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Abstract

Targeted drug delivery is a promising technique to reduce the side effects of drugs

by delivering them in concentrated doses using large swarms (1016) of controllable mi-

crobots only targeting bad or infected tissue. A promising way to control small steerable

microbots is by using a global control field such as the magnetic gradient of an MRI

machine. In this work we develop benchmark algorithms for performing aggregation of

microbots using global control. Using our findings we develop algorithms for a novel

approach of mapping tissue and vascular systems without the use of harmful contrast

agents in an MRI. In our work we consider a swarm of particles in a 1D, 2D, and 3D

grids that can be tracked and controlled by an external agent thus building a map. We

present algorithms for controlling particles using global inputs to perform: (1) Mapping,

i.e., building a representation of the free and obstacle regions of the workspace; (2) Forag-

ing, i.e., ensuring that at least one particle reaches each target location;and (3) Coverage,

i.e., ensuring that every free region on the map is visited by at least one particle. Finally

we also demonstrate shape control of large swarms using global control by developing an

algorithm for position control.
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Chapter 1

Introduction

1.1 The Vision of Nano Medicine

The potential use of nano medicine as a tool in medical interventions has given

rise to possibilities such as nano machines, targeted drug delivery and better contrast

agents. The field in nano medicine of interest in our work is active targeting or active

manipulation of particles to achieve desired intervention results. Targeted drug therapy

is a goal for many interventions, including treating cancers, delivering pain-killers, and

stopping internal bleeding. Using concentrated dosage to medicate affected tissue helps

in two ways. First, higher concentration of drugs can be administered for treatment.

Second, drug side effects on healthy tissue is much lesser since healthy tissue are avoided.

Both would lead to faster treatment and recovery.

Chemists, biologists, and roboticists have shown the ability to produce very large

populations (103-1014) of small scale(10−9-10−6 m) robots using a diverse array of mate-

rials and techniques [1, 2, 3]. These particles are easily replacable, dispensible and are

compatible for use in the human body, hence making them perfect for the application.

It is also possible to mass produce particles with a magnetic core and a catalytic surface

for carrying medicinal payloads [4, 5]. The challenges of using such tiny particles is that

there can be no on-board computation on these particles and they cannot communicate

between each other. Particles of such small size have all attributes we see in low Reynolds

number. Low Reynolds number here referees to the setting where we observe motion of

particles to be similar to that of steady flow. Effects of viscosity dominate effects of

inertia because of the small size of vessles and particles themselves and so particles are
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more susceptible to magnetic and electrostatic force compared to gravity. We can control

the microbot particles by a global external input, such as an applied fluidic flow, electric

field and magnetic gradient. In particular, real-time MRI scanning could allow feedback

control using the location of a swarm of these particles. Navigating one particle through

the vascular network is just be a simple path planning problem. Steering magnetic par-

ticles using the magnetic gradient coils in an MRI scanner was implemented in [6, 4]. 3D

Maxwell-Helmholtz coils are often used for precise magnetic field control [7]. These are

examples where only one or two particles were manipulated. But controlling swarms of

particles using a global input is challenging. The particles are under-actuated as all par-

ticles move in the same direction vector when commanded. Also complicated maze-like

vascular networks have many obstacles which make steering and path planning difficult

as shown in Fig. 1.1.

The second potential application of developing control algorithms for globally con-

trolled particles is mapping. In MR imaging, some tissues have poor contrast, which

means that the boundaries between tissue types cannot be determined. To discover tis-

sue boundaries, particulate solutions of a contrast agent are used to illuminate regions

of interest [8]. Drawbacks include that the contrast agent diffuses quickly and must

be injected repeatedly during long scans. Additionally, many contrast agents such as

gadolinium chelates are toxic, and prolonged exposure causes medical complications [9].

A safer way is to use biocompatible particles with a magnetic core and a catalytic

surface for carrying medicinal payloads [4, 5]. An alternative is superparamagnetic iron

oxide microparticles, 9 µm particles that are used as a contrast agent in MRI studies [7].

These particles can be steered by the global magnetic gradient of an MRI and visualised

by the MRI [10], even when the tissues they move through have poor contrast.

A recent survey on challenges related to controlling multiple micro robots (less

than 64 robots at a time), [11] shows us how even controlling a small number of particles

2
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Figure 1.1: Vascular networks are common in biology such as the circulatory system and
cerebrospinal spaces. Navigating a swarm using global inputs, is challenging
due to the many obstacles.

can be difficult. In our work we tackle the challenges of developing control algorithms

for large swarms of globally controlled particles which has inspired a large body of work

on global control like [12],[13] and [14]. We draw inferences based on the behavior of

particles in mazes and provide theoretical reasoning for understanding the results of our

study. Using global control we explore aggregation of large number of dispersed particles

in chapter 2 which is an extension of our work published in [15]. We extend these

ideas to develop control algorithm for mapping, coverage, foraging discussed in chapter

3 and finally accurate position control using global control in chapter 4. Chapter 3 is an

expansion on the work done for [16] and chapter 4 is an expansion on the work done for

[17]. Both [16, 17] have been submitted for publication in IROS 2017 and are currently

under review.
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1.2 Workspace Setup

In the 2D case a completely connected planar grid workspace W is filled with a

number of robots (each occupying one cell of the grid). Each unit square in the workspace

is either free, which a robot may occupy or obstacle which a robot may not occupy.

Obstacles present do not disconnect the free-space.

The ‘robots’ in this work are simple particles. We consider two types of particles,

small and large, as depicted in Fig. 1.2. If particles are much smaller than the workspace

geometry, we call them small. We represent each grid cell as filled if it contains at least

one particle and empty otherwise. A cell filled with small particles can combine with

another filled cell. If particles are the same size as workspace grid-cells, we call the

particles large. Large particles cannot combine. The presence of a large particle in a cell

prevents another particle from entering.

All robots are commanded in unison: the valid commands are “Go Up” (u), “Go

Right” (r), “Go Down” (d), or “Go Left” (l). We consider two classes of commands, dis-

crete and maximal moves. Discrete moves : robots all move in the commanded direction

one unit unless they are prevented from moving by an obstacle or a stationary robot.

Maximal moves : robots all move in the commanded direction until they hit an obstacle or

a stationary robot. For maximal moves, we assume the area of W is finite and issue each

command long enough for the robots to reach their maximum extent 1.3. A command

sequence m consists of an ordered sequence of moves mk, where each mk ∈ {u, d, r, l}.

A representative command sequence is 〈u, r, d, l, d, r, u, . . .〉.

4



Small particles 

Discrete moves

Large particles 

Discrete moves
Large particles 

Discrete moves

Small particles 

Discrete moves

Large particles 

Maximal moves
Large particles 

Discrete moves

Figure 1.2: If particles are much smaller than the workspace geometry, we call them
small. If particles are the same size as workspace gridcells, we call the par-
ticles large. Large particles cannot combine.

(a) (b) (c)

Figure 1.3: Particles distributed in a bounded space (a) are subjected to uniform input
to go ‘up’ (b) until all particles reach their limit, similarly in (c) the input is
a uniform ‘right’ input.
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Chapter 2

Aggregation

The old adage toxicity is a function of concentration explains that often we can

flow a diluted drug through the body without much side effects to the body. Our efforts

are focused on building algorithms that can take such a dispersed particle swarm and

then aggregating the particles to a location and thus delivering the required payload.

Building on the techniques for controlling many simple particles with uniform control in-

puts presented in [18, 19] we also outline new research problems. We study two notions

of aggregating a swarm, in correspondence with particle size with relation to workspace:

1) Small particles: the swarm is aggregated when all particles share the same (x, y) co-

ordinates. 2) Large particles: Here the swarm is aggregated when it forms one connected

component. A connected component is a set of particles P such that for any two parti-

cles in P , there is a sequence of neighboring particles that connect them. 2D cells are

neighbors if they share an edge, 3D cells are neighbors if they share a face.

2.1 Related Work

The strongest parallels in robotics literature to aggregating particles are particle

localization and particle rendezvous. It has applications to drug delivery and micro

manufacturing.

2.1.1 Localization

In localization a robot must use the data available to it by means of observation to

estimate it’s location. For example, a mobile robot with a map of the workspace must

6



localize itself, using only a compass and a bump-sensor that detects when the robot

contacts a wall. Given an environment, finding a localizing sequence is framed as a

planning problem with an unknown initial state and an unobservable current state. The

solution in [20] was to transform the problem from an unobservable planning problem

in state space to an observable problem in a more complex information space. The

concepts from [20, 21] have been extended to robots with bounded uncertainty in their

inputs [22]. They provided a complete algorithm, but generating an optimal localizing

sequences remains an open problem. [20] assumes there is only one robot, but it still

gives us clarity on how planning for independent robot systems differ from swarm robot

systems. Also related is work on sensorless part orientation, where flat tray is tilted in a

series of directions to bring a polygonal part, initially placed at random orientation and

position in the tray, to a known position and orientation [23].

2.1.2 Robot Rendezvous

In robot rendezvous, planning is focused on finding paths for two or more indepen-

dent, intelligent agents to meet. The introduction to this concept by Alpern and Gal [24]

introduced a wide range of models and methods for this concept as have Anderson and

Fekete [25] in a two-dimensional geometric setting. As in our work it is assumed that

the topology is bounded and robots have limited onboard computation. This is relevant

to maneuvering particles through worlds with obstacles and implementation of strategies

to reduce computational burden while calculating distances in complex worlds [26].

The main variation that occurs in this field of research lies on how a successful

rendezvous is defined. It can be defined as “The time taken for successful transitive

rendezvous between all agents” [26]. Or it can be considered as “aggregation of all

agents to a given spot’ [27].

7



2.2 Theory

With discrete inputs and small particles, the problem can be reduced to localizing a

sensorless robot in a known workspace. This is similar to work on draining a polygon [28],

or localizing a blind robot [20, 21], but with discrete inputs. In Section 2.3, for the small

particle problem we present an optimal aggregation algorithm, Alg. 1 in Section 2.2.2 and

a greedy aggregation policy Alg. 2 in Section 2.2.3. We also give positive (Section 2.2.4)

and negative (Section 2.2.5) results for large particles.

2.2.1 Conditions for Aggregation

Particles initialized in two unconnected regions of a work-space cannot be aggre-

gated. The proof is trivial, since a path does not exist without connectivity. Such a

configuration is depicted in Fig. 2.1a.

Under maximal inputs aggregation is not possible in certain cases where there are

bottlenecks. Such a world can be constructed with spaces resembling bottles or fish

weirs from which a single particle cannot escape, as shown in Fig. 2.1b. If the free space

contains at least two such bottles with at least one particle in each, the swarm cannot

be aggregated with maximal inputs.

The world must be bounded. Two initially separated particles in an unbounded

world without obstacles cannot be aggregated; however with discrete inputs, one obstacle

is sufficient as seen in Fig. 2.1c and can be inferred from previous work on global control

presented in [12].

A swarm of small particles can be aggregated on any bounded grid if controlled by

discrete global commands. However, there are configurations where sometimes aggrega-

tion is impossible with large particles, as seen in Fig. 2.1d. Here if we move right, the

particle in the bottom right is disconnected and if we move left, the particle on the bot-

8



(a)                                       (b)                      (c)                                      (d)

Figure 2.1: Examples of workspaces for which aggregation is not possible. (a) The
swarms are in unconnected components (b) Bottle neck environment (c) An
unbounded world with a single obstacle. (d) Connected component issues

tom left will be disconnected. So, aggregation is complicated and sometimes impossible

in large particle scenario.

2.2.2 Optimal Aggregation for Small Particles

The optimal move sequence to aggregate all particles in a workspace can be de-

termined by a simple strategy of growing and pruning a configuration tree that expands

the tree of all possible movement sequences in a breadth-first search manner, and halts

when all the particles aggregate at one point. Alg. 1 implements this breadth-first-search

technique. It initializes a tree where each node contains the configuration of particle

locations C[p], the move that generated this configuration M [p] and a parent configu-

ration pointer P [p]. Here C,M,P are the respective complete lists. p is the current

iteration pointer and e is the end of list pointer. The root node is {C0,∅, 0}, where C0

is the initial configuration of particle locations. We then construct a breadth-first tree of

possible configurations {u, r, d, l}, pruning configurations that already exist in the tree.

We stop when the cardinality at a leaf is one, |Ci|= 1, which indicates that the swarm

has been aggregated as represented in Fig. 2.2. For a simple case where n=2 and m=5

the optimal move sequence is found by growing and pruning the tree in each level by

cutting off nodes which give a previously seen configuration and keeping the nodes which

produce a new configuration. Algorithm terminates when a convergence occurs . Here,

9



the number of moves in the end will be the same as the number of levels expanded. This

algorithm produces the optimal path to determine the shortest path length ‘s’ as seen

in Fig. 2.3, but requires O(4s) time to learn and O(4s) memory and the graph grows

exponentially (Fig. 2.4). This leads us to investigate other algorithms which will solve

the path with much lower computational time and data.

Algorithm 1 Optimalaggregating(W , C0)

1: p← 1
2: {C[p],M [p], P [p]} ← {C0,∅, 0} . initialize
3: e← 1
4: while |C[p]|> 1 do . more than 1 unique position
5: for m = {u, d, r, l} do
6: Ctemp ← ApplyMove(C[p],m)
7: if Ctemp 6∈ C then . add node to list
8: e← e+ 1
9: {C[e],M [e], P [e]} ← {Ctemp,m, p}
10: end if
11: end for
12: p← p+ 1 . get next configuration
13: end while
14: path← {} . construct optimal path
15: while P [p] > 1 do
16: Append M [p] to path
17: p← P [p]
18: end while
19: path← Reverse[path]

2.2.3 Greedy Strategy to Aggregate Small Particles

Two small particles in a finite and connected polyomino can be aggregated with

discrete movement by simply repeatedly moving one particle onto another in the shortest

way. The corresponding procedure aggregateAB is described in Alg. 2. By iteratively

aggregating any two disjoint particles, the distinct positions of the particle swarm can

be reduced until all particles are at the same position. The two particles can be chosen

with different methods and we implement the following methods:

1. Closest pair of particles - choose a pair of particles with the minimum distance

between them.

10



Figure 2.2: Optimal algorithm grows and prunes tree of configurations. Growth happens
in nodes which show new configuration.

start                   <d>                   <1>                   <r>                   <d>                   <l>                    <d>                   <d>                   <l>  

<u>                   <l>                   <u>                   <l>                    <l>                    <l>                    <u>                   <l>                    <l>  

Figure 2.3: The optimal solution for a world with 27 free spaces, which required expand-
ing 423,440 nodes with an optimal path (shown) taking 17 moves.

2. Furthest pair of particles - choose a pair with maximum distance between them.

3. Connect to first - choose the first two particles while searching for particles in the

workspace from top left to bottom right.

4. Random combinations - choose any two particles.

5. First to last - choose the first particle and last particle, i.e., the leftmost top and

rightmost bottom particles, respectively.

aggregateAB can be called to implement any of these methods.

11
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Figure 2.4: A workspace with 30 free spaces required 1.6 million nodes before finding
the optimal solution.

Algorithm 2 Aggregating two particles that can overlap

Require: a can reach b, Polyomino is bounded
1: procedure aggregateAB(a: Particle, b: Particle)
2: while dist(a, b) 6= 0 do
3: Let C ∈ {u, d, l, r}N be the shortest control sequence that moves a onto pos(b)
4: Execute C
5: end while
6: end procedure

Theorem 1. aggregateAB aggregates two particles in a polyomino with O(n3) discrete

control commands, where n equals the polyomino’s height times its width.

Proof. The distance between a and b equals the length of C. After execution of C, the

distance has not increased as a is now on the previous position of b and b has at most

moved |C| units from it. If b had a collision during the execution of C, the distance is

even less as at least one command did not result in a move of b. As dist(a, b) ∈ O(n),

only O(n) loop iterations with collisions are needed to aggregate a and b. Obviously,

|C|∈ O(n) and hence every loop iteration executes at most O(n) commands. With every

iteration without collision, the positions of a and b change each by pos(b)− pos(a). This

12



difference only changes if b had a collision, therefore the particles move in the same

direction with every collision-free iteration. After O(n) collision-free iterations of the

loop, b must have a collision, as the polyomino is finite. This results in O(n2) commands

to reduce the distance by at least one and thus O(n3) commands suffice to aggregate a

and b.

Theorem 2. aggregateAB has a computational complexity of O(n3).

Proof. The shortest control sequence C can be calculated in O(n) time by a simple

breadth-first-search. Under the assumption that a command can be executed in O(1),

one loop iteration has a computational complexity of O(n). With O(n2) loop iterations

(see proof of Theorem 1), this results in an overall complexity of O(n3).

Theorem 3. A particle swarm of size O(m) can be aggregated with O(m.n3) discrete

control commands and a computational complexity of O(m.n3) where n equals the poly-

omino’s height times its width.

Proof. Select two disjunct particles and execute aggregateAB. This reduces the size

of distinct positions in the particle swarm by one. After O(m) executions, there is only

one position left and the particle swarm is aggregated.

13



(a)                                                       (b)                                                    (c)         (d)

Figure 2.5: We define a target stick target(a). A modified aggregation algorithm is used
to deliver particles to the sticky target which metabolizes the particles as
they reach the target as seen in (b),(c) and (d).

2.2.4 Aggregating Large Particles in a Target Region

In the previous two subsections, the particles are relatively small, allowing several to

be aggregated in the same location anywhere in the environment. But when the particles

are relatively large, they may block each other’s way, making the motion control trickier.

We can still deliver a swarm of particles to a defined target region(Fig. 2.5(a)) by making

use of discrete moves, assuming that particles are metabolized once they reach the target

region (Fig. 2.5(b),(c),(d)), i.e., the target is “sticky”.

This implies that they stay within the target region once they get there, and that

they do not block each other within that region.

Theorem 4. For a sticky target region and large particles within an environment of

diameter D, a particle swarm of size O(m) can be aggregated with O(m.D) discrete

control commands.

Proof. The proof is straightforward by induction. Moving one particle to the target

region takes at most D moves, which leaves all other particles within distance D.

Note that the extent of the environment is critical. If we are dealing with k particles

within an environment of size m×m, then we get the following.

14



Corollary 5. For a sticky target region and large particles, a particle swarm within an

environment of size m×m can be aggregated with O(m3) discrete control commands.

If all particles of the swarm are relatively close to the target region, the complexity

can be stated differently.

Corollary 6. For a sticky target region and large particles, a particle swarm of size O(k)

that fills a square environment around a target region can be aggregated with O(k3/2)

discrete control commands.

2.2.5 Aggregating Large Particles with Maximal Moves

Our results rely on being able to limit the extent of the motion, i.e., having dis-

crete moves. If that is not the case, i.e., in the case of maximal moves, in which each

particle moves until it is stopped by an obstacle or another stopped particle, the problem

becomes considerably harder and may indeed be intractable. As we showed in previous

work [29], deciding whether even a single particle can be delivered to a target region

(Fig. 2.6) is already an NP-hard problem; this implies not only that finding a solution is

computationally hard, but that there are instances in which no solution exists.

2.3 Results and Inferences

Our first experiment compares the optimal algorithm (Alg. 1) versus three varients

of the greedy algorithm (Alg. 2). Fig. 2.7 compares the number of moves required to

converge for the optimal strategy (Alg. 1) versus the greedy strategy for small worlds

ranging from 5 free spaces to 30 free spaces.

Workspaces with more spaces were not considered because the optimal algorithm

requires a lot of time due to the exponential time to free space relationship. This plot

shows that the optimal algorithm requires approximately half the moves of the greedy

15



Initial state with particles (colored) on the upper right. The objective is to move one
particle into the grey target rectangle at lower left.

Setting variables to (False, True, False, True) does not satisfy this 3SAT instance.

Setting the variables (True, False, False, True) satisfies this 3SAT instance.

Successful outcome. (True, False, False, True) moves a single particle into the
target region.

Figure 2.6: Combining 12 variable gadgets, four 3-input or gadgets, and a 4-input and
gadget to realize the 3SAT expression (¬x1 ∨¬x3 ∨ x4)∧ (¬x2 ∨¬x3 ∨ x4)∧
(¬x1 ∨ x2 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ x3).
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N= 14                          N= 18                              N= 24                                    

N=25                                               N=26
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closest particles
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Figure 2.7: The greedy strategy requires 1.95 as many moves as the optimal strategy in
a test with 17 different test environments. Below the plot are examples of
some of the test environments used.
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Figure 2.8: Aggregating the furthest particles (green) performs poorly. Connecting the
two closest nodes (blue) is better, but both strategies are beat by the strategy
that chooses the first two (the top-most, left-most) particles each iteration.

algorithms. The plot has an upward moving trend in general as the number of free spaces

increases, but there are local minimums corresponding to easier configurations, which

leads to downward spikes in the plot. The number of moves taken to completely aggregate

particles also depends on the complexity of the workspace and does not completely

depend on the number of free spaces.

For small workspaces the best result among the greedy algorithms changes and so

we cannot determine which is the best using small workspaces. To further compare the

greedy strategies, we tested the algorithms on larger workspaces. The largest workspace

in Fig. 2.8 has 8,493 non-obstacle positions. Fig. 2.8 demonstrates that choosing which

particles to pairwise aggregate in Alg. 2 has a large impact on convergence time.
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We conducted a comparison study between the number of moves and the resulting

unique particles. As discussed earlier in Alg. 1 (Section 2.2.2) and Alg. 2 (Section 2.2.3),

getting the number of unique particles down to 1 signifies completion of the aggregating

algorithm. In the leaf vascular network, the majority of particle aggregation occurs

during the first steps, with a long tail distribution to aggregate the final particles, as

shown in the top row of images. Fig. 2.8 shows that connect to first, discussed in Section

2.2.B, outperforms the other algorithms. This can also be validated by further testing

to compare the three greedy algorithms on larger workspaces.

We simulated bounded worlds of varied sizes from 500 free spaces to 8,493 free

spaces. The results are represented in Fig. 2.9, based on Fig. 1.1 because biological

vasculatures are our goal application. This graph plot has a smoother trend compared to

the plot in Fig. 2.7 because the ratio of free space to node complexity is similar for worlds

in Fig. 2.9. The important observation is the consistency that connect to first performs

best. This validates connect to first as the best of the compared algorithms. This is

good news because unlike the other two techniques, which involve distance calculation

between all pairs of particles, there is negligible calculation involved in the connect to

first algorithm. The data for which two particle are in top-leftmost location is readily

available from the row, column indices of the particles.
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Figure 2.9: Comparing the required number of moves to number of Non-obstacle spaces
for aggregation using three of the greedy algorithms in (Alg. 2)
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Chapter 3

Mapping, Coverage and Foraging

In our previous work [15] and the previous chapter 2, we provided an algorithm

that guarantees the collection of particles. In this work we explore the field of mapping,

coverage, and foraging using globally controlled particles. These tasks relate to a large

body of previous work from robot navigation, both from theory and practice, which is

based on individual control. We propose a novel approach to mapping tissue and vascular

systems without the use of contrast agents, based on moving and measuring magnetic

particles. To this end, we consider a swarm of particles in 1D, 2D and 3D grids that can

be tracked and controlled by an external agent. Control inputs are applied uniformly so

that each particle experiences the same applied forces. The algoriths discussed are for

performing the three related tasks: (1) Mapping, i.e., building a representation of the

free and obstacle regions of the workspace; (2) Coverage, i.e., ensuring that every free

region on the map is visited by at least one particle (Fig. 3.2 (a), (b)). (3) Foraging, i.e.,

ensuring that at least one particle reaches each of a set of desired locations (Fig. 3.2 (c),

(d)).

This theoretical discussion is based on discrete 2D workspaces and it is also shown

that it scales to the 3D workspace. Fig. 3.1 represents the complete mapping of a

workspace using a large number of particles. After 82 moves, the 300 particles have

mapped the free cells, while the 4 particles require a total of 2394 moves to fully map the

free cells. At the initial step, all particles (red circles) are in free cells (white squares)

and are surrounded by blue squares that represent the unknown frontier cells. By com-

manding the particles to take one step in a particular direction, we can categorize the

the frontier cells in this direction as either obstacle or free. If the particle was able to
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move 0, n = 4 move 50, n = 4 move 2394, n = 4

move 82, n = 300move 50, n = 300move 0, n = 300

Particle (red)

Unknown (grey)

Frontier (blue)

Obstacle 
(black)

Free space (white)

Figure 3.1: Mapping a 2D environment with 1200 free cells using n = 4 (top) and n = 300
(bottom) particles.

move, that frontier cell is labeled as free, and new frontier cells are added to adjacent

areas that have not been mapped. If the particle was unable to move, that frontier cell

is labeled as obstacle. The goal is to explore all frontier cells, thereby discovering all

connected free cells and the obstacles that surround them.

22



(a) (b)

(c) (d)

Figure 3.2: Coverage (top) and Foraging (bottom) of a 2D environment with 1200 free
cells using n = 500 and n = 500 particles.

This Chapter is arranged as follows. After a review of recent related work in

Sec. 3.1, we introduce the algorithms to perform mapping, coverage, and foraging and

also discuss the complexity in Sec. 2.2. In Sec. 3.3 we discuss the performance of the

algorithms on parameters which determine efficiency based on different environments,

particle distribution and completion speed. We conclude this chapter by summarizing

the results.
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3.1 Related Work

Coverage using one robot is a canonical robotics problem [30]. It has been studied

in-depth for many applications including lawn mowing, harvesting, floor cleaning, 3D

printing, robotic painting, and others.

Coverage means the robot has passed within one robot radius of every location in

the workspace. Coverage with a swarm of robots is key for a range of applications because

swarms have higher fault tolerance and reduce completion time. Correspondingly, it has

been studied from a control-theoretic perspective in both centralized and decentralized

approaches. For examples of each, see [31] and [32].

Previous methods focus mostly on extending single robot coverage techniques to

multi-robot systems. Solving coverage for synchronous multi-robots using on-line cov-

erage techniques such as the boustrophedon technique of subdividing the 2D space into

cells as in [33] focuses on moving the robot teams in unison until they identify obstacles

in their path. Once that happens, the team divides into smaller teams that continue

the search in the smaller cells. The robots mentioned have similarity with our particles

in the sense that robots try to move in the same direction as long as possible. In our

problem of interest through the particles always move in the same direction. The frontier

cells exploration mentioned in [34] is an algorithm that is highly explorative as target

locations to expand are selected using information from each robot. Many algorithms

have been developed after this pioneering work, and it showed how algorithms for single

robot could be expanded to multi-robot systems. The explorative bias of the technique

allows it to define target cells of high priority to explore.

Of particular relevance for the content of our work is Fekete et al. [35, 36] for online

searching by an autonomous robot in an unknown environment, where both moving and

measuring incur individual costs, and Fekete et al. [37] for an (offline) setting that studies

the closely related bicriteria version of covering with travel cost. For another recent work
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on mapping and coverage by a swarm of robot with limited information and capabilities,

see [38].

However, all these approaches assume a level of intelligence and autonomy in in-

dividual robots that exceeds the capabilities of many systems, including current micro-

and nano-robots. Current micro- and nano-robots, such as those in [11, 39, 40] cannot

have onboard computation. Thus, we will be referring to them as particles.

3.2 Theory

In this section we analyze the mapping in 1D, 2D and 3D environments usiing

discrete global inputs.

3.2.1 Mapping in 1D

We begin with the single particle case, then proceed to the n particle case.

3.2.1.1 1D mapping with 1 particle

We consider a particle initialized randomly in a linear map that has m free-spaces.

To map this region the particle is moved in a choose direction, until it registers a bound-

ary, then the direction is swithched and particle is moved to the other boundary.

Without loss of generality, assume the particle always starts going left, and label

the free-space from 1 to m left to right. If the initial position is 1, the particle tries to

move 1 unit to the left, but is stopped by the boundary. The particle then moves m− 1

moves to the right. The final mth move right results in a collision with the right wall,

and thus mapping requires m + 1 moves. This is the minimum number of moves. The

worst case is if the particle starts at m, requiring 2m moves: m moves to the left and m

moves to the right.
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Figure 3.3: Exploring a 1D environment of size m with n particles. Here m = 20 and
n = 6. p =4, p̄ =1 and ḡ =7.

The expected number of moves for one particle to cover a 1D area of length m is

1

m

m∑
i=1

(i+m) =
3m+ 1

2
. (3.1)

3.2.1.2 1D mapping with n particles

Let p be the list of positions of n particles uniformly distributed from [1,m]. As

shown in Fig. 3.3, the number of moves to discover the left and right boundaries is

bounded by the maximum and minimum particles p = min(p), p = max(p), requiring

moving left p, followed by a move of m − (p − p) right. When n = m, the algorithm

requires 2 moves, one left, one right. The minimum time with n ∈ [2,m− 1] occurs with

p at 1 and p at m, requiring 3 moves, 1 left followed by 2 moves to the right.

The maximum 2(m− n+ 1) occurs when the particles are arranged from m− n to

m, requiring m− n+ 1 moves to the left, followed by m− n+ 1 moves to the right.

This is drawing without replacement n times from the set [1,m]. The minimum is

distributed between 1 and m− n, the maximum is distributed between n and m.

The expected number of moves to reach both boundaries for n particles in 1D is

1(
m
n

) m−n+1∑
p=1

m∑
p=p+n−1

(
p− p− 1

n− 2

)(
2p+m− p+ 1

)

=
3(1 +m)

1 + n
. (3.2)

To fully map the area from 1 to m requires that every position from 1 to m be
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visited by at least one particle. This time is dominated by the maximum gap g. The

total number of moves is then 2p+m− p+ 1 + max
(
g −

(
p+m− p

)
, 0
)
.

If all the particles are unit size, there are m − n spaces, and these can be located

before, between, or after the n particles in n+ 1 locations giving
(
m−n
n+1

)
possible configu-

rations. The largest gap can be calculated exactly using a recurrence equation [41], but

a tight bound when m > n log n is m−n
n+1

+ Θ

(√
(m−n) log(n+1)

n+1

)
[42].

3.2.1.3 1D mapping with scan and move costs

When controlling particles with an MRI as in [43], the MRI machine iterates be-

tween imaging and applying gradient forces to move the particles. This section examines

1D mapping when scanning the workspace and moving the particles a unit distance have

associated costs. The objective is to minimize a linear combination of costs for moving

and measuring; however, the precise respective coefficients may be subject to change, or

even unknown in advance turning this into a bicriteria problem, in which both parameters

need to be within a bounded ratio of those in an optimal solution. For simpler notation,

we write (a, b) for a schedule that involves a unit steps and b scans.

For a more detailed analysis, assume that the left boundary is located D units

to the left of the leftmost particle. (This analysis can be applied in both directions.)

The theoretically optimal, yet elusive, solution requires scanning the workspace to map

particle locations, moving D+1 units to the left, then scanning to detect that the leftmost

particle has only moved D units and thus has encountered the wall, for a total cost of

(D + 1, 2) for the schedule.

We can achieve a schedule with D+ 1 steps by scanning after each step, for a total

cost of (D+1, D+2); while this is optimal with respect to steps, the involved scan cost is

large compared to the optimum. At the expense of increasing the number of steps we can

reduce the number of scans by successively doubling the number of steps between scans,
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i.e., performing the ith scan after 2i steps, resulting in total cost at most (2D+2, log2D);

replacing the base of 2 by an arbitrary constant k, we get (k × (D + 1), logkD). This is

within a constant of the optimal. On the other hand, moving a sufficiently large number

M of steps (known to satisfy M ≥ D) before performing the second scan yields (M, 2),

which is optimal with respect to scan cost, but bad in terms of the cost for motion.

Balancing the competitive factor for both parameters can be achieved as follows:

perform the ith scan at position ii. This yields a simultaneous competitive factor of

O(logD/log logD) for both parameters.

Theorem 7. The hyperexponential search sequence ii yields a best possible simultane-

ous competitive factor of O(logD/log logD) for both parameters of the bicriteria search

problem.

Proof. Let us first consider the number of scans. If the boundary is properly detected

in step j + 1, the particle must have encountered it between steps j and j + 1, i.e.

jj ≤ D < (j + 1)j+1. Now we can employ the Lambert W function, which is the inverse

function of f(x) = xex; note that

log x = W (log x) · eW (log x),

so

log log x = (logW (log x) +W (log x)),

and therefore

W (log x) ∈ Θ(log log x).

This implies that j ≤ logD/W (logD) (the inverse of jj), hence Θ(logD/log logD)+

1 scans have been made, while the optimum are 2 scans.

The moved distance is (j + 1)j+1, while the optimum is D ≥ jj. Hence, we get the

ratio

(j + 1)(j+1)

jj
= (j + 1)

(j + 1)j

jj
, (3.3)
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where 0 ≤ (j+1)j

jj
≤ e for j > 0.

Because j ≤ logD/W (logD), we obtain

(j + 1)(j+1)

jj
≤ e

log n

W (log n)
+ e (3.4)

for j > 0. This is again within a factor of Θ(logD/log logD) + 1 of the optimum.

3.2.2 Mapping in 2D

3.2.2.1 2D mapping with 1 particle

The shortest path for mapping with 1 particle is a version of depth-first search

that halts when all frontier cells have been explored. As long as the all the free cells

are connected, depth-first-search (DFS) is the optimal solution to mapping. Even if the

environment is known in advance like in the case of coverage and foraging, the problem is

NP-hard as can be shown by a trivial reduction to Hamiltonian paths in grid graphs [44].

One can easily show that a simple DFS guarantees an optimal ratio of 2: the depth-first

tree has m − 1 edges and each edge is traversed at most twice. Any path that covers

m fields needs to traverse least m− 1 edges, and hence the depth-first-search is at most

twice as long as an optimal coverage path.

For showing that no algorithm can perform better one needs only a simple 1-

dimensional graph that goes to the left and to the right. If the algorithm chooses to go

arbitrarily to one side, we can make it do a long walk of length m and then return it

just for a single field on the other side (2m + 1 vs. 2 + m). If the algorithm decides to

switch the direction after some time after arbitrary zig-zags (of increasing cost) of cost

z (center to one side to other side) we decide that there is a single field on both sides.

The algorithm now needs to go one additional time from one side to the other and back

(cost > z) while the optimum cost would have been ≤ z + 3. If the algorithm switches

from the second form to the first, the first argument still applies.
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Most previous work on grid graph exploration focused on exploration tours, i.e.,

after exploration one has to go back to the start position. If the environment is known

in advance, this equals the traveling salesman problem and a polynomial-time approx-

imation scheme is known [45]. If the environment is unknown, as it is in the mapping

case, the best achievable competitive ratio is 2 in general grid graphs (achieved by depth

first search) and 7/6 for simple grid graphs (4/3 achieved by smartDFS [46]).

3.2.2.2 2D mapping with n particles

The problem with mapping with n particles is also to identify which move sequence

guarantees the shortest path in the worst case.

We describe three algorithms of increasing complexity for 2D mapping. If we

implement a random move algorithm as described in Alg. 3, at each step the particles

all move in the same randomly selected direction until there are no frontier cells left

on the map. MoveType is a vector that holds the four possible move types. The map

M is a matrix the size of the work space. Each cell of M holds one of five values

that denote: Particle, Frontier, Unknown, Freespace and Obstacle. At each step

Frontier returns the locations of frontier cells in M and r has the list of particle

locations. The move is implemented to update the map M and the particle locations r

by calling Move&Update. Alg. 3 requires minimal computation and is probabilistically

complete, so eventually the swarm maps the free cells [47]. However, this method of

mapping is inefficient, resulting in long mapping times, especially with small numbers of

particles in large, torturous maps with many turns.

Algorithm 3 RandomMoves(M, r)

1: MoveType = {l, r, u, d}
2: while |Frontier(M)|> 0 do
3: move← random(MoveType)
4: {M, r} ←Move&Update(move,M, r)
5: end while
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A better way to map the world is to deliberately move particles toward frontier

cells. We could choose one particle as the elect particle and perform motion planning

using this particle. In Alg. 4, one of the particles is selected as elect. As long as the

number of frontiers to be visited is at least one, the algorithm proceeds by generating

a mvSq from the current position of the elect particle to the nearest frontier cell. The

mvSq is generated by a breadth-first-search (BFS) shortest path algorithm which re-

quires the map M, source elect, and the cells Frontier(M). A representative mvSq is

〈u, r, d, d, r, u, . . .〉. The list of moves in mvSq are implemented by iteratively calling the

Move&Update function for the length of mvSq.

Alg. 4 will explore the target frontier cell by the end of mvSq. However, often

with large-population swarms the whole mvSq need not be implemented. Every time

Move&Update is called, the nearest frontier is updated and mvSq is also updated

because as the particles start to move, the target frontier cell might be explored by a

non-elect particle.

Alg. 5 exploits this fact by computing a BFS shortest path from all particles to all

frontier cells.

Algorithm 4 ElectParticle(M, r)

1: elect← random(r)
2: while |Frontier(M)|> 0 do
3: mvSq ← BFS(M, elect,Frontier(M))
4: for iter := 1 to |mvSq| step 1 do
5: {M, elect} ←Move&Update(mvSq,M, elect)
6: end for
7: end while

In each loop of Alg. 5, all the moves in mvSq are implemented to explore the

target frontier cell since it is the shortest possible route to a frontier cell. At time 0,

there will be at most 4n equally valid destinations that can be visited since cells to

the side of each particle not neighboring another particle are frontier cells. Each mvSq

guarantees classification of one frontier cell into obstacle or free space. When a frontier
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cell is explored it is labelled either free or obstacle. There can be a net gain of at most

two frontier cells per particle that encounters a free cell or no new frontier cells if the

frontier cell contained an obstacle.

The simulation results in Section 3.3 show that both map complexity and distribu-

tion affect the number of moves taken to map the work space. Alg. 3 uses no information

from the data except for checking completion. Alg. 4 uses the location and distance data

from one particle to map the work space. Alg. 5 improves the performance of mapping

by using all the data.

Algorithm 5 ClosestFrontier(M, r)

1: while |Frontier(M)|> 0 do
2: mvSq ← BFS(M, r,Frontier(M))
3: for iter := 1 to |mvSq| step 1 do
4: {M, r} ←Move&Update(mvSq,M, r)
5: end for
6: end while

While Alg. 5 is usually the more reasonable approach in practice than DFS with

a single particle, we are only able to show a trivial weaker bound on the corresponding

moves. Alg. 5 is not optimal. It can need Ω(n2) moves while an optimal strategy only

needs O(n). An example can be seen in Fig. 3.4. The greedy strategy Alg. 5 could go

right first and then cover the square with a single particle which takes Ω(n2) moves while

the optimal strategy, which visits the square in parallel using all n particles, only needs

O(n) moves. In some scenarios Alg. 5 can perform worse than DFS with a single particle,

e.g., in Fig. 3.5.

Theorem 8. Alg. 5 needs at most 0.5 ·m ·(m+1) moves where m is the number of fields.

Proof. The distance between a particle and the closest frontier cell can be at most the

number of all already visited cells. Hence, the distance for visiting the ith field is bounded

by i. The overall number of moves is bounded by
∑

i=1,...,m i = 0.5 ·m · (m+ 1).
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Figure 3.4: For the space as seen in (a) and (b), using an optimal algorithm would require
O(n) moves, while the greedy algorithm needs Ω(n2)
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Figure 3.5: In this example, using Alg. 5 is 1.5× worse than DFS using only particle 2.
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Theorem 9. Alg. 5 has a computational complexity in O(m2).

Proof. For an environment with m cells, there are at most m iterations. Since the edges

in the grid graph are not weighted and each cell only has at most four neighbors, the

shortest path from a particle to the frontier cell can be calculated in O(m) time by a

simple breadth first search.

Finally, completion time is also a function of the map geometry. Mapping requires

exploring all the free spaces and the boundary of the free spaces. The number of map

cells that need to be explored is the Area + Perimeter − n. This is minimized by

a circular region and maximized by a linear region. For example, a linear region has

m + (2m + 2) − n cells to explore, while a square region has m + (4
√
m) − n cells to

explore.

3.2.3 Mapping in 3D

Since we are just going from a four connected scenario in 2D to a six connected

scenario in 3D (Fig. 3.6). The two additional directions to explore are the z axis positive

(top) and z axis negative (bottom). So, Alg. 5 will apply to 3D case as well.

3.3 Results and Inferences

3.3.1 1D mapping

1D simulations were conducted in Mathematica, with code available at [16]. Fig. 3.7

shows the distributions for the minimum and maximum initial particle locations p and

p, the maximum gap g, and the spread between the minimum and maximum p − p

for 1,000,000 Monte Carlo trials. The expected gap between the first particle and the

boundary p is 90.94. The expected gap between the last particle and the boundary p is

90.98. The expected maximum gap is g is 273.9.
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(a) (b) (c)

Figure 3.6: Mapping a 3D space of m=720 using Alg. 5 with n=50. In (a) the particles
are initialized with six frontiers around them. In (b) the map is gradually
built similar to the 2D case. (c) Shows the fully mapped space from top view
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Figure 3.7: With a connected 1D freespacem= 1000 and n=10 particles, the distributions
for the gap before the first p̄ and after the last p gaps are symmetric. The
maximum gap ḡ ≈ 250.
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Figure 3.8: Full coverage in 1D with m = 1000 and n = 100 particles requires 60.7 moves
on average, while reaching the boundaries requires only 29.8.

Fig. 3.8 shows that full coverage requires approximately twice the time required to

explore the left and right boundaries when m = 1000 and n = 100.

3.3.2 2D mapping

All simulations used maps with 5000 free cells. Each simulation trial was repeated

100 times. The number of particles ranged from 100 to 5000 by increments of 100. In

each run except Fig. 3.13 the particles were placed uniformly randomly throughout the

workspace.

The comparison plot Fig. 3.9 between the mapping of four 2D maps H-tree, complex,

empty rectangle and linear and a 1D map, shows that the H-tree map requires the most
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H-tree Map                           Complex Map                Empty Rectangle                   Linear Map
m=5000 m=5000 m=5000m=5000

Figure 3.9: Comparison of mapping using the Closest Frontier algorithm on 2D maps of
four types and 1D mapping on a linear map. Each map has 5000 free cells.

moves because it has the highest number of turns. In Fig. 3.9 there is an observable

difference in moves between the linear and rectangular workspaces. One reason is because

the perimeter of the linear map is much larger than the rectangular map. The number of

cells to explore is 3m+ 2 = 15, 002 for the linear map, but only m+ 2(50 + 100) = 5, 300

for the rectangular map. Only when the number of particles is around 2/3 of the number

of free spaces is there an overlap between the moves taken to map the rectangular space

and the linear space.
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Figure 3.10: Performing mapping on the complex 2D map with n = 1000 particles. Ran-
dom moves requires 1683 moves, Elect particle requires 578 moves and Clos-
est Frontier requires 215 moves on average

The difference between algorithms is highlighted in Fig. 3.10, which shows the

number of frontier cells as a function of the number of moves commanded. All tests used

n = 1000 particles. Elect Particle requires on average twice as many moves as Closest

Frontier and Random Moves requires ten times as many moves as Closest Frontier. The

deviations for the Closest Frontier are also much less than the other two as seen from

Fig. 3.10 and Fig. 3.11.

Fig. 3.11 compares the performance of Algs. 3, 4, and 5 on the complex 2D map. For

all algorithms the mean completion time and standard deviation of the completion time

decreased with increasing numbers of particles. Random Moves performs worst, with the

largest number of required moves and the largest standard deviation of required moves.

Random Moves is slightly better than Elect Particle for large numbers of particles, but
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Figure 3.11: Comparison of three algorithms - Random Moves, Elect Particle and Closest
Frontier for mapping the 2D Complex Map of 5000 free spaces.

both algorithms are beat by Closest Frontier, which has the minimum number of required

moves and the smallest standard deviation. The maximum number of moves required

using the Closest Frontier algorithm was for k=100 with an average of ≈1816 moves and

standard deviation of 160 moves. This reduces to four moves with 0 standard deviation

when n= 5000 (the total number of free spaces).

Fig. 3.12 compares mapping, coverage, and foraging on the complex 2D map. All

trials used Alg. 5. Coverage is performed with a known map, but with all free cells

initialized to be frontier cells. Similarly, foraging has a known map, but 10% of the

empty cells are labelled as frontier cells. Foraging is easier than coverage and coverage

is easier than mapping.

The final simulation test, shown in Fig. 3.13, compares the effect of different initial
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Figure 3.12: Comparison of three related problems: mapping, coverage, and foraging on
the complex 2D map.

particle distributions in the complex 2D map. Region fill places all n particles at a

minimum Manhattan distance from a randomly selected location on the map. Flood

fill places one particle at a randomly selected location in the free space, and places the

remaining particles according to a breadth-first expansion inside the free space. Uniform

distribution places the particles uniformly randomly. Region fill and flood fill have similar

performance, while uniform distribution requires many fewer moves. This is because

dispersing particles using only global inputs is difficult, and a uniform distribution starts

with the particles dispersed, which allows it to map much faster.
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Figure 3.13: Comparison with different distributions: flood-fill, region fill, and uniform
distribution for mapping on the complex 2D map. The results for flood-fill
and region fill overlap.
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Chapter 4

Shape Control

Boundary interactions are a common phenomenon in vivo and many applications,

this gives rise to phenomenon such as viscosity and wall friction. In previous work

done using obstacle interaction [48] it was demonstrated that with just one obstacle it

was possible to shape a swarm of globally controlled particles. But in vivo we have

bounded regions of freespace and boundaries that serve as static obstacles. The other

consideration to keep in mind is that frictional forces will act on particles that come in

contact with the boundaries. So in this work, for workspaces with such constrains, we

develop a complete algorithm to perform accurate particle positioning as a solution for

shape control of micro particle swarms as seen in Fig. 4.1. We consider ideal friction

occurring when the particles are interacting with the boundary.

4.1 Painting a Picture with Global Control

In this section we will discuss the algorithms used to position particles in a bounded

region. The algorithm goes through a process of selectively moving particles by placing

certain particles on the walls while performing moves. The moves made by particles in

the algorithm will look like the particles are creeping along or climbing up the internal

wall. This is what we call as drift moves which will be discussed shortly. The algorithm

is terminated when it is done executing n iterations where n is number of particles. In

the kth loop the kth robot is moved from a staging zone to it’s defined position in the

build zone (Fig. 4.2). At the end of the kth loop, robots 1 through k are in their desired

final configuration in the build zone, and robots k + 1 to n are in the staging zone.

Although complete. This solution is not optimal. Also, the two crucial criterion for the
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Particles

Figure 4.1: n-particle positioning algorithm can be used to generate complex patterns
and designs. Here it is used to make a beautiful pixel painting of the Mona
Lisa.

algorithm to work is that: 1) The starting configuration(staging zone) and the ending

configuration(build zone) should be disjoint. 2) The staging zone particles must start as

ordered set which is filled from the bottom row first. This can be easily accomplished by

moving the particles to corners until the desired initial shape shape and distribution is

achieved.

The workspace is a rectangular bounded space where the walls have infinite friction.

The build zone has dimension (wb, hb) contains the position of the final configuration of

n robot. The axis-aligned staging zone of dimension (ws, hs) containing the starting

configuration of n robots. d is the diameter of the particles. Furthermore, there must be

at least ε space above the build zone, ε below the staging zone, and ε + d to the left of

the build and staging zone.

The n robots position control algorithm relies on a DriftMove(α, β, ε, θ) control

input, described in Alg. 7 and shown in Fig.4.3. For θ = 0◦, a drift move consists
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Figure 4.2: Illustration of Alg. 6, n robot position control using wall friction.
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Figure 4.3: A DriftMove(α, β, ε, 0◦) repeats a triangular movement sequence
{(β/2,−ε), (β/2, ε), (−α, 0)}. At the sequence end, robot A has moved β
units right, and robot B has moved β − α units right.

of repeating a triangular movement sequence {(β/2,−ε), (β/2, ε), (−α, 0)}. In a given

drift move any particle touching a top wall moves right β units, while every particle not

touching the top moves right β − α.

The lower left corner represents (0, 0) and in this frame, pk the x, y position of the

kth robot, and fk the final x, y position of the kth robot. Label the robots in the staging

zone from left-to-right and bottom-to-top, and the fk configurations top-to-bottom and

right-to-left as shown in Fig. 4.7.

Algorithm 6 PositionControlnRobotsUsingWallFriction(k)

1: Move( −ε, d/2− pky)
2: while pkx > d/2 do
3: DriftMove(ε,min(pkx − d/2, ε), ε, 180◦)
4: end while
5: m← ceil(

fky−d/2
ε

)

6: β ← fky−d/2
m

7: α← β − d/2−pky−ε
m

8: for m iterations do
9: DriftMove(α, β, ε, 90◦)
10: end for
11: Move (d/2 + ε− fkx, 0)
12: Move (fkx − d/2, 0)

Alg. 6 proceeds as follows: First, the robots are moved left away from the right wall,

and down so all robots in kth row touch the bottom wall. Second, a set of DriftMoves

are executed that move all robots in kth row left until k touches the left wall, with no net
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Algorithm 7 DriftMove(α, β, ε, θ)

particles touching the wall move β units, while particles not touching the wall move β−α
units.

1: R =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
2: Move(R · [β/2,−ε]>)
3: Move(R · [β/2, ε]>)
4: Move(R · [−α, 0]>)

movement of the other robots. Third, a set of DriftMoves are executed that move only

robot k to its target height and return the other robots to their initial heights. Fourth,

all robots except robot k are pushed left until robot k is in the correct relative x position

compared to robots 1 to k− 1. Finally, all robots are moved right until robot k is in the

desired target position. Running time is O(n(w + h)).

4.2 Experiment, Results and Inferences

4.2.1 Position Control Algorithm for n Robots

Alg. 6 was simulated in Matlab using square block robots with unity width.

Code is available at [49]. Simulation results are shown in Fig. 4.4 for arrangements with

an increasing number of robots, n= [8, 46, 130, 390, 862]. The distance moved grows

quadratically with the number of robots n. A best-fit line 210n2 + 1200n − 10, 000 is

overlaid by the data.

In Fig. 4.4, the amount of clearance is ε = 1. Control performance is sensitive

to the desired clearance. As ε increases, the total distance decreases asymptotically, as

shown in Fig. 4.5, because the robots have more room to maneuver and fewer DriftMoves

are required.
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Figure 4.5: Control performance is sensitive to the desired clearance ε. As ε increases,
the total distance decreases asymptotically.
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4.2.2 Hardware Experiment: Position Control of n Robots

The hardware platform depicted in Fig. 4.6 is an assembled practical setup that

assumes that ε = 1 cm. The workspace is a 7 × 7 grid space of dimension 14 × 14 cm.

Each slot in Fig. 4.6(a) is 1.5 cm wide and each spacer tooth is 5 mm in width. All

particles are 3D-printed plastic (Fig. 4.6(c)) whose top is a 2 cm diameter cylinder with

a narrower base of 1.4 cm diameter that encapsulates(Fig. 4.6(d)) a steel bearing ball of

1.2 cm diameter (Fig. 4.6(f)) . Wall friction is emulated by a toothed wall design to keep

particles from moving out of place while implementing the drift move. The workspace

boundary is mounted on top of a white sheet of acrylic. Underneath the acrylic, a grid

of 9 mm diameter magnets are glued to a thin wooden board with 2 cm spacing between

the centers of any two adjacent magnets as seen in Fig. 4.6(b). This generates the global

control input. A video attachment [50] shows the algorithm at work. This discretized

setup requires several modifications to Alg. 6. In this demonstration, all moves are 2 cm

in length. All drift moves are an counterclockwise square move of size 2 cm×2 cm. Once

the kth roller gets to its designated location in each loop, a correction step is implemented.

This correction step increases by two the total number of moves required per particle.

Fig. 4.2 shows there are only 6 stages per particle involved in Alg. 6. The fixed step

algorithm requires 8 stages per particle as shown in Fig. 4.7.

A significant difference between Alg. 6 and the fixed move implementation of it is

that Alg. 6 enables placing particles at arbitrary, non-overlapping locations, while the

fixed move implementation requires goal locations at the center of grid cells.

The goal configuration highlighted in the top right corner represents a ‘U’ made of

seven sliders. The dark red configuration is the current position of the sliders. Due to

the discretized movements allowed by the boundary, drift moves follow a 1 cm square.

Free robots return to their start positions but robots on the boundary to move laterally,

generating a net sliding motion.
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Figure 4.6: The setup consists of (a)magnetic board, (b) work space and (c) particles.
(d), (e), (f) are the parts of the particles. On the right the close up of the
parts of the particles are shown clearly.

Fig. 4.7 follows the motion of the sliders through iterations k=1, 2, and 7. All robots

receive the same control inputs, but boundary interactions break the control symmetry.

Robots reach their goal positions in a first-in, first-out arrangement beginning with the

bottom-left robot from the staging zone occupying the top-right position of the build

zone.
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Chapter 5

Conclusion

In this work, we have discussed about manipulation of large swarms of particles us-

ing global inputs and introduced benchmarking algorithms for tasks such as aggregation,

mapping and shape control. This work establishes the necessary theoretical groundwork

and baseline for developing algorithms for controlling large microbot swarms. We pre-

sented optimal and greedy algorithms to aggregate small particles using global control

with guarantees that these algorithms will always aggregate particles for any bounded

world which can be represented as a connected polyomino. Algorithm connect to first has

both low computational time and, in simulations, requires fewer moves than five other

algorithms. It requires 50,607 moves to converge all the particles in the complete leaf

world shown in Fig. 1.1 (see video [51]). We also introduced challenges inherent with

large particle aggregation, which poses new problems and complexities. The insight and

proofs produced here provided a basis for further research on overcoming the problems

involved with large particle manipulation.

Based on the learning from the succesful aggregation of particles we developed

techniques for performing mapping with such particles.

We provided a spectrum of theoretical and practical new insights with potential

relevance for fast MRI scans with magnetically controlled contrast media. In particular,

we developed a fundamentally new approach for searching for an object at an unknown

distance D, where the search is subject to two different and independent cost parameters

for moving and for measuring. We showed that regardless of the relative cost of these two

operations, there is a simple O(logD/log logD)-competitive strategy. Second, presented

benchmark algorithms for 2D and 3D mapping, foraging, and coverage problems. These
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results form a baseline for future work, which should focus on improving performance.

Extensions to 3D are especially relevant to the motivating problem of MR-scanning in

living tissue.

Finally we provided algorithms for precise position control with wall friction inter-

action. Here we assumed friction was sufficient to completely stop particles in contact

with the boundary. The algorithms require retooling to handle small friction coefficients.

The algorithms assumed a rectangular workspace. This is a reasonable assumption for

artificial environments, but in vivo environments are curved.

Future efforts should be directed toward improving the technology and tailoring

it to specific robot applications. Our work assumed the workspace was bounded. That

assumption is violated in biological vascular systems, which connect to larger vasculature.

One avenue for future research is to add constraints to serve as virtual walls and actively

prevent particles from escaping through a set of exits. Additional complexities such as

medium viscosity and wall friction must be studied before the algorithms are applied in

vivo/in vitro. Future work should focus not only on aggregating, but also on avoiding

accumulation in sensitive regions.
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[35] S. P. Feketea, R. Kleina, and A. Nüchter, “Searching With an Autonomous Robot.

(Video + Abstract),” in Proceedings of the 20th ACM Symposium on Computational

Geometry, 2004, pp. 449–450.
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