate the velocity vs of the sphere with vs = 2 · rs/ti where
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rs the sphere radius.

Lb is the distance between the posterior laser beam and the spring when not

compressed. Lf is the distance between the anterior beam and the impact plate.

The sphere must have enough space on both sides to completely cross the beam.

This implies that Ls > 2rs and Lb > 2 · rs − Sc with Sc being the maximum spring

compression.

When the sphere moves toward the impact plate, it will interrupt the anterior

laser beam during a time ti and release it before the impact. It will then change

direction and interrupt the anterior beam again. One can conclude that the sphere

impacts the plate between the two interruptions of the laser beam. If Ls is close to

2rs the interruption time will be short and the impact of the sphere can be detected

by monitoring the signal of the anterior light sensor.

This method has been implemented on LabVIEW and a cRIO controller from

National Instrument to detect the impact and change the field gradient direction to

switch the direction of the force applied on the sphere after impact. At the same

time, the velocity of the sphere is calculated before and after impact by measuring

the interruption time ti.

5.4 Complete position sensing using a vector of Hall effect

probes

5.4.1 Method presentation

The ultimate goal of this method is to locate a magnetized ferromagnetic sphere

in space, in 3D, using non-contact Hall effect sensors. We are here making a prelim-

inary step in the study by searching to locate a magnetic sphere moving in one

dimension.
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Figure 5.5: Representation of the magnetic system geometry

The ferromagnetic sphere is magnetized by solenoid coils producing a magnetic

field. The magnetization of the sphere directly depends on the current in the coils as

well as the position of the sphere. The magnetization of the sphere must be computed

for each combination of position and electric currents.

5.4.2 Magnetic system configuration

The system is composed of two coils, a ferromagnetic sphere and a row of Hall

effect probes. The two coils are collinear and their axes correspond to the z-axis of

a cylindrical coordinate system (see fig. 5.5). The sphere is assumed to be at r = 0

and at z = Zm position (Zm is the unknown of the problem). The row of Hall effect

probes is oriented along the z-axis at radius distance r = Rp. The Hall effect probes

only measure the radial component of the flux density.
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5.4.3 Magnetic calculations

In this section the forward problem is solved, i.e. knowing the position Zm, the

magnetic flux density seen by the probes is calculated. The problem is inverted in a

second step.

To calculate the flux density seen by the probes, the magnetization of the fer-

romagnetic sphere is calculated. The method used to calculate this magnetization is

presented in Chapter 3.

To calculate the flux density produced by a sphere having a magnetization M,

it will be assumed that the radius of the sphere is sufficiently small to be modeled by

a magnetic dipole m. In addition, it will be assumed that the magnetization of the

sphere is uniform. Hence, m is given by

m =

∫∫∫
SphereV olume

M · dV . (5.1)

The potential magnetic vector produced by the magnetic dipole situated on r = 0

and z = Zm on a calculation point Pi situated on r = Rp and z = Zpi, as explained

in [24], is given by

A =
µ0

4π

M×T

‖T‖3
, (5.2)

where T is given by

T =

 Rp

0
Zm − Zpi

 . (5.3)

The magnetic flux can be expressed as

B = ∇×A, (5.4)

and the radial component of the flux density produced by the sphere at the point Pi
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can be expressed as

Br(Zm, Zpi) =
3µ0 ‖m‖Rp (Zm − Zpi)

4π
(
(Zm − Zpi)2 +Rp2

) 5
2

. (5.5)

5.4.4 Verification of the field calculation

The flux density obtained by using eq. 5.5 is compared here to the flux density

calculated by a 2D axisymmetric finite element method with the software FEMM. The

considered system is composed of two field coils each having an external radius of 46

mm, an internal radius of 13 mm and a length of 65 mm. Their center is separated by

a distance d=119 mm. The sphere has a relative permeability µr=1000 and a radius

equal to 1.59 mm. The Hall effect probes are placed at a radius Rp=5mm. The coils

carry a current equal to 15 A and oriented in opposite directions.

Equation 5.5 corresponds to the field produced by the sphere only, when sub-

mitted to the field produced by the two coils. To obtain that with FEMM, two sim-

ulations need to be performed: one with the magnetic sphere and one without. The

flux density produced by the sphere Bsphere is obtained by subtracting the flux den-

sity produced by the coils only Bcoils from the flux density produced by the complete

system Btot (see figure 5.6). Figure 5.7 shows that that the flux density calculated

using eq. 5.5 is close to the flux density obtained with FEMM. This validates the

calculation method including the two assumptions made in part 5.4.3.

5.4.5 Measuring the field produced by the magnetic sphere

only

The equations describing the forward problem have been presented. We now

must invert the problem, i.e. calculate Zm from the field measured on the Hall effect

probes.
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Figure 5.6: Magnetic flux density computed with FEMM (finite elements software).
The orange curve is the result of the computation without a sphere. The
blue curve is the result of the computation with the sphere. The grey
curve is the difference between the two first curves. It correspond to the
magnetic flux density produced by the sphere only.

First, the position Zm is calculated from the flux density produced by the sphere

only. However, the sensors are placed in the full system which includes the two field

coils. The flux density measured by the sensors is the sum of the flux density produced

by the coils and the spheres. We can in practice easily obtain the field produced by

the spheres only by using the same technique used to plot figure 1: Bcoils must be

subtracted from Btot to obtain Bsphere. This requires knowing the value of Bcoils.

In an experimental setup, we can measure the current in each coil. We have

a magnetic model that allows us to calculate Bcoils. However, this would give a
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Figure 5.7: Magnetic flux density produced by the magnetic sphere. Comparison
of the results obtained with FEMM and the calculation using eq. 5.5
implemented in Matlab.

poor accuracy because our model assumes a perfect coil (coil with a uniform current

density). The real coil is made of turns placed more or less accurately during the

manufacturing process.

This problem can easily be overcome. The Hall effect sensors are mounted in a

permanent place in the magnetic setup. The field produced by each coil on the sensors

is directly measured on the experimental setup. Bcoils is directly proportional to the

current in the coil. We can therefore, for each sensor and each coil, experimentally

find the coefficient that relates Bcoil and the current. This will give a high accuracy
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in the calculation of Bcoils.

Remark: The Hall effect probes only measure the radial component of the flux

density in this setup. This component was chosen rather the axial one because the

flux density produced by the coils are mainly axial. The ratio between the flux density

produced by the sphere and the flux density produced by the coils is larger on the

radial component. It is more accurate to measure the radial component of the field

and calculate Bsphere from it.

5.4.6 Calculation of the position

Inverse problems are sensitive to measurement noise (a small error on the mea-

surement will produce a large error on the calculated position). Adding more Hall

effect sensors to have an overdetermined system improves the estimate.

In the following, Brm(i) will correspond to the radial flux density measured by

a Hall sensor situated on z = Zpi and r = Rp. The vector containing all measured

Brm(i) is noted Brm.

The position Zm is calculated by performing a least square non-linear regression.

The optimization algorithm used is a simple gradient descent.

The measured flux density is fitted by equation 5.5. Zm is the unknown of the

system. The objective function to minimize is given by

obj(Zm) =
n∑
i=1

(Br(Zm, Zpi)−Brm(i))2 . (5.6)

The starting point of the optimization Zm0 is a rough evaluation of the solution. It

is equal to the average of the position Zpi of the sensors that give the maximum

and minimum value for Brm. The flux density value crosses the abscissa axis at

approximately Z = Zm. Thus the solution must be somewhere around the middle

of the point giving the maximum field and the minimum field. Hence Zm0 can be

40



evaluated as

Zm0 =
ZBmax + ZBmin

2
. (5.7)

Here ZBmax and ZBmin are the z position of the Hall sensors giving the maximum

and minimum flux density.

5.4.7 Theoretical tests of the method

Properly testing the method requires studying the effect of the measurement

incertitude (measurement noise) on the found position. A Monte Carlo method was

used. The different steps are:

1. A problem geometry is chosen (number of probes, distance between probes,

radius, etc.).

2. A random position ZmObj is generated.

3. The magnetic flux density on the Hall effect probes is calculated using eq. 5.5.

4. A measurement noise level (NL) is chosen (it can be manually selected or ran-

domly generated).

5. A measurement noise is added with a rand() function to the previously calcu-

lated magnetic flux density. For each sensor, a noise voltage selected uniformly

at random between −NL and NL is added to Brm(i). The obtained values

represents the measurements obtained via the Hall effect sensors Brm(i).

6. The position of the sphere is calculated from Brm. The position found (noted

ZmFound) is compared to the actual position ZmObj and the error can be calcu-

lated.

7. Return to step 2 and perform as many loops as needed to have consistent

statistical data.
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Figure 5.8: Error on ZmFound as a function of the noise level NL.

All the results of simulations shown later correspond to the system simulated in

Section 5.4.4 with Zm ∈ [−10mm, 10mm].

5.4.8 Effect of measurement noise

1000 data points were generated with the following parameters: 20 probes

placed between -15 and +15 mm, 3 iterations of the gradient descent optimization.

For each point, the noise level NL was generated randomly. Figure 5.8 shows a plot

of the error on the position found (ZmFound − ZmObj) as a function of NL.

In this case, the maximum tolerable NL is 0.45 mT. Under this noise level, the

positioning is accurate enough to locate the sphere at plus or minus 1 mm approx-

imately. Above this value, large positioning errors are encountered on some of the

42



Figure 5.9: Error on ZmFound as a function of the noise level NL for three optimization
configurations

data points.

5.4.9 Effect of number of iterations in gradient descent

Figure 5 shows the error (ZmFound − ZmObj) as a function of NL for different

optimization configuration. Results show that the initial point Zm0 is already very

close to the solution. The gradient descent optimization slightly improves accuracy.

Three iterations are sufficient to reach the maximum accuracy.

5.4.10 Effect of the radial position Rp

Figure 5.10 is a plot of the error on the found position (ZmFound − ZmObj) as

a function of NL for two different radial position of the Hall effect sensors. Result
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Figure 5.10: Error on ZmFound as a function of the noise level NL for two radial
positions of the Hall effect sensors.

accuracy increases if the sensors are closer to the sphere because signal strength

increases with proximity.

5.4.11 Effect of the number of probes

The number of probes has a large effect on the accuracy of the method. On

Fig. 5.11 and 5.12, the objective function (see eq. 5.6) of the optimization is plotted

as a function of Zm. Figure 5.11 is plotted for NL=0 T and fig. 5.12 for NL=0.001

T.

On Fig. 5.11 the position of the sphere correspond to the minimum of the

function. When the number of probes increases, the gradient of the objective function
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Figure 5.11: Objective function as a function of Zm for different numbers of Hall effect
probes with NL=0 T.

Figure 5.12: Objective function as a function of Zm for different number of Hall effect
probes.
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Figure 5.13: Error on ZmFound as a function of the noise level NL with 5, 10 and 20
Hall effect sensors.

increases, making the search of the minimum of the function easier. Also, in the

calculation area (-10 mm, + 10 mm), the function for 3-5 and 10 probes have local

minimums. This is a concern when performing optimizations because there is a risk

that the algorithm will return a local minimum. When the number of probes increases,

the local minimums become less pronounced.

Figure 5.13 shows that the measurement noise changes the shape of the objective

function. First, the minimum of the function is slightly changed. This corresponds

to the inevitable error on the calculated position when there is a measurement error.

In this case, the local minimums are more pronounced. Again, on this plot, the

more probes that are present, the less pronounced are the global minimums and the

steeper is the gradient. This makes determining the position both easier and more
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Figure 5.14: PCB board with a vector of 24 Hall effect sensors.

accurate. Remark: On Fig. 5.8 (for example) the error stays low at low noise level

but suddenly, when the noise increases, some points ZmFound have large errors. This

probably corresponds to points where the conjugate gradient converged toward a local

minimum.

Figure 5.13 shows a plot of the error on ZmFound as a function of NL for 5, 10

and 20 probes. As expected, larger the numbers of probes result in more accurate

positioning of the probe. For example, for this configuration, using only 5 probes is

not acceptable.

5.4.12 Practical realization

A Hall effect probe array containing 24 probes was built (Figure 5.14). The

device has not been tested on a practical experiment yet. It will be tested soon.
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5.5 Partially closed loop experiment

The coils are driven by square shaped current waveform. The current in the

coils can either be Imax or 0 A. The coil will be said to be “on” when I = Imax and

“off” when I = 0 A.

As explained in Chapter 4, the magnetic hammer generates maximum impact

velocities when the input gradient force is always in the same direction as the motion

of the sphere. This is equivalent to an ideally closed-loop system. An open-loop

control is inefficient, as shown in Fig. 4.3. The force applied on the sphere (and

therefore the magnetic gradient) must change direction when the sphere hits the

impact plate and when the sphere changes direction on the spring side to provide

maximum impulse.

Our eventual goal is to use these robots in an MRI scanner, where MRI gra-

dients must be shared for propulsion and position feedback [17]. The nature of our

system enables simpler sensing requirements that can be accomplished with a simple

microphone. The microphone is used to monitor the noise produced by the system.

The impact noise creates a larger pulsed signal on the microphone output and can,

therefore, be easily detected. When the impact is detected, the anterior coil is turned

off while the posterior coil is turned on. The force applied on the sphere now pushes

it backward, toward the spring side.

The current stays constant during a time ts after the impact is detected. The

anterior coil is subsequently turned on, and the posterior coil is turned off. The

force then pushes the sphere forward. The current in the coils is changed again when

another impact is detected. This process is repeated indefinitely.

ts is manually tuned while the system is working. It is set to the value that

gives the maximum oscillating frequency. This value corresponds to a gradient that

changes direction when the sphere velocity is zero on the spring side. It should give
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the same results as the perfectly closed-loop simulations.

The partially closed-loop experiment was performed and compared to the model.

Figure 5.15 shows a comparison of the optimum oscillating frequency as a function

of Imax. When Imax increases, the oscillating frequency increases. The force on

the sphere increases with Imax and consequently increases the moving speed of the

sphere. This figure also shows that the model without friction has the same slope

as the experimental data. However, the simulation signals are approximately 1 Hz

faster than the experiment. This difference probably comes from the lack of friction

in the model. The next subsection adds the effect of friction to the model.

5.5.1 Effect of friction

To improve the model accuracy, the friction between the moving sphere and the

other components of the millirobot was included into the model. The sphere can be

rolling or sliding inside the tube. The modelization is based on the method described

in [25]. The rotation speed θ̇ is first computed and drag is calculated from this result.

The friction on the tube produces a torque on the sphere. It is assumed that

the coefficient of static friction is equal to the coefficient of kinetic friction µk. The

equation used to calculate the angular velocity variation dθ̇
dt

of the sphere is different

whether the sphere is rolling or sliding. The distinction between these two different

behaviors is made by calculating the relative velocity, Vrel, between the sphere and

the tube surface. This is given by eqn. (5.8) as

Vrel = V − rθ̇. (5.8)

If the relative speed is inferior to 0.005 m/s and if the force applied to the sphere is

smaller than the kinetic friction, the sphere is considered to be rolling inside the tube
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Figure 5.15: Comparison between the oscillating frequency obtained experimentally
and with the model as a function of the current in the coils Imax.

and the drag is null. dθ̇
dt

can be calculated from

dθ̇

dt
= r

dV

dt
. (5.9)

In all other cases, the torque applied to the sphere is equal to the kinetic friction force

multiplied by the sphere radius. The drag is equal to the kinetic friction force µk =

0.2.

Results of simulations are shown in Fig. 5.15. The addition of the friction

greatly improves the model accuracy.
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Chapter 6

Conclusion

A magnetic hammer system for a millirobot driven by the gradient fields of an

MRI scanner was studied. The system enables producing the forces large enough to

penetrate body tissue. The hammer is composed of a ferromagnetic sphere moving

inside a tube. On the posterior side of the robot, there is a spring that allows changing

the direction of the sphere smoothly. On the anterior side, a hard metal rod act as an

impact plate to transfer the momentum of the ferromagnetic sphere to the body of

the robot. The system is driven by an external magnetic field, such as that produced

by an MRI scanner. The main field magnetizes the sphere and the gradient produces

the forces necessary to move the sphere.

A model allows the computation of the position of the sphere as a function

of time. The magnetic flux density and the gradient are computed using a semi-

analytical method and allow an accurate calculation of the force applied to the sphere.

The coefficients of restitution for different impact rod materials and diameters

were determined experimentally. These measurements showed that titanium impact

rods exhibit the largest values of e for diameters of 1
8
” and 1

4
”. Aluminum exhibited

the highest value of e among 3
16

” diameter rods. The visible indentation of the

Aluminum impact surface for this diameter could be a reason for the spike in the

magnitude of e. Both titanium and aluminum are lightweight, a useful property to

achieve neutral buoyancy of millirobots. Bio-compatibility of these materials will be

verified in further studies.

Ideally closed-loop, partially closed-loop and open-loop control strategies are

compared numerically, analytically and experimentally. A desktop-size magnetic test
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bench was built to reduce experimental cost related to the use of a clinical MRI

scanner. An ideal closed-loop system generates the maximum average impact velocity

over n impacts. A partially closed-loop system can be tuned to achieve ideally closed-

loop values of average impact velocity for low values of friction. Open-loop systems

generate the lowest values of average impact velocity.

Different sensing methods were used to experimentally test the control strate-

gies. A microphone sensor was used with a laser diode-receiver pair to track the

motion of the sphere at both ends of the millirobot. This was used to implement the

partially and ideally closed-loop systems. Experimental results were found to validate

our analytical and numerical models.

In future work, the control of the magnetic hammer will be implemented and

tested in a clinical MRI scanner. The impact will be detected with the MRI signal

instead of a microphone. The tradeoffs involved in miniaturization of the robot will

also be studied.
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