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Abstract

In this dissertation, we apply the framework of ensemble control theory to

derive an approximate steering algorithm for two classical robotic systems—

the nonholonomic unicycle and the plate-ball manipulator—in the presence

of model perturbation that scales all inputs by an unknown but bounded

constant.

The basic idea is to maintain the set of all possible configurations and to

select inputs that reduce the size of this set and drive it toward some goal con-

figuration. The key insight is that the evolution of this set can be described

by a family of control systems that depend continuously on the unknown con-

stant. Ensemble control theory provides conditions under which it is possible

to steer this entire family to a neighborhood of the goal configuration with a

single open-loop input trajectory. For both the nonholonomic unicycle and

the plate-ball manipulator, we show how to construct this trajectory using

piecewise-constant inputs. We also validate our approach with hardware ex-

periments, where the nonholonomic unicycle is a differential-drive robot with

unknown wheel size, and the plate-ball manipulator is a planar motion stage

that uses magnetic actuation to orient a sphere of unknown radius.

We conclude by showing how the same framework can be applied to feed-

back control of multi-robot systems under the constraint that every robot

receives exactly the same control input. We focus on the nonholonomic uni-

cycle, instantiated in experiment by a collection of differential-drive robots.

Assuming that each robot has a unique wheel size, we derive a globally

asymptotically stabilizing feedback control policy. We show that this policy

is robust to standard models of noise and scales to an arbitrary number of

robots. These results suggest that our approach may have possible future

application to control of micro- and nano-scale robotic systems, which are

often subject to similar constraints.
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Chapter 1

Ensemble Control
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Figure 1.1: Two classical robotic systems. On the left, a nonholonomic
unicycle, a canonical model for robot motion planning. On the right, a
plate-ball manipulator, a canonical model for robotic manipulation. This
dissertation answers the question, “Are these systems still controllable
under model perturbation that scales all the inputs by an unknown but
bounded constant?”

Figure 1.1 depicts two classical robotic systems: the nonholonomic unicycle

and the plate-ball manipulator. The nonholonomic unicycle is a canonical

model for mobile robotics (Laumound, 1987 [1]), and is used to describe

robots including differential-drive vehicles, tanks and cars. It has two in-

puts, forward speed u1 and turning rate u2. The plate-ball manipulator is

a canonical model for robotic manipulation by rolling (Brockett, 1993 [2]).

In the classical version of this system, the ball is held between two parallel

plates and manipulated by maneuvering the upper plate while holding the

lower plate fixed. The ball can be brought to any position and orientation

though translations of the upper plate. Inputs are speed of the ball center

along the x-axis u1 and speed along the y-axis u2.
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Figure 1.2: In this dissertation we apply the framework of ensemble control
theory to control the three robotic systems shown above.

For decades it has been known that both these systems are controllable.

There are many ways to solve the open-loop steering problem, sometimes

called the motion planning problem, for these two systems. This disserta-

tion addresses the question, “Are these two systems still controllable under

model perturbation that scales all the inputs by an unknown but bounded

constant?” This type of model perturbation arises if we do not know the

radius of the wheel and if we do not know the radius of the ball.

Rather than steer a single system with an unknown parameter, we chose to

model the system as a set of control systems that depend continuously on the

unknown parameter. This set we call an ensemble. This dissertation proves

that these ensembles are still controllable, after defining precisely what it

means to be “controllable” in this context. We then give a steering algorithm

based on piecewise-constant inputs and Taylor series approximations. Next,

we show that by introducing feedback we can use a similar approach to

control multiple nonholonomic unicycles when each unicycle receives exactly

the same input command. We use the three hardware platforms shown in

Fig. 1.2 to validate our approach.

Fig. 1.3 uses a nonholonomic unicycle to illustrate the main contribution of

this thesis. In this figure, a unicycle with an unknown wheel radius is com-

manded to translate sideways (a parallel-parking maneuver). A controller

designed for the nominal wheel radius results in a wide spread of the set of

possible ending positions. Our controller brings all possible ending positions

arbitrarily close to the desired goal position.
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Figure 1.3: Piecewise constant input trajectories applied to a unicycle with
unknown wheel radius. Top: a nominal controller results in a wide range of
possible ending positions of the unicycle as a function of wheel size.
Bottom: our controller brings all possible ending positions arbitrarily close
to the desired goal position. Goal and start positions are drawn in green.
The input trajectory for each controller is shown above the plots.
Representative unicycles are drawn using black discs and a blue orientation
marker. Red lines show state trajectories.
(Video online: http://www.youtube.com/watch?v= v4KUBfzbv0)
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1.1 Framework of Ensemble Control Theory

In this section we state formally what it means to be ensemble controllable.

These definitions closely follow [3–14] and will be used throughout the dis-

sertation for the systems shown in Fig. 1.2.

Definition 1. Consider the family of control systems

q̇(t, ε) = f (q(t, ε), u(t), t, ε) ,

where q ∈ Q ⊂ Rn, u ∈ U ⊂ Rm, ε ∈ [1 − δ, 1 + δ] for 0 ≤ δ < 1, and

f is a smooth function. This family is ensemble controllable on the func-

tion space L2 ([1− δ, 1 + δ],Q) if for all µ > 0 and continuous qstart, qgoal ∈
L2 ([1− δ, 1 + δ],Q) there exists T > 0 and piecewise-continuous u : [0, T ]→
U such that q(0, ε) = qstart(ε) and ‖q(T, ε)− qgoal(ε)‖ ≤ µ for all ε ∈ [1 −
δ, 1 + δ].

Note that we allow qstart and qgoal to be arbitrary functions of ε. As pointed

out by [13], the reader should interpret being ensemble controllable as being

approximately controllable on L2 ([1− δ, 1 + δ],Q).

To illustrate these concepts the following section focuses on a specific ex-

ample, the nonholonomic unicycle. This system, shown on the left in Fig.

1.1, will be studied in Chapter 2 and revisited in Chapter 4.

1.1.1 A Case Study: An Ensemble of Unicycles

Consider Fig 1.4, a single unicycle that rolls without slipping. We describe

its configuration by q = (x, y, θ) and its configuration space by Q = R2 ×
S1. The control inputs are the forward speed u1 and the turning rate u2.

Corresponding to these inputs, we define vector fields g1, g2 : Q → TqQ by

g1(q) =

cos θ

sin θ

0

 g2(q) =

0

0

1


and write the kinematics of the unicycle in the standard form

q̇(t) = g1(q(t))u1(t) + g2(q(t))u2(t). (1.1)

4
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b rε

Figure 1.4: A differential-drive robot is a nonholonomic unicycle. This
system has parameter perturbation that scales the wheel radius by an
unknown, bounded constant ε. The state is (x, y, θ) with inputs u1(t) and
u2(t).

Given qstart, qgoal ∈ Q and µ > 0, the approximate steering problem is to find

open-loop inputs

(u1(t), u2(t)) : [0, T ]→ U

that result in q(0) = qstart and ‖q(T )− qgoal‖ ≤ µ for free final time T , where

‖·‖ is a suitable norm on Q. If such inputs always exist then we say that

(1.1) is approximately controllable—and indeed they do, since g1, g2, and the

Lie bracket [g1, g2] span the tangent space TqQ everywhere.

In Chapter 2 we will solve this same approximate steering problem, but

under model perturbation that scales both the forward speed u1 and the turn-

ing rate u2 by some unknown, bounded constant. The resulting kinematics

have the form

q̇(t) = ε (g1(q(t))u1(t) + g2(q(t))u2(t)) , (1.2)

where ε ∈ [1 − δ, 1 + δ] for some 0 ≤ δ < 1. Rather than try to steer one

unicycle governed by (1.2)—where ε is unknown—our approach is to steer

an uncountably infinite collection of unicycles parameterized by ε, each one

5



governed by

q̇(t, ε) = ε
(
g1 (q(t, ε))u1(t) + g2 (q(t, ε))u2(t)

)
. (1.3)

Following the terminology introduced in Section 1.1, we call this fictitious

collection of unicycles an ensemble and call (1.3) an ensemble control system.

The idea is that if we can find open-loop inputs u1(t) and u2(t) that result

in q(0, ε) = qstart and ‖q(T, ε)− qgoal‖ ≤ µ for all ε ∈ [1 − δ, 1 + δ], then

we can certainly guarantee that the actual unicycle, which corresponds to

one particular value ε∗ of ε, will satisfy ‖q(T, ε∗)− qgoal‖ ≤ µ. If such inputs

always exist then we say that (1.3) is ensemble controllable, interpreted as

being approximately controllable on the function space L2 ([1− δ, 1 + δ],Q).

In Chapter 2.2 we will in fact show that (1.3) is not ensemble controllable,

but will proceed to derive a reduced subsystem that is. Our proof will de-

pend on being able to approximate arbitrary elements of the tangent space

to L2 ([1− δ, 1 + δ],Q), capturing the essence of classical tests like the Lie

algebra rank condition. Solving the approximate steering problem with re-

spect to the subsystem will produce inputs that reach an arbitrarily small

neighborhood of any Cartesian position, but not of any heading.

We will apply our work to a differential-drive robot with unknown but

bounded wheel radius, showing that (1.2) is an appropriate model and vali-

dating our approach to approximate steering with hardware experiments.

1.1.2 A Brief History of Ensemble Control Theory

Ensemble control, as presented in [3–10], extends the theory of nonlinear con-

trollability from finite-dimensional systems, for example of the form (1.1), to

a particular class of infinite-dimensional systems characterized by a disper-

sion parameter, for example of the form (1.3) where this parameter is ε. The

fact that standard controllability theorems rely on checking a rank condi-

tion is a clue that such an extension might be necessary. Chow’s theorem,

for instance, implies that (1.1) is small-time locally controllable—hence, ap-

proximately controllable—because the Lie algebra generated by g1 and g2

has rank 3 everywhere, equal to the dimension of TqQ (e.g., see [15]). Both

L2 ([1− δ, 1 + δ],Q) and its tangent space have infinite dimension, so we will

never accumulate enough vector fields to satisfy this same rank condition for
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(1.3). However, we note that the rank condition is only used to guarantee

that it is possible to approximate motion in any direction we like. For (1.1),

we see that g1, g2, and

[g1, g2] =
∂g2

∂q
g1 −

∂g1

∂q
g2

are linearly independent and span the tangent space TqQ at every configura-

tion q ∈ Q, so any element of TqQ can be approximated by rapid switching

between inputs. For (1.3), it is possible to arrive at a similar result. In partic-

ular, we will take the same basic approach as in [9], using repeated bracketing

to get higher-order powers of ε and then using polynomial approximation to

construct arbitrary vector flows. Systems like ours are ignored by [9] after

noting that

q̇(t, ε) = ε
m∑
i=1

gi (q(t, ε))ui(t)

is not ensemble controllable if g1, . . . , gm generate a nilpotent Lie algebra. We

will indeed show that (1.3) is not ensemble controllable in Section 2.2, but

will then proceed to derive a reduced subsystem that is ensemble controllable.

The origins of this approach are within the physics community. In this con-

text, an “ensemble” is a very large collection of identical or nearly identical

molecules, atoms, or elementary particles, and the goal of “ensemble control”

is to manipulate the average properties of such an ensemble. Early work in

this area was done, for example, by Simon van der Meer, who won the 1984

Nobel prize in physics for controlling the density at which circulating protons

are packed in an accelerator using applied magnetic fields [16]. The more re-

cent work of Brockett, Khaneja, and Li has found primary application so

far to quantum systems, for example manipulating nuclear spins in nuclear

magnetic resonance (NMR) spectroscopy [3–10]. Robotics researchers are

also beginning to adopt the term “ensemble,” for example in the context of

multi-robot formations [17] and artificial muscle actuators [18], but the formal

methodology of ensemble control has yet to be applied. Other approaches

to dealing with infinite-dimensional systems—such as taking advantage of

differential flatness—have been developed in parallel, as in [19]. The main

tool used in this other work is functional analysis, which has recently started

to inform ongoing work in ensemble control [13].
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1.2 Alternative Frameworks to

Ensemble Control Theory

We note that robots often have both proprioceptive (e.g., odometry) and

exteroceptive (e.g., sonar, laser, vision) sensors. With state estimates that

come from these sensors, it is easy to build a feedback controller that guar-

antees exact asymptotic convergence to any given Cartesian position under

the same type of model perturbation that we consider [20, Chap. 11.6.2]. It

is just as easy to build a robust feedback controller that regulates posture

and not just Cartesian position [21]. Methods like these extend to a broader

class of model perturbation (e.g., scaling forward speed and turning rate by

different amounts) and to other types of uncertainty. There is also an enor-

mous literature on odometry calibration for wheeled mobile robots to reduce

model perturbation [22,23], from offline approaches like “UMBmark” [24] to

approaches that are online [25] and even simultaneous with localization [26].

These citations represent only a fraction of prior work on calibration and

robust feedback control, all of which is more effective than what we propose

when sensors are available.

Instead, we use the differential-drive robot as a hardware platform because

the application of ensemble control theory to this system is easy to under-

stand and leads to results that readers may find surprising. For example, our

approximate steering algorithm—derived for an infinite-dimensional family of

control systems and not just for a single unicycle—ultimately requires solving

only one set of linear equations, which can be precomputed in closed form.

Similarly, the formulation of these linear equations relies on series expansions

that make explicit the trade-off between the cost and complexity of the result-

ing input trajectory and the extent to which this input trajectory is robust to

model perturbation. Finally, the fact that inputs executed in open-loop will

bring a real mobile robot to a neighborhood of the same Cartesian position

regardless of wheel radius is something that we did not initially think possible

(see the online video http://www.youtube.com/watch?v=8yYD KMwfaM).

A similar case can be made for plate-ball manipulators. When sensor

measurements of the ball’s position and orientation are available, it is possible

to use feedback control to overcome the parametric uncertainty we consider.

Several practical stabilizing controllers were presented in [27–30]. Oriolo and

Vendittelli presented an iterative feedback controller for stabilizing the plate-

8
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ball system with guaranteed convergence even when the ball radius is set to

an incorrect value [31, 32]. Our method neither uses nor takes advantage

of sensor feedback, yet open-loop inputs bring a real sphere to a desired

position and orientation regardless of the sphere radius (see the online video

http://www.youtube.com/watch?v=nPGz0Nd3QzE).

1.2.1 Robust Control

Robust control provides a framework for the design of feedback policies that

compensate for model perturbation. Consider the dynamic system

ẋ = f(x, u, ε)

y = h(x, u, ε),

where x is the state, u is the input, y is the measurement, and ε is an unknown

but bounded parameter. We are free to define an equivalent system

ẋ = Ax+Bu+ w1

y = Cx+Du+ w2,

for example by linearization, that pushes all model perturbation and nonlin-

earity into the mapping

(x, u, ε) 7→ (w1, w2) .

The idea is then to replace this one unknown mapping by a set of known

linear mappings that capture all possible input/output behavior. This ap-

proach has been a topic of study for over fifty years—a modern reference is

the book [33]. Although our own work has much the same flavor, robust

control theory is primarily focused on the problem of closed-loop stabiliza-

tion with feedback, whereas we focus on the problem of open-loop steering in

the absence of sensor measurements. We emphasize again that robust feed-

back control is, in general, much more effective than what we propose when

sensors are available, as they typically are for mobile robots. We also note

previous work on robust feedforward control [34], on robust control using se-

ries expansions similar to what we will describe in Section 2.3 and 3.4.2 [35],

9
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and on the relationship between ensemble control and robust control [36],

this last work developed independently from a different perspective.

1.2.2 Motion Planning under Uncertainty

There is a vast literature on motion planning under uncertainty in robotics,

excellent reviews of which may be found in texts such as [22, 37, 38] and ex-

amples of which range from early work on preimage backchaining [39] to very

recent work on needle-steering using the stochastic motion roadmap [40]. As

one example, we have drawn particular inspiration from work on sensorless

manipulation [41]. In this work, like our own, the basic idea is to explicitly

maintain the set of all possible robot configurations and to select a sequence

of actions that reduces the size of this set and drives it toward some goal

configuration. Carefully selected primitive operations can make this easier.

For example, sensorless manipulation strategies often use a sequential com-

position of primitive operations, “squeezing” a part either virtually with a

programmable force field or simply between two flat, parallel plates [42, 43].

Sensorless manipulation strategies also may take advantage of limit cycle

behavior, for example engineering fixed points and basins of attraction so

that parts only exit a feeder when they reach the correct orientation [44,45].

These two strategies have been applied to a much wider array of mechanisms

such as vibratory bowls and tables [46, 47] or assembly lines [42, 48, 49], and

have also been extended to situations with stochastic uncertainty [50, 51]

and closed-loop feedback [52, 53]. Our interest in this particular collection

of work also stems from our belief that ensemble control theory may provide

new insight into sensorless manipulation of many objects at once.

1.3 Applications of Ensemble Control to Robotics

In this dissertation, we apply the framework of ensemble control theory to

derive an approximate steering algorithm for two classical robotic systems—

the nonholonomic unicycle and the plate-ball manipulator—in the presence

of model perturbation that scales all inputs by an unknown but bounded

constant. Chapter 2 focuses on the nonholonomic unicycle and Chapter 3

focuses on the plate-ball manipulator.
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In Chapter 4 we show how the same framework can be applied to feedback

control of multi-robot systems under the constraint that every robot receives

exactly the same control input. We focus on the nonholonomic unicycle,

instantiated in experiment by a collection of differential-drive robots shown

in Fig. 1.2c. Assuming that each robot has a unique wheel size, we derive

a globally asymptotically stabilizing feedback control policy. We show that

this policy is robust to standard models of noise and scales to an arbitrary

number of robots. These results suggest that our approach may have possible

future application to control of micro- and nano-scale robotic systems, which

are often subject to similar constraints.

We conclude in Chapter 5 with a discussion about directions for future

research.
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Chapter 2

Approximate Steering of a Unicycle under
Bounded Model Perturbation

In this chapter we apply the framework of ensemble control theory [3–14] to

derive an approximate steering algorithm for a nonholonomic unicycle in the

presence of model perturbation that scales both the forward speed and the

turning rate by an unknown but bounded constant. The basic idea, similar

to early work on sensorless manipulation [41], is to maintain the set of all

possible configurations of the unicycle and to select inputs that reduce the

size of this set and drive it toward some goal configuration. The key in-

sight is that the evolution of this set can be described by a family of control

systems that depend continuously on the unknown constant. Ensemble con-

trol theory provides conditions under which it is possible to steer this entire

family to a neighborhood of the goal configuration with a single open-loop

input trajectory. These conditions mimic classical tests of nonlinear control-

lability like the Lie algebra rank condition [54] but involve approximations

by repeated Lie bracketing that are reminiscent of seminal work on steering

nonholonomic systems by Lafferriere and Sussman [55].

2.1 Problem Statement

Consider a single unicycle that rolls without slipping. We describe its con-

figuration by q = (x, y, θ) and its configuration space by Q = R2 × S1. The

control inputs are the forward speed u1 and the turning rate u2. We restrict

(u1, u2) ∈ U for some constraint set U ⊂ R2, where we assume that U is

symmetric with respect to the origin and that the affine hull of U is R2.

The material in this chapter appeared as [56] (© 2012 IEEE) and in a preliminary
conference version [57].
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Corresponding to these inputs, we define vector fields g1, g2 : Q → TqQ by

g1(q) =

cos θ

sin θ

0

 g2(q) =

0

0

1


and write the kinematics of the unicycle in the standard form

q̇(t) = g1(q(t))u1(t) + g2(q(t))u2(t). (2.1)

Given qstart, qgoal ∈ Q and µ > 0, the approximate steering problem is to find

open-loop inputs

(u1(t), u2(t)) : [0, T ]→ U

that result in q(0) = qstart and ‖q(T )− qgoal‖ ≤ µ for free final time T , where

‖·‖ is a suitable norm on Q. If such inputs always exist then we say that

(2.1) is approximately controllable—and indeed they do, since g1, g2, and the

Lie bracket [g1, g2] span the tangent space TqQ everywhere.

We will solve this same approximate steering problem, but under model

perturbation that scales both the forward speed u1 and the turning rate u2 by

some unknown, bounded constant. The resulting kinematics have the form

q̇(t) = ε (g1(q(t))u1(t) + g2(q(t))u2(t)) , (2.2)

where ε ∈ [1 − δ, 1 + δ] for some 0 ≤ δ < 1. Rather than try to steer one

unicycle governed by (2.2)—where ε is unknown—our approach is to steer

an uncountably infinite collection of unicycles parameterized by ε, each one

governed by

q̇(t, ε) = ε
(
g1 (q(t, ε))u1(t) + g2 (q(t, ε))u2(t)

)
. (2.3)

The remainder of this chapter is organized as follows. We begin in Section

2.2, by showing that (2.3) is not ensemble controllable but that a reduced

subsystem is.

Based on this result, we derive an approximate steering algorithm in Sec-

tion 2.3 that brings the unicycle to within an arbitrarily small neighborhood

of any given Cartesian position, regardless of ε. Finally, in Section 2.4, we

validate our approach in experiments with a differential-drive robot that has

13



unknown but bounded wheel radius.

2.2 Analysis of Controllability

In this section, we will establish controllability results for the system (2.3).

Our method of approach will closely follow the one taken in [3–10].

2.2.1 Finding a Controllable Subsystem

We begin with a proof by construction of the following negative result, which

was originally suggested by [5].

Theorem 2. If δ > 0, then the system (2.3) is not ensemble controllable.

Proof: Notice that for any u1 and u2, we have

θ̇(t, ε) = εu2(t).

As a consequence, if we define an auxiliary state γ(t) such that γ(0) = 0 and

γ̇(t) = u2(t),

then it is clear that

θ(t, ε) = θ(0, ε) + εγ(t)

for all ε ∈ [1− δ, 1 + δ], where we assume without loss of generality that we

are working in the coordinates of a single local chart on S1. For any ∆θ > 0,

choose

qstart(ε) = (xstart(ε), ystart(ε), θstart(ε))

and

qgoal(ε) = (xgoal(ε), ygoal(ε), θgoal(ε))

satisfying

θgoal(ε)− θstart(ε) = ∆θ
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for all ε ∈ [1− δ, 1 + δ], and let µ = δ∆θ/2. We have

‖q(T, ε)− qgoal(ε)‖ ≥ ‖θ(T, ε)− θgoal(ε)‖

= ‖θ(0, ε) + εγ(T )− θgoal(ε)‖

= ‖εγ(T )− (θgoal(ε)− θstart(ε))‖

= ‖εγ(T )−∆θ‖ .

Since we have assumed δ > 0, then for any γ(T ) there exists some ε ∈
[1− δ, 1 + δ] at which

‖εγ(T )−∆θ‖ > µ,

and so (2.3) is not ensemble controllable by definition.

This result suggests the construction of a subsystem that, as we will show

in the following section, is ensemble controllable. We write the configuration

of this subsystem as

p(t, ε) = (x(t, ε), y(t, ε), γ(t)) ,

where γ(t) is the auxiliary state we introduced in the proof of Theorem 2.

We have just shown that the evolution of this subsystem is governed by

the alternate kinematic model

ṗ(t, ε) = εh1 (p(t, ε), ε)u1(t) + h2 (p(t, ε), ε)u2(t), (2.4)

where

h1 (p(t, ε), ε) =

cos (θ(0, ε) + εγ(t))

sin (θ(0, ε) + εγ(t))

0



h2 (p(t, ε), ε) =

0

0

1


(2.5)

and θ(0, ε) is the initial heading given by qstart, as before. For convenience,
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we will abbreviate

c(t, ε) = cos (θ(0, ε) + εγ(t))

s(t, ε) = sin (θ(0, ε) + εγ(t))

so that

h1 (p(t, ε), ε) =

c(t, ε)s(t, ε)

0

 . (2.6)

Since there is no longer any functional dependence of p3(t, ε) on ε, it is clear

that we have removed the feature of (2.3) that allowed us to conclude a lack

of controllability. We will see that the resulting subsystem (2.4) is, in fact,

controllable.

Before proceeding, notice that the vector field h1 in (2.5) may be expressed

h1 (p(t, ε), ε) = R(ε)

cos (εγ(t))

sin (εγ(t))

0


where

R(ε) =

cos θ(0, ε) − sin θ(0, ε) 0

sin θ(0, ε) cos θ(0, ε) 0

0 0 1

 ,
so if we apply the transformation

p′(t, ε) = R(ε)Tp(t, ε),

then without loss of generality it is always possible to assume that θ(0, ε) = 0

for all ε.

2.2.2 Controllability By Polynomial Approximation

We will now prove that the reduced subsystem derived in the previous section

is ensemble controllable. We will do this by using repeated bracketing to get

higher-order powers of ε, and then by using polynomial approximation to

construct arbitrary vector flows. This approach is similar to what appears

in [9], and involves computations that are reminiscent of [55].
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Theorem 3. The system (2.4) is ensemble controllable.

Proof: Taking Lie brackets, we have

[εh1, h2] = ε

(
∂h2

∂p
h1 −

∂h1

∂p
h2

)

= 0− ε

0 0 −εs
0 0 εc

0 0 0


0

0

1



= ε2

 s

−c
0


and

[[εh1, h2], h2] = 0− ε2

0 0 εc

0 0 εs

0 0 0


0

0

1



= −ε3

cs
0


= −ε3h1.

Let us define

h3 =

−sc
0

 ,
so that [εh1, h2] = −ε2h3. Repeating this process, we can produce control

vector fields of the form ε2i+1h1 and ε2i+2h3 for any i ≥ 0. Since we have

assumed that U is symmetric and that the affine hull of U is R2, then with

piecewise-constant inputs (i.e., a sufficient number of “back-and-forth” ma-

neuvers) we can produce flows of the form

exp (a0εh1) · · · exp
(
ak−1ε

2k−1h1

)
= exp

(
k−1∑
i=0

aiε
2i+1h1

)
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and

exp
(
b0ε

2h3

)
· · · exp

(
bk−1ε

2kh3

)
= exp

(
k−1∑
i=0

biε
2i+2h3

)
for freely chosen coefficients a, b ∈ Rk. Let

pstart(ε) = (xstart(ε), ystart(ε), γstart)

and

pgoal(ε) = (xgoal(ε), ygoal(ε), γgoal)

for any given continuous real-valued functions

xstart, ystart, xgoal, ygoal ∈ L2 ([1− δ, 1 + δ],R)

and for any given γstart, γgoal ∈ S1. Define

c = γgoal − γstart

and take [
α(ε)

β(ε)

]
=

[
cos c sin c

− sin c cos c

][
xgoal(ε)− xstart(ε)

ygoal(ε)− ystart(ε)

]
for all ε ∈ [1−δ, 1+δ], where continuity of α and β follows from continuity of

xstart, xgoal, ystart, ygoal. We can represent the desired change in configuration

by the flow

exp (β(ε)h3) exp (α(ε)h1) exp (ch2) .

The Stone-Weierstrass theorem [58] tells us that given η > 0 and a continuous

real function

ν(ε) : [1− δ, 1 + δ]→ R,

there exists a polynomial function ρ(ε) such that

|ρ(ε)− ν(ε)| < η

for all ε ∈ [ε, ε]. An immediate corollary is that continuous real functions

on the domain [ε, ε] = [1 − δ, 1 + δ] for some 0 ≤ δ < 1 can be uniformly

approximated either by an odd polynomial or by an even polynomial. (This

result would not be true on an arbitrary domain, which is why we restrict
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δ < 1.) As a consequence, we can choose a, b ∈ Rk so that

α(ε) ≈
k−1∑
i=0

aiε
2i+1

β(ε) ≈
k−1∑
i=0

biε
2i+2

for ε ∈ [1 − δ, 1 + δ], with error vanishing in k. The time complexity of the

resulting motion increases with k and with the number of switches required

to approximate flows along each vector field ε2i+1h1 and ε2i+2h3, but remains

finite for any given µ > 0. Our result follows.

2.3 Approximate Steering Algorithm

In the previous section, we showed that the subsystem (2.4) is ensemble

controllable. Based on this result, we will now derive an approximate steering

algorithm for this subsystem. Although the boundary conditions given to this

algorithm could in general be arbitrary continuous functions pstart(ε) and

pgoal(ε), for our application of interest—where (2.4) captures the range of

possible outcomes for a single unicycle—these functions are always constant

and have the form

pstart(ε) = (xstart, ystart, γstart)

pgoal(ε) = (xgoal, ygoal, γgoal) ,

where we may as well assume that γstart = γgoal = γ. If we apply the

transformation [
∆x

∆y

]
=

[
cos γ sin γ

− sin γ cos γ

][
xgoal − xstart

ygoal − ystart

]
,

then without loss of generality we may further assume that

pstart(ε) = (0, 0, 0)

pgoal(ε) = (∆x,∆y, 0) .
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Finally, we assume that (1, 0) ∈ U and that (v, 1) ∈ U for some v ≥ 0, hence

also that (−1, 0), (−v,−1) ∈ U . We make this assumption primarily for con-

venience. Scaling either input would require only scaling the corresponding

time for which it is applied, and taking the reflection −∆y would directly

address the case where (v,−1) ∈ U . However, the fact that it is possible to

“go straight” is important for the simplicity of our algorithm. If (1, 0) /∈ U ,

then we will assume that the corresponding control vector field is approxi-

mated by rapid switching, which is possible because the affine hull of U is

R2. In any case, our model applies unchanged to both a differential-drive

robot (v = 0) and a car-like robot (v 6= 0).

2.3.1 One Motion Primitive with Piecewise-Constant Inputs

Consider the following input for ψ ≥ 0 and a′, b′ ∈ R:

u(t) =



(v, 1) 0 ≤ t < ψ

(sgn a′, 0) ψ ≤ t < ψ + |a′|

(−v,−1) ψ + |a′| ≤ t < 3ψ + |a′|

(sgn b′, 0) 3ψ + |a′| ≤ t < 3ψ + |a′|+ |b′|

(v, 1) 3ψ + |a′|+ |b′| ≤ t < 4ψ + |a′|+ |b′| .

We call this input a motion primitive. If γ(0) = 0, then the result of

applying this motion primitive is to achieve

p(∆t, ε)− p(0, ε) =

(a′ + b′)ε cos (εψ)

(a′ − b′)ε sin (εψ)

0


in time

∆t = 4ψ + |a′|+ |b′| .

With the input transformation

a′ =
a+ b

2
b′ =

a− b
2
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for freely chosen a, b ∈ R, we can write this expression as

p(∆t, ε)− p(0, ε) =

aε cos (εψ)

bε sin (εψ)

0


We will denote this motion primitive by the triple (a, b, ψ) and use it as the

basis for our approximate steering algorithm.

2.3.2 Composition of Two Motion Primitives

Because our motion primitives leave γ invariant, we are free to concatenate

them. For example, consider the sequential application of two primitives

(a1, b1, ψ1) and (a2, b2, ψ2). If γ(0) = 0, then the result is to achieve

p(∆t, ε)− p(0, ε) =

a1ε cos (εψ1) + a2ε cos (εψ2)

b1ε sin (εψ1) + b2ε sin (εψ2)

0


in time

∆t = (4ψ1 + |a′1|+ |b′1|) + (4ψ2 + |a′2|+ |b′2|) ,

where

a′i =
ai + bi

2
b′i =

ai − bi
2

for i ∈ {1, 2}. In fact, we can compose these two primitives in a slightly

different way that achieves the same result in less time. Assume that ψ2 > ψ1.
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Consider the following input:

u(t) =



(v, 1) 0 ≤ t < ψ1

(sgn a′1, 0) · · · ≤ t < · · ·+ |a′1|

(v, 1) · · · ≤ t < · · ·+ (ψ2 − ψ1)

(sgn a′2, 0) · · · ≤ t < · · ·+ |a′2|

(−v,−1) · · · ≤ t < · · ·+ (ψ2 + ψ1)

(sgn b′1, 0) · · · ≤ t < · · ·+ |b′1|

(−v,−1) · · · ≤ t < · · ·+ (ψ2 − ψ1)

(sgn b′2, 0) · · · ≤ t < · · ·+ |b′2|

(v, 1) · · · ≤ t < · · ·+ ψ2.

It is easy to verify that p(∆t, ε)− p(0, ε) remains the same but that

∆t = (|a′1|+ |b′1|) + (4ψ2 + |a′2|+ |b′2|) ,

which is lower than before by 4ψ1. Figure 2.1 shows an example, for which

ψ1 = π/4, ψ2 = π/2, and v = 1/2.

2.3.3 Composition of Many Motion Primitives

We generalize our result of the previous section as follows. Given φ > 0,

consider a sequence of k + 1 motion primitives

(aj+1, bj, ψj = jφ)

for j ∈ {0, . . . , k}, where we restrict ak+1 = b0 = 0. We have indexed

these primitives so that they are defined by the choice of a, b ∈ Rk, where

a = (a1, . . . , ak) and b = (b1, . . . , bk) as usual. We compose these primitives

as in Section 2.3.2, noting that because ψ0 = 0, the resulting inputs begin
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with translation and not with rotation. In particular, we have

u(t) =



(sgn a′1, 0) 0 ≤ t < |a′1|

(v, 1) · · · ≤ t < · · ·+ φ

(sgn a′1, 0) · · · ≤ t < · · ·+ |a′2|
...

(v, 1) · · · ≤ t < · · ·+ φ

(sgn a′k, 0) · · · ≤ t < · · ·+ |a′k|

(−v,−1) · · · ≤ t < · · ·+ kφ

(sgn b′1, 0) · · · ≤ t < · · ·+ |b′1|

(−v,−1) · · · ≤ t < · · ·+ φ

(sgn b′2, 0) · · · ≤ t < · · ·+ |b′2|
...

(−v,−1) · · · ≤ t < · · ·+ φ

(sgn b′k, 0) · · · ≤ t < · · ·+ |b′k|

(v, 1) · · · ≤ t < · · ·+ (k − 1)φ.

(2.7)

where

a′ =
1

2

([
a

0

]
+

[
0

b

])
b′ =

1

2

([
a

0

]
−

[
0

b

])
.

As before, it is easy to verify that

p(∆t, ε)− p(0, ε) =


∑k

j=1 ajε cos (ε(j − 1)φ)∑k
j=1 bjε sin (εjφ)

0

 ,
where

∆t = 4(k − 1)φ+
k∑
i=1

(|a′i|+ |b′i|) . (2.8)

As in Section 2.2, our problem has been reduced to function approximation.

Given µ > 0 and (∆x,∆y) ∈ R2, we need to find φ > 0 and a, b ∈ Rk for
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(a)

start

finish

|a′1|

|b′1|

|a′2|

|b′2|

(b)

start

finish

|a′1| |b′1|

|a′2|

|b′2|

Figure 2.1: Two different ways to compose motion primitives
(a1, b1, ψ1 = π/4) and (a2, b2, ψ2 = π/2), where v = 1/2. In (a), they are
concatenated. In (b), they are interwoven, with the same result but lower
execution time. The concatenation is shown in (b) as a dotted line for
comparison. In this figure, we are only showing the nominal path,
corresponding to ε = 1.

sufficiently large k so that∣∣∣∣∣∆x−
k∑
j=1

ajε cos (ε(j − 1)φ)

∣∣∣∣∣ ≤ µ

and ∣∣∣∣∣∆y −
k∑
j=1

bjε sin (εjφ)

∣∣∣∣∣ ≤ µ

for all ε ∈ [1 − δ, 1 + δ]. The resulting input (2.7) would then be a solution

to the approximate steering problem for (2.4).

2.3.4 Achieving Error of a Particular Order

In this section, we construct motion-plans composed of piecewise-constant

inputs to achieve tolerances of a particular order in ε. An example path is

shown in Fig. 2.2

We can express the result

∆p1(ε) = p1(∆t, ε)− p1(0, ε)
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Figure 2.2: An ensemble with ε ∈ [0.8, 1.2] moving a unit distance in the x
direction achieving 4th-order error in |ε− 1|, which corresponds to a
maximum error bound of 0.23 = 0.008. Thin red lines show the path
followed for particular values of ε. The actual robot follows only one of
these paths. Thick black lines show the entire ensemble at instants of time.
(Video online: http://www.youtube.com/watch?v=FppnS5xcRow)

∆p2(ε) = p2(∆t, ε)− p2(0, ε)

of applying (2.7) as Taylor series about ε = 1:

∆p1(ε) = ∆p1(1) +

(
∂∆p1

∂ε

∣∣∣∣
ε=1

)
(ε− 1) + · · ·

∆p2(ε) = ∆p2(1) +

(
∂∆p2

∂ε

∣∣∣∣
ε=1

)
(ε− 1) + · · · .

Each series has the form

∆p1(ε) =
k∑
i=1

ri (ε− 1)i−1 +O
(
|ε− 1|k

)
∆p2(ε) =

k∑
i=1

si (ε− 1)i−1 +O
(
|ε− 1|k

)
,

where we collect r = (r1, . . . , rk) and s = (s1, . . . , sk) so that r, s ∈ Rk.
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Explicit formulas for r and s are given by

r = Aa

s = Bb,
(2.9)

where the matrices A,B ∈ Rk×k have elements

Aij =
1

(i− 1)!

(
∂i−1 (ε cos (ε(j − 1)φ))

∂εi−1

∣∣∣∣
ε=1

)
Bij =

1

(i− 1)!

(
∂i−1 (ε sin (εjφ))

∂εi−1

∣∣∣∣
ε=1

)
for all i, j ∈ {1, . . . , k}. Note that A and B do not depend on ε. To approx-

imate ∆x = 1 and ∆y = 1 with error that is of order k in |ε− 1|, we require

only a solution a, b to the system of linear equations (2.9) that results in

r =
[
1 0 · · · 0

]T
s =

[
1 0 · · · 0

]T
.

Both A and B are square matrices, so assuming both are non-singular (and

well-conditioned)—which will hold for almost all choices of the angle φ—then

(2.9) has a unique solution. An immediate consequence is that achievable

error decreases exponentially in the number k+ 1 of primitives, a result that

was shown empirically in [57]. This relationship is highlighted in Fig. 2.3.

By linearity, if the parameters a and b achieve

(∆p1,∆p2) = (1, 1) ,

then the scaled parameters a∆x and b∆y achieve

(∆p1,∆p2) = (∆x,∆y)

for arbitrary ∆x and ∆y. In other words, scaling a single, precomputed

maneuver gets you everywhere for free. Subsequently, we need only compute

a′ =
1

2

([
a

0

]
∆x+

[
0

b

]
∆y

)
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Figure 2.3: An ensemble with ε ∈ [0.8, 1.2] moving a unit distance in the x
direction achieving different orders of error in |ε− 1|. Thin red lines show
the path followed for particular values of ε. The actual robot follows only
one of these paths. Thick black lines show the entire ensemble at instants
of time. The right column shows the resulting error as a function of ε.
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Figure 2.3: (Continued.)

b′ =
1

2

([
a

0

]
∆x−

[
0

b

]
∆y

)
.

One advantage of this strategy over the one used in [57] is that we no

longer have to sample ε in order to compute the parameters a and b. Doing

so had previously introduced approximation error that was difficult to quan-

tify. Now, the series expansion gives us an explicit bound on this error. In

particular, to achieve a tolerance µ > 0, we simply choose any integer k > 0

that satisfies δk−1 < µ.

We can also quantify the trade-off between the time cost ∆t and the re-

sulting uncertainty. The total elapsed time to reach (∆x,∆y) with kth-order

error in |ε− 1| is given by (2.8). Direct computation verifies that |a′i| and

|b′i| decay rapidly with i, so the term 4(k − 1)φ dominates the elapsed time.
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As a consequence, the time cost is O(k). Note that if switching is required

to generate (u1, u2) = (1, 0)—i.e., if (1, 0) /∈ U—this will only scale the cost

by a constant factor.

Finally, we consider the total distance traveled in the workspace. If ε = 1,

this distance is given by

d(∆x,∆y) = 4(k − 1)φv +
k∑
i=1

(|a′i|+ |b′i|) .

We may compute an upper bound on d by solving the following convex op-

timization problem, which is linear in the decision variables ∆x and ∆y:

minimize d(∆x,∆y)

subject to |∆x| ≤ 1

|∆y| ≤ 1.

Call the solution to this problem dmin. Recall that ε ∈ [1− δ, 1 + δ] and 0 ≤
δ < 1, so the distance traveled for any ε is at most 2dmin. As a corollary, we

know that (x(t, ε), y(t, ε)) remains always inside a ball of radius 2dmin during

the application of our steering algorithm. This interesting result indicates

that it might be possible to prove some form of small-time local controllability

as the basis for extending our work from steering to motion planning (e.g.,

as in [1, 59]), although it is not obvious yet how to proceed.

Figures 2.4-2.5 provide pseudo-code that implements our approximate steer-

ing algorithm. We emphasize that this algorithm produces an open-loop in-

put trajectory that neither requires nor takes advantage of sensor feedback.

2.3.5 Results in Simulation

Figure 2.2 shows the results of applying our approximate steering algorithm

to an ensemble control system of the form (2.4) for which δ = 0.2 and

(∆x,∆y) = (1, 0). In this example, we chose k = 4, so that maximum

error is expected to be O(δ4).

Equivalently, we expect that

0.008 = δ3 > max
ε∈[1−δ,1+δ]

{∆p1(ε)−∆x}
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ComputePrimitive(φ, k)

Given an angle φ and a non-negative integer k, do the following:

• Compute the elements of A,B ∈ Rk×k according to

Aij =
1

(i− 1)!

(
∂i−1 (ε cos (ε(j − 1)φ))

∂εi−1

∣∣∣∣
ε=1

)
Bij =

1

(i− 1)!

(
∂i−1 (ε sin (εjφ))

∂εi−1

∣∣∣∣
ε=1

)
for all i, j ∈ {1, . . . , k}.

• Compute a, b ∈ Rk according to

a = A−1r

b = B−1s,

where

r =
[
1 0 · · · 0

]T
s =

[
1 0 · · · 0

]T
.

Return (a, b).

Figure 2.4: The algorithm that we use to precompute a motion primitive.

0.008 = δ3 > max
ε∈[1−δ,1+δ]

{∆p2(ε)−∆y} .

We chose φ = π/2.

As a consequence, the matrices A and B have a very simple form:

A =


1 0 −1 0

1 −π/2 −1 3π/2

0 −π/2 π2/2 3π/2

0 π3/48 π2/16 −9π3/16


and

B =


1 0 −1 0

1 −π −1 2π

−π2/8 −π 9π2/8 2π

−π2/8 π3/6 9π2/8 −4π3/3

 .
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ComputeInput(φ, k, xstart, ystart, xgoal, ygoal, γ)

Given an angle φ, a non-negative integer k, a start configuration (xstart, ystart, γ),
and a goal configuration (xgoal, ygoal, γ), do the following:

• Compute the motion primitive

(a, b) = ComputePrimitive(φ, k).

• Compute the desired change in Cartesian position[
∆x
∆y

]
=

[
cos γ sin γ
− sin γ cos γ

] [
xgoal − xstart

ygoal − ystart

]
.

• Compute the parameters

a′ =
1

2

([
a
0

]
∆x+

[
0
b

]
∆y

)
b′ =

1

2

([
a
0

]
∆x−

[
0
b

]
∆y

)
.

• Compute the piecewise-constant input

u(t) =



(sgn a′1, 0) 0 ≤ t < |a′1|
(v, 1) · · · ≤ t < · · ·+ φ

(sgn a′1, 0) · · · ≤ t < · · ·+ |a′2|
...

(v, 1) · · · ≤ t < · · ·+ φ

(sgn a′k, 0) · · · ≤ t < · · ·+ |a′k|
(−v,−1) · · · ≤ t < · · ·+ kφ

(sgn b′1, 0) · · · ≤ t < · · ·+ |b′1|
(−v,−1) · · · ≤ t < · · ·+ φ

(sgn b′2, 0) · · · ≤ t < · · ·+ |b′2|
...

(−v,−1) · · · ≤ t < · · ·+ φ

(sgn b′k, 0) · · · ≤ t < · · ·+ |b′k|
(v, 1) · · · ≤ t < · · ·+ (k − 1)φ.

Return u.

Figure 2.5: Our approximate steering algorithm. It acts only to scale the
primitive generated by the subroutine ComputePrimitive, which need
only be called once for given φ and k. We recommend choosing φ = π/2
and the smallest integer k such that δk−1 < µ for a given tolerance µ > 0.
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The linear equations (2.9) can be solved exactly to produce

a =


1 + (2/π2)

3 (8 + 3π2) / (4π3)

2/π2

(24 + π2) / (12π3)

 and b =


(9/8) + (1/π2)

(6 + 4π2) / (3π3)

(1/8) + (1/π2)

(6 + π2) / (6π3)

 .

We also compute exactly the bound on total distance traveled, in this case

achieved when (∆x,∆y) = (−1,−1):

dmin =
9

4
+

6 + π(8 + 3π)

2π3
≈ 3.23.

We verify in simulation that the maximum error is 0.003 and that the distance

traveled is 2.41, both satisfying our predicted bounds. Figure 2.6 shows

the same precomputed motion primitive scaled to reach a variety of goal

configurations.

2.4 Hardware Experiments

In this section we apply our approximate steering algorithm to a differential-

drive robot with unknown but bounded wheel radius. First, we describe the

robot that we used. Then, we show that (2.2) is an appropriate model of

this robot. Finally, we show the results of hardware experiments.

2.4.1 Experimental Setup

Figure 2.7 shows the robot we used in our experiments. It is a differential-

drive robot with a caster wheel in front for stability. It moves on a flat tile

floor and uses only dead-reckoning for navigation. In particular, the robot

runs a feedback control loop to read the wheel encoders, update a dead-

reckoning position estimate, and regulate the speed of each motor.

Although we use no other sensors for feedback control, global position data

is available from an off-board vision system for later analysis. This vision

system records pose information at 27 Hz with a position accuracy of 2 cm

and an orientation accuracy of 1◦.
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Figure 2.6: Example trajectories for k = 4 and φ = π/2. All of them are
scaled versions of the maneuver shown in Fig. 2.2. Thin red lines are
particular values of ε, thick black lines are the entire ensemble at instants of
time. (Video online: http://www.youtube.com/watch?v=DcDCg0Ne0vo)

Before conducting our experiments, we applied a standard calibration pro-

cedure to find the effective wheelbase and wheel radius in order to reduce sys-

tematic dead-reckoning error [24,61]. The calibration was done with wheels of

diameter 12.7 cm. However, these wheels are interchangeable—in our exper-

iments, we used four sets that varied between 10.16-15.24 cm in diameter, as

shown in Fig. 2.8. We did not recalibrate for these other wheels, and assumed

that the wheel diameter was unknown but bounded in the set [10.2, 15.2], or

in other words the set [0.8, 1.2] relative to the nominal diameter 12.7 cm.
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Figure 2.7: The differential-drive robot used for experimental validation.
Robot courtesy of College of Engineering Control Systems Laboratory [60].

2.4.2 Application of the Model to a Differential-Drive Robot

We will show that

q̇(t) = ε (g1(q(t))u1(t) + g2(q(t))u2(t))

is a valid kinematic model of our robot, where

g1(q) =

cos q3

sin q3

0

 and g2(q) =

0

0

1

 .
It suffices to show that the forward speed v and turning rate ω of a differential-

drive robot with unknown but bounded wheel radius are given by v = εu1

and ω = εu2, respectively, for control inputs u1, u2 ∈ R. Recall that for

wheel radius r and wheel separation l, the forward speed and turning rate of

a differential-drive robot are given by

v =
r(ωR + ωL)

2
and ω =

r(ωR − ωL)

l
,
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Figure 2.8: Four wheel sizes used for experimental validation. These wheels
are 10.16, 10.48, 12.7 and 15.24 cm in diameter.

where ωR and ωL are the angular velocities of the right and left wheels,

respectively. Assume that the wheel radius, a positive constant, is unknown

but bounded according to r ∈ [rmin, rmax]. If we define

r̄ =
rmax + rmin

2
and δ =

rmax − rmin

2r̄

then we can write r = εr̄ for some ε ∈ [1− δ, 1 + δ], so that

v = ε

(
r̄(ωR + ωL)

2

)
and ω = ε

(
r̄(ωR − ωL)

l

)
.

This expression simplifies if we select wheel angular velocities

ωR =
2u1 + bu2

2r̄
and ωL =

2u1 − bu2

2r̄

for any given u1, u2 ∈ R, so that

v = εu1 and ω = εu2,

and we have our result.

2.4.3 Experimental Results

Figures 2.9 and 2.10 show the results of our experiments, which successfully

validated our approach. The start configuration was (0, 0, 0). The goal

configuration was (4.25 m, 2.25 m, 0). The value of k was chosen to achieve

an error tolerance of 2 cm. We applied the algorithm described in Section 2.3

to generate a single input trajectory that was applied in open-loop. Five runs
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Figure 2.9: Expected paths for four wheel sizes on a move to [4.25,2.25] m.
Red, grey, blue and black plots correspond to 10.16, 10.48, 12.7 and 15.24
cm wheels, respectively.
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Figure 2.10: Ground truth data gathered from the camera system. Five
runs for each wheel set are shown. Loops at the corners are artifacts from
the camera system. Red, grey, blue and black plots correspond to 10.16,
10.48, 12.7 and 15.24 cm wheels, respectively.
(Video online: http://www.youtube.com/watch?v=8yYD KMwfaM)
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4.1 4.2 4.3

2.1

2.2

m

m

Figure 2.11: Ending position for each run. Green ‘+’ for goal position, ‘x’
for expected ending position under zero odometry drift, ‘o’ for actual
ending positions. Red, grey, blue and black plots correspond to 10.16,
10.48, 12.7 and 15.24 cm wheels. (Note the zoomed scale.)

were recorded for each wheel size. All of the resulting trajectories reached a

small neighborhood of the goal position, as shown in Fig. 2.11 and reported

in aggregate in Table 2.1 and Fig. 2.12. The size of this neighborhood is

slightly larger than the predicted tolerance of 2 cm. This error is due largely

to drift as a result of wheel slip, gear backlash, surface irregularities, wheel

flex, and other disturbances. Another contributing factor is that different

wheels are made of different materials. The 10.48 cm wheels are aluminum

with rubber o-rings stretched over the rim, while the other wheels are ABS

plastic with a molded rubber traction ring on the rim. The edge of each

plastic wheel has a rectangular cross-section, making the effective wheel base

slightly larger than for the aluminum wheels. The vision system also adds

to observed error (although we emphasize that this vision system was used

only for data collection and not for closed-loop feedback in our experiments).

In particular, ground truth position information was calculated from fiducial

markers on the top of the robot. These markers were level and centered

over the wheelbase for the 10.48 cm wheels, but tilted by 10◦ for the largest

wheels.
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Figure 2.12: Distance error for four wheel sizes on a move to [4.25,2.25].
This test was repeated 5 times per wheel size. The yellow line is the
theoretical error. The red line shows the mean errors for each wheel size
tested ± one standard deviation.

Table 2.1: In-group Error Measurements

wheel distance distance θ θ
diam(cm) mean(m) var (m2) mean(rad) var(rad)2

10.16 0.10 3.2e-5 -0.002 1.9e-6

10.48 0.02 4.1e-5 -0.002 6.1e-7

12.70 0.08 1.2e-4 -0.008 2.5e-5

15.24 0.19 2.2e-4 -0.017 1.9e-4
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2.5 Conclusion

In this chapter we applied the framework of ensemble control theory to derive

an approximate steering algorithm that brings a nonholonomic unicycle to

within an arbitrarily small neighborhood of any given Cartesian position de-

spite model perturbation that scales both the forward speed and the turning

rate by an unknown but bounded constant. This algorithm has trivial com-

putational complexity, requiring only the solution of linear equations. We

validated our approach using a differential-drive robot with unknown but

bounded wheel radius and showed the results with hardware experiments.

In Chapter 3, we apply a similar approach to a different robotic system,

the plate-ball system. In this case the full state of the plate-ball system is

controllable. Later, in Chapter 4 we revisit robots with unicycle kinematics.

In that chapter, instead of steering one robot with an unknown parameter,

we are interested in steering many such robots using a common control input.

39



Chapter 3

Approximate Steering of Plate-Ball System
under Bounded Model Perturbation

In this chapter we revisit the classical plate-ball system and prove this system

remains controllable under model perturbation that scales the ball radius by

an unknown but bounded constant. We present an algorithm for approx-

imate steering and validate the algorithm with hardware experiments. To

perform these experiments we introduce a new version of the plate-ball sys-

tem based on magnetic actuation shown in Fig. 3.1. This system is easy to

implement and, with our steering algorithm, enables simultaneous manipu-

lation of multiple balls with different radii.

3.1 Introduction

The plate-ball system is a canonical example of manipulation by rolling con-

tacts [2]. In the classical version of this system, the ball is held between

two parallel plates and manipulated by maneuvering the upper plate while

holding the lower plate fixed. The ball can be brought to any position and

orientation though translations of the upper plate.

We consider a variant of the plate-ball system in which the ball radius is an

unknown but bounded constant. This variant has been considered previously

by Oriolo et al. [32], who proposed a method of iterative feedback control.

We are interested in the case where no sensor feedback is available.

Our main contribution is to prove this system is still controllable and

present an algorithm for approximate (open-loop) steering. To do so, we

apply the framework of ensemble control theory [3, 4, 9, 10, 56] to derive an

approximate steering algorithm. The basic idea, similar to early work on sen-

sorless manipulation [41], is to maintain the set of all possible configurations

of the sphere and to select inputs that reduce the size of this set and drive it

Material from this chapter appeared in a preliminary conference version as [62].
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(a) ensemble plate-ball system 

magnet array 

y−axis 

(b)  underlying mechanism 

Figure 3.1: The ensemble plate-ball system consists of an array of n metal
spheres separated from an array of n magnets by a stationary sheet of
cardboard. The magnet array is attached to an xy CNC table, and the
spheres roll without slipping above their respective magnets.
(Video online: http://www.youtube.com/watch?v=nPGz0Nd3QzE)
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toward some goal configuration. The key insight is that the evolution of this

set can be described by a family of control systems that depend continuously

on the unknown constant. Ensemble control theory provides conditions un-

der which it is possible to steer this entire family to a neighborhood of the

goal configuration with a single open-loop input trajectory. These conditions

mimic classical tests of nonlinear controllability like the Lie algebra rank con-

dition [54] but involve approximations by repeated Lie bracketing that are

reminiscent of seminal work on steering nonholonomic systems by Lafferriere

and Sussman [55].

Our second contribution is a new experimental version of the plate-ball

system based on magnetic actuation, shown in Fig. 3.1. This platform has

several advantages over traditional plate-ball systems. The magnetic actua-

tion makes the mechanism easy to implement, allows an unobstructed view

of the ball on the plane, and enables simultaneous manipulation of multiple

balls. If these balls have unique radii, by using our algorithm this system

can steer each ball to independent arbitrary orientations and simultaneously

translate the balls to a desired position.

This result hints at a new approach to robust manipulation of so-called

“toleranced parts” [63, 64], an ongoing problem in automated assembly and

industrial parts handling. A considerable amount of work remains to be

done, however, before ideas like this one find their way into practice.

3.1.1 Manipulation by Rolling

Manipulation of spherical objects by rolling has been investigated in depth

by members of the math, control, and robotic manipulation community. This

research can be traced to Brockett and Dai who analyzed an approximation of

the problem and determined the optimal controller for this approximation [2].

Jurdjevic analyzed the optimal shortest-length paths, showing that the op-

timal solution curve minimizes the integral of the geodesic curvature [65].

Two optimal shortest-length paths (calculated using the psuedospectral op-

timization solver GPOPS [66–70]) are shown in Fig. 3.2.

Li provided a symbolic algorithm for steering a plate-ball system [71], while

Marigo gave a numeric algorithm [72]. Several practical stabilizing controllers

were presented in [27–30], and Oriolo and Vendittelli presented an iterative
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Figure 3.2: Optimal shortest paths for a single sphere rolling on the plane
to a desired position and orientation. This optimal control problem was
first investigated by Jurdjevic [65]. Green shows the initial ball position,
dashed red the final position, and the path of the contact point between the
ball and plate is in blue. The left path creates a net rotation of π about the
z-axis with no change in position while the right path translates the ball 1
diameter in the positive x direction with no change in orientation.

feedback controller for stabilizing the plate-ball system [31, 32]. Oriolo and

Vendittelli’s method is noteworthy because it guarantees asymptotic stabil-

ity with exponential convergence. This policy iterates between driving the

orientation error to zero in finite time and controlling the position error to

zero while cycling the orientation variables. This feedback control policy is

robust to a perturbed radius value. A Matlab implementation of their pol-

icy is available online [73], and can be used to generate the results shown in

Fig. 3.3. When sensors are available, robust feedback control is, in general,

more effective than what we propose. However, these control techniques do

not generalize to simultaneously control multiple balls with the same plate-

ball system.

Svinin and Hosoe extended the problem to plate-ball systems with limited

contact area [74,75]. This enables the manipulation of objects that are only

partially spherical, such as a hemisphere.

Several robotic plate-ball systems have been implemented (see [72, 76]).

Our approach using multiple balls is inherently underactuated, and in that re-

spect is similar to Choudhury and Lynch’s work that showed a single degree-

of-freedom manipulator was sufficient for orienting a sphere. They designed

a hardware system consisting of an elliptical bowl mounted on top of a linear

motor with the bowl’s primary axis oriented 45 degrees from the linear motor

orientation [77]. By applying acceleration profiles to the linear motor, their
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Figure 3.3: Oriolo and Vendittelli presented an iterative approach for
stabilizing the plate-ball system. Our implementation of their algorithm is
shown above for moving a ball 1 diameter in the positive x direction with
no net change in orientation. This policy iterates between driving the
orientation error to zero in finite time (red lines) and controlling the
position error to zero while cycling the orientation variables (blue lines).

approach steered the orientation to a desired coordinate in SO(3).

Lastly, the control algorithms demonstrated in this work might find appli-

cation at a much smaller scale using microspheres. Studies by Ding et al. on

rolling friction of microspheres [78] demonstrate that even on the micro-scale

spheres can roll with little slip. A study by Agayan et al. of the slipping fric-

tion of optically and magnetically manipulated microspheres on glass-water

interface demonstrated techniques for manipulation that may benefit from

our methodology [79].

The remainder of this chapter proceeds as follows. We begin with our

problem statement (Section 3.2). We then prove our problem is controllable

(Section 3.3). We design an approximate steering algorithm (Section 3.4),

and validate the algorithm with a new hardware platform (Section 3.5). We

discuss broader implications in our concluding remarks (Section 3.6).

3.2 Problem Statement

Consider the system shown in Fig. 3.4, a sphere of radius r that rolls without

slipping on a horizontal plane. Following Jurdjevic [65], we describe its con-

figuration q by
(
[x, y]>, R

)
consisting of the position [x, y]> and the rotation

matrix R. The configuration space Q is R2 × SO(3). The control inputs are
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r/ε

y

x

u1

Ωy

u2

Ωx

Figure 3.4: A sphere with an unknown radius r/ε rolling on the horizontal
plane. This chapter models such a sphere as an ensemble control system,
proves that it is controllable, and derives a motion planning algorithm that
steers the sphere to within an arbitrarily small neighborhood of any desired
configuration in R2 × SO(3).
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u1 and u2, the velocities of the sphere center in the +x and +y directions.

We define the infinitesimal generators of rotation

Ωx =

0 0 0

0 0 1

0 −1 0

 , Ωy =

0 0 −1

0 0 0

1 0 0

 , Ωz =

 0 1 0

−1 0 0

0 0 0

 ,
and write the kinematics of the sphere by the differential system

ẋ(t) = u1(t)

ẏ(t) = u2(t) (3.1)

Ṙ(t) = R(t)
1

r

(
Ωxu1(t) + Ωyu2(t)

)
.

Given qstart, qgoal ∈ R2 × SO(3), a gain K ∈ [0, 1] that weights the relative

importance of rotation and position error, and an error bound µ > 0, the

approximate steering problem is to find open-loop inputs

(u1(t), u2(t)) : [0, T ]→ U

that result in
(
[x(0), y(0)]>, R(0)

)
= qstart and

K

∥∥∥∥∥
[
x(T )

y(T )

]
−

[
xgoal

ygoal

]∥∥∥∥∥
2

+ (1−K) angle
(
R(T ), Rgoal

)
≤ µ

for free final time T . Here

angle
(
Ra, Rb

)
= arccos

(
trace

(
R>a Rb

)
− 1

2

)

is the minimum rotation angle between two rotation matrices. If such inputs

always exist then we say that (3.1) is approximately controllable—and indeed

they do, as shown in [65].

3.2.1 Ensemble of Spheres

We will solve this same approximate steering problem, but for a sphere with

radius r/ε, where ε is an unknown but bounded constant. The resulting
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kinematics have the form

ẋ(t) = u1(t)

ẏ(t) = u2(t) (3.2)

Ṙ(t) = R(t)
ε

r

 0 0 −u2

0 0 u1

u2 −u1 0


where ε−1 ∈ [1 − δ, 1 + δ] for some 0 ≤ δ < 1. Rather than try to steer

one sphere governed by (3.2)—where ε is unknown—our approach is to steer

an uncountably infinite collection of spheres parameterized by ε, each one

governed by

ẋ(t) = u1(t)

ẏ(t) = u2(t) (3.3)

Ṙ(t, ε) = R(t, ε)
ε

r

(
Ωxu1(t) + Ωyu2(t)

)
.

We call this fictitious collection of spheres an ensemble and call (3.3) an

ensemble control system. The idea is that if we can find open-loop inputs

u1(t) and u2(t) that result in
(
[x(0), y(0)]>, R(0, ε)

)
= qstart and

K

∥∥∥∥∥
[
x(T )

y(T )

]
−

[
xgoal

ygoal

]∥∥∥∥∥
2

+ (1−K) angle
(
R(T, ε), Rgoal

)
≤ µ

for all ε−1 ∈ [1 − δ, 1 + δ], then we can certainly guarantee that the actual

sphere, which corresponds to one particular value ε∗ of ε, will satisfy

K

∥∥∥∥∥
[
x(T )

y(T )

]
−

[
xgoal

ygoal

]∥∥∥∥∥
2

+ (1−K) angle
(
R(T, ε∗), Rgoal

)
≤ µ

If such inputs always exist then we say that (3.3) is ensemble controllable,

defined as being approximately controllable on the function space

L2

(
[1− δ, 1 + δ],R2 × SO(3)

)
.
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3.3 Analysis of Controllability

We will now prove that the system (3.3) is ensemble controllable. We will do

this by using repeated bracketing to get higher-order powers of ε, and then

by using polynomial approximation to construct arbitrary vector flows. This

approach is similar to that in Chapter 2.2.

Theorem 4. The system (3.3) is ensemble controllable.

Proof: We will first show that we can generate arbitrary changes in the

ensemble orientation with no net change in x, y position. Any rotation A in

SO(3) can be parameterized by the rotations ψ, φ, θ about the world z-axis,

x-axis and then z-axis.

A = Rz(θ)Rx(φ)Rz(ψ)

To approximate any rotation A with an ensemble, it is then sufficient to

construct the three approximate rotations

Rz

(
θ(ε)

)
≈ Rz(θ), Rx

(
φ(ε)

)
≈ Rx(φ), and Rz

(
ψ(ε)

)
≈ Rz(ψ).

We will proceed by showing how to construct Rz

(
θ(ε)

)
. For small time dt,

by rolling clockwise on the horizontal plane in a square pattern with sides

of length
√
dt, we can approximate a counter-clockwise rotation about the

z-axis

exp{ε
√
dtΩy} exp{−ε

√
dtΩx} exp{−ε

√
dtΩy} exp{ε

√
dtΩx}

= exp{−ε2dtΩz}+O
(
ε3
)
.

This Lie bracket movement generates the previously restricted motion about

the z-axis, but the final x and y positions are unchanged. We take further

Lie brackets to find new control vector fields:

[εΩy, εΩx] =

 0 ε2 0

−ε2 0 0

0 0 0


= −ε2Ωz

[εΩy [εΩy, εΩx]] = −ε3Ωx
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[εΩy [εΩy [εΩy, εΩx]]] = ε4Ωz

...

= −1kε2kΩz

= −1kε2k−1Ωx.

By successive Lie brackets, we can produce control vector fields of the form

{ε2kΩz} and {ε2k−1Ωx} for any k ≥ 1 that leave the Cartesian position of the

sphere unchanged. As in Chapter 2.2.2, with piecewise-constant inputs we

can produce flows of the form

exp

{
m∑
k=1

akε
2kΩz

}

for freely chosen constants a ∈ Rm. The Stone-Weierstrass theorem [58] tells

us that given η > 0 and a continuous real function

ν(ε) : [1− δ, 1 + δ]→ R,

there exists a polynomial function ρ(ε) such that

|ρ(ε)− ν(ε)| < η

for all ε ∈ [ε, ε]. An immediate corollary is that continuous real functions on

the domain [ε−1, ε−1] = [1 − δ, 1 + δ] for some 0 ≤ δ < 1 can be uniformly

approximated either by an odd polynomial or by an even polynomial. (This

result would not be true on an arbitrary domain, which is why we restrict

δ < 1.) As a consequence, we can choose a ∈ Rm so that

θ(ε) ≈
m∑
k=1

aiε
2k

for ε−1 ∈ [1− δ, 1 + δ], with error vanishing in k. The time complexity of the

resulting motion increases with k and with the number of switches required

to approximate flows along each vector field ε2kΩz and ε2k−1Ωx, but remains

finite for any given µ > 0.

We further note that every Lie bracket movement is a roll in a closed

pattern on the horizontal plane and thus leaves the final sphere x and y
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position unchanged. To steer the ensemble from

(
[xstart, ystart]

>, Rstart

)
to
(
[xgoal, ygoal]

>, Rgoal

)
,

we can rotate first in x and then in y to (xgoal, ygoal), resulting in the net

rotation

R1(ε) = Ry

(
ygoal − ystart

ε

)
Rx

(
xgoal − xstart

ε

)
Rstart.

We then approximate the ensemble rotation A(ε) = RgoalR
>
1 (ε) through Lie

bracket movement. Our result follows.

3.4 Approximate Steering Algorithm

In this section we provide two methods for approximate open-loop steering

of a rolling sphere with an unknown radius. An overview of each is shown in

Tables 3.1 and 3.2. The first method consists of concatenating Taylor series

approximations of in-plane rotations. Since each rotation is approximate, us-

ing fewer rotations reduces the cumulative orientation error. It is well known

that three orthogonal rotations span SO(3). We show that two straight line

rolls on the horizontal plane also span SO(3) [80].

We conclude the section with a second method for approximate open-loop

steering of a rolling sphere using an optimized n-segment path.

3.4.1 Piecewise-Constant Rolling Primitive

Consider the motion primitive given by Pryor in [81,82] of the following form

for a non-negative integer k, and freely chosen φ, βk ∈ R:

(u1, u2) =



(0,−1) 0 ≤ t < φk

(1, 0) · · · ≤ t < · · ·+ βk/2

(0, 1) · · · ≤ t < · · ·+ 2φk

(1, 0) · · · ≤ t < · · ·+ βk/2

(0,−1) · · · ≤ t < · · ·+ φk

(3.4)
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Table 3.1: Orientation Method 1: Taylor Series Approximation

Path Name Example Path Rotation

Piecewise-constant
rolling primitive

(Section 3.4.1)
≈ Ry (βkε cos (φkε))

(nth-order) Taylor
series approximate
rotation (using n
piecewise-constant
rolling primitives)

(Section 3.4.2)

≈ Ry

(
n−1∑
k=0

βkε cos (φkε)

)

Two-step rotation
using two Taylor series
approximate rotations
to approximate
Rz(φ3)Rx(φ2)Rz(φ1)

(Section 3.4.3)

≈ Rp

(
r(φ2−π), φ3

)
·Rp

(
rπ, (φ3−φ1)/2

)

Table 3.2: Orientation Method 2: n-Segment Optimized Path

Path Name Example Path Rotation

n-Segment
Optimized Path

(Section 3.4.4)

R(Θ, ε)

=
n∏
i=1

Rx

( ε
r
θ2i−1

)
Ry

( ε
r
θ2i

)
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Such a primitive is shown in Fig. 3.5 and requires time t = 4φk+βk. To first

order, the result is to achieve

∆x(ε) = βk

∆y(ε) = 0,

∆R(ε) = Ry (βkε cos (φkε)) +O(β2
k)

The approximation degrades for large values of βk, but by repeating the

primitive (3.4) j times with parameter β′k = βk/j the approximation im-

proves. Pryor proved in [82] that we can build a primitive with arbitrary

accuracy by increasing j.

3.4.2 Taylor Series Approximate Rotation

Because the primitives (3.4) all rotate in the same direction, we are free to

concatenate them. The result after applying n primitives with k = 0, . . . , n−
1 is

∆x(ε) =
n−1∑
k=0

βk

∆y(ε) = 0

∆R(ε) ≈
n−1∏
k=0

Ry (βkε cos (φkε))

≈ Ry

(
n−1∑
k=0

βkε cos (φkε)

)
≈ Ry (∆θ (ε)) ,

where we define

∆θ (ε) =
n−1∑
k=0

βkε cos (φkε) . (3.5)
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Figure 3.5: (Top) A sample primitive of the form (3.4), with βk = π/3 and
φk = π/2. A sphere following this path generates to first order the rotation
Ry (βkε cos(φkε)). (Bottom) By subdividing the rotation we can improve
arbitrarily this approximation, at the cost of a longer path. An outline of a
unit radius sphere is shown in green at the start of the path and dashed in
red at the end.
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Achieving Error of a Particular Order:

We may express the angle turned about the y-axis after applying n primitives,

∆θ (ε), as a Taylor’s series in ε about ε = 1:

∆θ(ε) = ∆θ(0) +
∂∆θ

∂ε

∣∣∣∣
ε=1

(ε− 1) + · · · .

This series has the form

∆θ(ε) =
n∑
j=1

sj(ε− 1)j−1 +O (|ε− 1|n) .

Define

s =


s1

...

sn

 , β =


β1

...

βn

 ,
so we can write

s = Sβ (3.6)

where the matrix S ∈ Rn×n has elements

Sij =
1

(i− 1)!

(
∂i−1 (ε cos (εjφ))

∂εi−1

∣∣∣∣
ε=1

)
.

To achieve ∆θ = α with error that is of order n in ε, we require only that

s = [α, 0, . . . , 0]>.

The achievable error decreases exponentially in the number n of primitives

used. As in Chapter 2, we need to solve a system of n linear equations to

achieve nth-order error. As a consequence, exactly n primitives are required

to achieve nth-order error, for any n. There is the implicit assumption here

that S is nonsingular (and, in practice, well conditioned), but this assumption

will hold for “almost all” choices of φ. By linearity, it is clear that the scaled

parameters β∆θ will reach arbitrary ∆θ. We can use this method to generate

paths that satisfy arbitrary accuracy bounds, but these paths may be very

long. Fig 3.6 depicts paths generated to turn π about the x-axis with a

threshold of π/6.

54



-100 -50 0 50 100

-50

0

50

n = 1

-100 -50 0 50 100

-50

0 n = 2

-100 -50 0 50 100
-100

-50

0 n = 3

-100 -50 0 50 100

-100

-50

0
n = 4

Figure 3.6: Rolling paths generated using Taylor series to approximate the
rotation Rx(π) with a threshold of π/6 and a nominal ball radius of
10.3mm to (left to right, top to bottom) 1, 2, 3 and 4-th order. Path
lengths are {32.4, 311.9, 584.0, 919.4} mm. The start point is shown in
green and the stop point in red. The 230× 125 mm workspace for our
manipulator is represented by a blue rectangle.

This 2D path can then be rotated an angle ψ about the z-axis by[
cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)

]

to approximate any in-plane rotation.

3.4.3 Arbitrary Orientation in SO(3) with Two Straight Rolls

Any rotation A can be generated by the three rotations Rz(θ)Rx(φ)Rz(ψ)

[80]. This is illustrated in Fig 3.7 and proved below. We use the shorthand

notation sα = sin(α), cα = cos(α).

A = Rz(θ)Rx(φ)Rz(ψ)

=

 cθcψ − cφsθsψ −cφcψsθ − cθsψ sθsφ

cψsθ + cθcφsψ cθcφcψ − sθsψ −cθsφ
sφsψ cψsφ cφ

 .
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x

y

z

α1 =
θ − ψ

2

`1 = rπ
α2 = θ

2̀ = r(φ− π)

θ

φ

ψ

Figure 3.7: Any orientation in SO(3) can be generated by two straight-line
rolls on the horizontal plane. Let Rp(`, α) represent a roll along a line of
length ` making the angle α with the x-axis. Then, for a ball with radius r,
Rz(θ)Rx(φ)Rz(ψ) = Rp (r(φ− π), θ)Rp (rπ, (θ − ψ)/2) . (Video online:
http://demonstrations.wolfram.com/ReOrientASphereWithTwoStraightRolls/)

Our system is constrained to rolling on the horizontal plane. For a sphere

of radius r, any roll along a line of length ` making the angle α with the

x-axis results in the rotation

Rp(`, α) =

 c2
α + c`/rs

2
α (1− c`/r)cαsα s`/rsα

(1− c`/r)cαsα c`/rc
2
α + s2

α −cαs`/r
−s`/rsα cαs`/r c`/r

 .
The following two straight-line rolls duplicate Rz(θ)Rx(φ)Rz(ψ):

Rp

(
r(φ− π), θ

)
Rp

(
rπ, (θ − ψ)/2

)
=

 cθcψ − cφsθsψ −cφcψsθ − cθsψ sθsφ

cψsθ + cθcφsψ cθcφcψ − sθsψ −cθsφ
sφsψ cψsφ cφ


= A
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The first rotation is of length `1 = r(π − φ) with |φ| ≤ π and the second

rotation is of length `2 = rπ, giving a total path length of πr ≤ `1 +`2 ≤ 2πr.

We can now decompose any desired rotation in SO(3) into two straight

line rotations with magnitude `1/r and `2/r radians. Each of these rotations

can be implemented with the Taylor series approximate rotations of Section

3.4.2. A drawback is that this method does not provide a way to control the

change in x and y. In the following section we use optimization to generate

shorter paths that steer toward desired (∆x,∆y,∆R) values.

3.4.4 Approximate Steering with n-Segment Optimized Path

We want to steer an ensemble of spheres with radii r/ε to a desired rotation

Rgoal and position (xgoal, ygoal) by alternating rotations along the positive x

and y-axes. The composite rotation R(Θ, ε) after n such rotations is

R(Θ, ε) =
n∏
i=1

Rx

( ε
r
θ2i−1

)
Ry

( ε
r
θ2i

)
∆x(Θ) =

n∑
i=1

θ2i−1 (3.7)

∆y(Θ) =
n∑
i=1

θ2i

for Θ = [θ1, . . . , θ2n] , θi ≥ 0.

We assume without loss of generality that [xstart, ystart, Rstart] = [0, 0, I(3)].

The problem is to find Θ such that

K

∥∥∥∥∥
[

∆x(Θ)

∆y(Θ)

]
−

[
xgoal

ygoal

]∥∥∥∥∥
2

+

∫ 1+δ

1−δ
angle (R (Θ, ε)), Rgoal) dε (3.8)

is minimized. To simplify our optimization routine we replace the integral in

(3.8) with a summation over a finite set of ε, and use gradient descent on Θ

from multiple random seed values Θinit to search for local minima in

K

∥∥∥∥∥
[

∆x(Θ)

∆y(Θ)

]
−

[
xgoal

ygoal

]∥∥∥∥∥
2

+
N−1∑
k=0

angle

(
R

(
Θ, 1− δ +

2δk

N − 1

)
, Rgoal

)
(3.9)
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For the paths generated in Fig. 3.8, we used a path with 10 segments, 500

random seed values, and N = 15.

3.5 Hardware Experiments

To validate our control algorithms we built a ball-plate system based on mag-

netic actuation. In this section we describe the system design, the method-

ology for state estimation, and characterize the system repeatability.

3.5.1 System Design

Our ensemble plate-ball system is shown in Fig. 3.1, page 41. A grid array of

n magnets attached to a CNC xy-table can reorient n spheres by rolling when

a nonmoving substrate is placed between the spheres and magnet array. A

table-top CNC mill table (Sherline 8541 metric, 800 steps per mm) is used

as an xy planar manipulator to slide a tray in the horizontal plane. The tray

is manufactured of MDF and is bolted to the mill. Fifteen holes are drilled

into the surface. Each holds a 5 × 8 mm diameter cylindrical neodymium

rare-earth magnet flush to the surface of the tray. The xy table provides a

230×125 mm workspace. By securing a stationary, 0.15 mm thick cardboard

sheet on top of the tray, we have a manipulator that can roll variable-sized

ferro-magnetic spheres in the horizontal plane with minimal slip. Six steel

ball-bearings with diameters {16, 18, 19, 22, 24, 25.4} mm were used to test

manipulation algorithms in this chapter.

Our prototype was inspired by the kinetic sculptures of Bruce Shapiro

and Jean-Pierre Hébert, which draw paths in sand using a rolling steel ball

actuated by a hidden servo-controlled magnet [83,84].

3.5.2 Measuring System Position and Orientation

To validate our control policies we must accurately measure the position

and orientation of spheres as they are manipulated by the plate-ball sys-

tem. Tracking the orientation of a sphere has inspired several approaches

including using colored circles painted at the vertices of Platonic solids [85],

painting a fiducial pattern on a sphere and then comparing camera images
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Figure 3.8: Top: a 189 mm long path generated by optimization that
rotates spheres approximately Rx(π). Bottom: a 577 mm long three-stage
path that rotates spheres approximately Rx(π), Rz(π/2), Rx(π). Six spheres
were labelled so that different words appeared at the end of each stage.
Snapshots from an experiment are shown in Fig. 3.9. Each path is
composed of 10 segments and designed for ball radii of 10.3 mm±25%. The
start point is shown in green, intermediate points in blue, and the stop
point in red. The position error gain K was 0 for these paths.
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1.)Rstart

2.)Rx(π)

3.)Rz(π/2)

4.)Rx(π)

Figure 3.9: Snapshots of six different-sized spheres while rolling along the
three-stage path in Fig 3.8. This path consists of a roll that approximates
Rx(π), followed by Rz(π/2), then Rx(π). Four letters were printed on
appropriate sides of each sphere to illustrate the movement.
(Video online: http://www.youtube.com/watch?v=nPGz0Nd3QzE)

to a library of generated rotated images [86], applying a 2D Gray-coding to

the sphere [87], and estimating sphere orientation using many dots precisely

applied to the ball [88]. Each of these approaches requires accurate marker

application, which increases in difficulty as the sphere shrinks in size. An

alternate approach applies fiducial stickers to the sphere, learns the positions

during a training phase, and then tracks these fiducials [89]. For our ini-

tial approach, we adapted this method to use hand-drawn fiducials because

stickers would affect the effective sphere diameter. We then estimated the

sphere position by tracking 5 points in each image using Horn’s minimum

least squares method [90], producing at frame k the rotation matrix Rk. We

used ‘>’ shaped fiducials. This method is only useful if the fiducial remains in

view for all measurements. Using a single fixed-position camera restricts ∆R

to rotations about the optical axis—an overhead camera can only measure

rotations about the z-axis.

To enable full state estimation, we followed the approach of Lynch [85].

He showed that if markers are placed at the vertices of a dodecahedron and

we can ensure one face is always visible, three marker colors is sufficient to

determine the orientation. At least one face is always visible if the camera

has a visible angle of ≥ 70.56◦. A 25.4 mm sphere requires the camera to
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be at least 36 mm away from the sphere. In practice, markers far from

the sphere center in the camera image become distorted and the lighting

less reliable, so the camera must be further away. In our setup the camera

is 0.5 m from the sphere. Our markers are circular because this shape is

least affected by distortion as the sphere rolls. We selected the three colors

{red,green,blue} because they are easily discernible in HSV color space.

Implementation

We used steel ball-bearings 25.4 mm in diameter. Spheres can be difficult to

illuminate uniformly. To ease the load on our vision processing, we painted

the balls flat white. We washed the bearings with soap and water, spray-

painted two coats of primer (Rust-Oleum grey primer 7582) and then over-

coated with 3 thin coats of flat white (Rust-Oleum flat white 7590). In our

initial tests the markers were painted on with paint-pens (Elmer’s Painters

Red, Krylon Brights 60670323 and 07031664A). Unfortunately this created

raised bumps on the surface of the sphere that caused the ball to roll around

rather than over the painted areas. These deviations are clearly seen in

Fig. 3.19, page 74. We switched to using colored pens (Pentel Color Pen

FinePoint #S360 102 Red, 111 Light Green, 136 Baby Blue) for subsequent

tests. We illuminated the sphere by arranging a tube fluorescent light fixture

at each of the four sides of the plate-ball table.

To accurately mark the vertices of a dodecahedron, we constructed a paper

template of an icosahedron that encloses the sphere. The centers of each face

of this icosahedron form a dodecahedron that is circumscribed by the sphere.

We then drill out these centers in the template, fold the template around the

sphere, and mark the vertices as shown in Fig. 3.10. Given a sphere of radius

r, the edges of the icosahedron whose faces are each tangent to the sphere

are of length
4
√

3

3 +
√

5
r ≈ 1.323r.

Our template, constructed for a sphere 25.4 mm in diameter, has edges 16.8

mm long. The template, marking procedure and a camera frame after vision

processing are shown in Fig. 3.10.

For vision processing we used a Basler 602fc color digital camera which

captures 656 × 490 pixels at 100 fps. Pseudo code for measuring the trans-
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lation and rotation is given in Alg. 3.1.

Algorithm 3.1 Measure Ball Translation (xb, yb) and Rotation Matrix R

1: grab a frame
2: segment out the ball and measure ball center location and radius:
3: (xb, yb), r
4: adaptive threshold over the ball to find markers
5: measure position of each marker:
6:

(
xi, yi, r +

√
r2 − (xb − xi)2 − (yb − yi)2

)
7: assign marker color based on shortest distance of hue in HSV colorspace
8: create edgeList (markers closer than a threshold distance in R3)
9: if depth-first-search on edgeList finds 5 markers in a non-repeating loop

then (this is a face)
10: record colors of face vertices in CW order
11: search through 60 possible color patterns to find matching face
12: R = Horn’sMethod( 5 face markers, (xb, yb, r) )
13: else
14: for all measured markers do
15: compare marker positions to identified markers in previous frame
16: record marker if colors match and distance is less than a threshold
17: end for
18: if 2 or more markers identified then
19: R = Horn’sMethod(recorded markers, (xb, yb, r))
20: else
21: procedure failed
22: end if
23: end if
24: record R, (xb, yb)

3.5.3 Characterizing System Repeatability

Our control algorithm assumes the spheres roll without slipping. To test

the accuracy of this simplification, we ran a series of repeatability tests with

different substrate materials.

The substrate separates the metal spheres from the tray holding the mag-

nets. The non-moving substrate is clamped along the perimeter of the

workspace. A good substrate should be thin, because magnetic strength

decreases proportional to the inverse cube of the distance from the dipole.

The substrate should have low friction on the bottom surface that the tray

and magnets slide along, but high friction on the top surface to prevent the
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Figure 3.10: The paper template (top) is used to mark 20 equally-spaced
vertices such that each face has a unique pattern (bottom left). A vision
system identifies this pattern to determine the ball orientation and
measures the ball position (bottom right).
(Video online: http://www.youtube.com/watch?v=-9go60KxtRI)

spheres from slipping. Moreover, the top surface should be flat and non-

deformable so that rolling is uniform. We tested 5 surfaces: 0.26 mm acrylic,

0.35 mm cardboard, 2 and 3 mm craft foam, and 1.5 mm thick stiff felt. The

craft foam had high friction with the tray, so we placed the acrylic sheet

beneath the foam for all tests. We ran two tests for each substrate material.

Straight Line: rolling 2πr along the x-axis, then −2πr to return to the

origin.

Square Box: rolling in a square pattern with −2πr sides.

Each test was run with three 25.4 mm diameter steel (grade 200, 1±0.002

in, sphericity within 0.002 in) spheres, and the patterns were repeated 10

times, with the orientation recorded at the beginning and at the end of

each pattern. These tests used slightly smaller permanent magnets (3×8

mm diameter) than those used in the final prototype. Plots of the resulting

orientation error are shown in Fig 3.11. These plots show a steady increase

in the average orientation error. The best substrate material for all trials was

0.35 mm cardboard, followed by 0.26 mm acrylic, 2 mm foam, 3 mm foam,
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Figure 3.11: Repeatability test for rolling 25.4 mm spheres. Every marker
is the average of 3 trials and each test repeated a given pattern 10 times.
(Top) pattern 1: back and forth 2π in x, (Bottom) pattern 2: a square box,
each side a 2π rotation. The best surfaces had a drift of about 0.09 radians
per 250 radians of commanded movement (0.04% error).
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and 1.5 mm felt. In the longer trials using the square box pattern, both

the 3 mm craft foam and 1.5 mm felt failed when the spheres detached from

their magnets and rolled freely atop the surface. The best surface, 0.15 mm

cardboard, is thin, horizontally rigid, smooth, and a compromise for friction

between the tray and between the spheres. This surface had a drift of about

0.09 radians per 250 radians of commanded movement, a 0.04% error.

3.5.4 Results

In this section we compare experimental results on our hardware platform.

We first compare rotation sequences generated by a Taylor’s series approxi-

mation of various orders and paths discovered by a n-segment optimization.

We then demonstrate how multiple paths can be concatenated to move an

ensemble through a sequence of orientations. Next, we compare approximat-

ing an arbitrary rotation—in this case rotating 2 radians about the [3, 2, 1]

axis by concatenating two sequences generated by Taylor series approxima-

tion and a sequence discovered using n-segment optimization. Our final test

describes using n-segment optimization to generate movements in R2×SO(3).

1. Testing Ensemble Rotation Primitives: We compared motion prim-

itives designed to rotate the ensemble approximately π about the world

y-axis. All tests were performed with 6 spheres ranging in size ±25% of

nominal diameter. We compare primitives based on 1,2,3 and 4th-order

Taylor series with a 10-segment optimized path designed with position

error gain K = 0. These movements are primitives because they can

be concatenated to approximate any desired rotation. Note first that

due to symmetry the path used to generate the rotation Ry(a) can be

rotated to generate a rotation of a about any axis parallel to the plane.

Secondly, the Taylor series approximations can be linearly scaled in the

x-axis direction to approximate any rotation β about the world y-axis.

The Taylor series paths and the 10-segment optimized path are shown

in Figs. 3.6 and 3.8. These paths were tested by measuring the starting

and ending orientation for 10 iterations of the Taylor series paths and

25 iterations of the optimized path. The errors recorded for these tests

are shown in Fig 3.12 for all six sphere sizes.

For all spheres, the 10-segment optimized path performed best. Re-
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Figure 3.12: Experimental results from applying the paths shown in Figs.
3.6 and 3.8. Six spheres with diameter [16,18,19,22,24,25.4] mm were
tested. For each sphere, the optimized path was tested 25 times and each
primitive-based path was tested 10 times. Error bars show ± one standard
deviation. The last plot shows the theoretical error.
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Figure 3.13: Accuracy test for six spheres with diameters
[16,18,19,22,24,25.4] mm. The spheres were commanded to follow the
10-segment path in Fig. 3.8 designed by optimization. This test was
repeated 25 times. The yellow line is the theoretical error. The red line
shows the mean errors for each sphere tested ± one standard deviation.
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sults from using this path are highlighted in Fig. 3.13. The Taylor

series-based paths increased in accuracy as the order increased from 1st

to 3rd order, but the 4th order path decreased in accuracy. The accu-

racy gained by the higher-order series approximation may have been

cancelled by the process-induced drift shown in Fig 3.11.

2. Following a Path Sequence: To demonstrate how motion primitives

can be sequenced to complete a more complicated task, we concate-

nated three rolls that respectively approximate the rotations Rx(π),

Rz(π/2), and Rx(π). The compound path is 577mm long and shown

in Fig 3.8. We then selected six different-sized spheres and printed

four letters on appropriate sides of each sphere to illustrate the move-

ment. Fig. 3.9 shows four snapshots of these spheres while rolling

along the three move path. See http://www.youtube.com/watch?v=

-9go60KxtRI for a video of this rotation sequence.

3. Generating an Arbitrary Rotation: Tests 3 and 4 were implemented

using a single 25.4mm diameter sphere with 20 marked features. For

each test we generate 15 different paths for spheres with an assumed

radius equally spaced 0.75× to 1.25× the actual radius.

This experiment demonstrates how a Taylor series approximate rota-

tion, scaled and rotated appropriately, can be applied twice to approx-

imate an arbitrary rotation in SO(3). We then repeat the same test

using a 12-segment optimized path. To demonstrate the method, we

chose a rotation of 2 radians about the [3, 2, 1] axis. This corresponds

to a rotation Rz(θ)Rx(φ)Rz(ψ) with {θ ≈ 0.982426, φ ≈ 1.89125, ψ ≈
−0.19358}. As shown in section 3.4

Rz(θ)Rx(φ)Rz(ψ) = Rp (r(φ− π), θ)Rp (rπ, (θ − ψ)/2) ,

and so we design primitives to first roll a distance πr in the direction

0.588 radians with the x-axis, followed by a roll of length 1.24r in the

direction 0.98 radians with the x-axis. We then use a 12-segment opti-

mized path for the same desired rotation and the additional constraint

(∆x,∆y) = (0, 0) with position error gain K = 0.98.

These desired paths are shown in Fig. 3.14. The actual paths for 15

different assumed ball radii are shown in Fig. 3.15. Our vision sys-
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Figure 3.14: Paths for rotating 2 radians about the axis [3, 2, 1]. The left
path was generated by a two-step rotation using a 2nd-order Taylor series
approximation. On the right is a 12-segment optimized path. The path
lengths are {2182, 326} mm. The start point is shown in green and the stop
point in red. The 230× 125 mm workspace for our manipulator is
represented by a blue rectangle.

tem tracked angular error during these experiments, and the error as

a function of path distance is shown in Fig. 3.16. Note how the Taylor

series solution oscillates around the desired rotation, while the opti-

mized solution only converges at the end. The final error for each test

is shown in Fig. 3.17. The 12-segment optimized path outperforms the

path designed using Taylor series approximation.

4. Movement in R2 × SO(3): Our final tests compare movement in both

position and orientation. We use two 12-segment optimized paths that

respectively approximate ensemble movements of

(
[∆x,∆y]>,∆R

)
=
(
[0, 0]>, Rz(π)

)
and

(
[∆x,∆y]>,∆R

)
=
(
[2r, 0]>, Rx(0)

)
.

The desired and actual paths are shown in Fig. 3.18 and Fig. 3.19. The

path angular error is shown in Fig. 3.20 and the ending angular error

shown in Fig. 3.21.

3.6 Conclusion

We began with the problem of manipulating a plate-ball system where the

sphere has an unknown but bounded radius. We modeled the sphere as an
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Figure 3.15: Experimental paths followed for rotating 2 radians about the
axis [3, 2, 1]>. Top, path using Taylor series. Bottom, 12-segment optimized
path. The path of contact point is shown. Units are mm.
(Consistent color for each assumed radius in Figs. 3.15-3.17)
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Figure 3.16: Measured angular error as a function of path length for
different assumed radii while rotating 2 radians about the axis [3, 2, 1]>.
Top, error using Taylor series approximate rotation, bottom error using
12-segment optimized-path.
(Consistent color for each assumed radius in Figs. 3.15-3.17)
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Figure 3.17: Measured ending angular error for rotating 2 radians about
the axis [3, 2, 1]>. Top, error using Taylor series approximate rotation,
bottom error using 12-segment optimized path. Note the different y
scales—following the optimized path results in 1/2 to 1/3 the error of the
primitive-based path.
(Consistent color for each assumed radius in Figs. 3.15-3.17)

72



-100 -50 0 50

-50

0

50

-100 -50 0 50 100

-100

-50

0

Figure 3.18: Paths for the experiments rolling to a goal in R2 × SO(3).
Left,

(
[∆x,∆y]>,∆R

)
=
(
[0, 0]>, Rz(π)

)
and right

(
[2r, 0]>, Rx(0)

)
. The

path lengths are {314, 336}mm. The start point is shown in green and the
stop point in red. The 230× 125mm workspace for our manipulator is
represented by a blue rectangle.

ensemble control system, showed that this system is ensemble controllable,

and derived an approximate steering algorithm to brings the sphere to within

an arbitrarily small neighborhood of any given position and orientation in

R2 × SO(3). We applied our work to manipulate spheres with unknown but

bounded diameters, and validated our approach with hardware experiments

that simultaneously reoriented multiple spheres.

Our solutions consisted of open-loop paths that could be precomputed. We

demonstrated that the hardware system has low noise that was ≈0.04% of

commanded inputs. This noise introduces a drift term to the state evolution

that cannot be countered by open-loop control. In many application environ-

ments it is practical to add a camera system to sense the ball orientations.

We implemented and described such a vision system in section 3.5.2.

We also showed that a continuum of different-sized spheres are approxi-

mately controllable by a shared input. Thus, a finite number of different-sized

spheres are also approximately controllable by a shared input. Using meth-

ods similar to Chapter 4 with differential-drive robots and [14] with the Bloch

system, future work will apply feedback techniques to our plate-ball system.

Finally, an important contribution of this chapter was a new experimental

platform, so we provided a characterization of the system reliability and

described the system so it can be replicated. The magnetic actuation makes

the mechanism easy to implement, allows an unobstructed view of the ball

on the plane, and enables simultaneous manipulation of multiple balls with

different radii.
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Figure 3.19: Measured paths for rolling to a goal in R2 × SO(3). Top,(
[∆x,∆y]>,∆R

)
=
(
[0, 0]>, Rz(π)

)
and bottom

(
[2r, 0]>, Rx(0)

)
. The path

of contact point is shown. Units are mm.
(Consistent color for each assumed radius in Figs. 3.19-3.21)
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Figure 3.20: Measured angular error as a function of path length for
different assumed radii. Top,

(
[∆x,∆y]>,∆R

)
=
(
[0, 0]>, Rz(π)

)
and

bottom
(
[2r, 0]>, Rx(0)

)
.

(Consistent color for each assumed radius in Figs. 3.19-3.21)
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Figure 3.21: Measured ending angular error for rolling to a goal in
R2 × SO(3). Top,

(
[∆x,∆y]>,∆R

)
=
(
[0, 0]>, Rz(π)

)
and bottom(

[2r, 0]>, Rx(0)
)
.

(Consistent color for each assumed radius in Figs. 3.19-3.21)
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Chapter 4

Feedback Control of Many Differential-Drive
Robots with Uniform Control Inputs

10-9 10-6 10-3 100

Longest Axis (m)
Figure 4.1: Three robotic systems with uniform inputs. On the left,
light-driven nanocars [91]. In the middle, scratch-drive micro-robots [92].
On the right, six differential-drive robots commanded by a broadcast
control signal.

In this chapter, we derive a globally asymptotically stabilizing feedback

control policy for a collection of differential-drive robots under the constraint

that every robot receives exactly the same control input. We begin by as-

suming that each robot has a slightly different wheel size, which scales each

robot’s forward speed and turning rate by a constant. These constants may

be found by offline or online calibration. The resulting feedback policy is

easy to implement, is robust to standard models of noise, and scales to an

arbitrary number (even a continuous ensemble) of robots. We validate this

policy with hardware experiments, which additionally reveal that our feed-

back policy still works when the wheel sizes are unknown and even when

the wheel sizes are all approximately identical. These results have possible

future application to control of micro- and nano-scale robotic systems, which

are often subject to similar constraints.

Material from this chapter appeared in a preliminary conference version as [93].
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4.1 Introduction

Next-generation micro-scale and nano-scale robotic systems have little-to-

no onboard computation, and most are designed such that all robots in the

system receive uniform control inputs. Two robotic systems of this type are

shown in Fig. 4.1: light-driven nanocars and scratch-drive micro-robots.

The light-driven nanocar [91, 94] is a synthesized molecule 1.7×1.38 nm

in size containing a uni-directional molecular motor, actuated by a certain

wavelength of light. Future work by Tour et al. aims to add controllable

steering to this molecule.

The scratch-drive micro-robot, from Donald and Paprotny et al. [92,95,96],

is a device 60×250 µm in size actuated by varying the electric potential

across a substrate; multiple scratch-drive robots on the same substrate are

controlled by this single uniform control input. To independently control

each micro-robot, their system is designed with unique species of robots such

that individual species can be actuated while the others are immobilized or

spin in place.

The motion of both systems can be roughly approximated by a nonholo-

nomic unicycle. A common question is therefore—how do we steer a col-

lection of unicycles under the constraint that every one receives exactly the

same control inputs? This question is the one we address here.

We will investigate a collection of differential-drive robots under this same

constraint—that every robot receives exactly the same control inputs. Nom-

inally, a system of n differential-drive robots is not controllable. The path

followed by each robot will be a rigid-body transformation of the path fol-

lowed by every other robot. In practice, however, each robot is slightly dif-

ferent, and this inhomogeneity can be exploited in a systematic way in order

to recover controllability. In particular, we will show that if each robot has a

different wheel size, then we can derive a globally asymptotically stabilizing

feedback control policy that steers the position of all robots (independently)

between given start and goal configurations, despite the fact that they all

receive the same control inputs. Similar inhomogeneities can be found in

the systems of Fig. 4.1 (and in other micro/nano-scale robotic systems). For

example, small imperfections in their scratch-drive actuators lead to speed

variations between different scratch-drive micro-robots. Donald et al. re-

ported speed variations of ±40% of the commanded speed. This data is
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Figure 4.2: Left, a scratch-drive microrobot, a microrobot with unicycle
kinematics actuated by toggling the voltage levels of the substrate. These
robots can be commanded to move forward by duty cycling the substrate
voltage. Larger voltage pulses can snap the actuator arm (B) down,
creating a pivot point for turning, while low pulses can return the arm to
an up position. Right, a plot showing speed variation for a set of
scratch-drive robots. This range of velocities could enable controllability of
multiple robots using a common control signal.
Figure reprinted, with permission, from Donald et al. [92] © 2008 IEEE.

reprinted in Fig. 4.2.

Our approach is based on the application of ensemble control, which we

used in Chapter 2 to derive an approximate (open-loop) steering algorithm

for a nonholonomic unicycle despite model perturbation (e.g., unknown wheel

size) that scales both the forward speed and turning rate by an unknown but

bounded constant [56]. Rather than steer one unicycle with an unknown

parameter, we chose to steer an infinite collection of unicycles, each with a

particular value of this parameter in some bounded set. The idea was that if

the same control inputs steered the entire ensemble from start to goal, then

surely they would steer the particular unicycle of interest from start to goal,

regardless of its wheel size.

Here, we take advantage of this idea in a slightly different way. Rather

than trying to mitigate the effects of bounded model perturbation (i.e., of

inhomogeneity), we are trying to exaggerate these effects. Basic controllabil-

ity results carry over from Chapter 2. The main contribution of this chapter

is to derive a closed-loop feedback policy that guarantees exact asymptotic

convergence of the ensemble to any given position. We note that, for single

robots, it is possible to build a robust feedback controller that regulates po-

sition and orientation [21]. It is not obvious that the same can be done for

an infinite collection of robots.
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This chapter proceeds as follows. In Section 4.2, we provide a globally

asymptotically stabilizing feedback control policy to control an ensemble of

differential-drive robots. We discuss implementation details in Section 4.3.

We demonstrate the convergence of our policy under a standard noise model

in simulation (Section 4.4) and in hardware experiments (Section 4.5). These

experiments revealed surprising results: (1) our policy still works when the

wheel sizes are incorrectly specified and (2) our policy still works if all robots

are approximately identical.

4.2 Global Asymptotic Stabilization of an

Ensemble of Unicycles

In this section, we provide a control policy that globally asymptotically sta-

bilizes an infinite ensemble of unicycles. This control policy sets the linear

velocity u1(t) to decrease the position error. There exist configurations at

which no u1(t) can decrease the position error; however, we prove that at any

such configuration, except the origin, the ensemble can always be rotated in

place until there exists some u1(t) that will decrease the position error.

Consider a single unicycle that rolls without slipping. We describe its

configuration by q = [x, y, θ]> and its configuration space by Q = R2 × S1.

The control inputs are the forward speed u1 ∈ R and turning rate u2 ∈ R.

The kinematics of the unicycle are given by

q̇(t) = u1(t)

cos θ

sin θ

0

+ u2(t)

0

0

1

 . (4.1)

Given q(0), qgoal ∈ Q, the control problem for regulating position is to find

inputs u1(t) and u2(t) such that for any q(0) and qgoal,

lim
t→∞

∥∥∥∥∥
[
q1(t)

q2(t)

]
−

[
qgoal,1(t)

qgoal,2(t)

]∥∥∥∥∥
2

= 0.

If such inputs always exist, then we say that the system is globally asymp-

totically stabilizable.

We will solve this control problem under model perturbations which scale
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u1 and u2 by some unknown, bounded constant ε ∈ [1 − δ, 1 + δ] for some

0 ≤ δ < 1.

As in Chapter 2, our approach is to steer an uncountably infinite collection

of unicycles parametrized by ε, each one governed by

q̇(t, ε) = ε

u1(t)

cos θ

sin θ

0

+ u2(t)

0

0

1


 . (4.2)

We choose u2(t) = 1 so that

ẋ(t, ε) = εu1(t) cos(εt)

ẏ(t, ε) = εu1(t) sin(εt). (4.3)

Theorem 5. The ensemble (4.3) with 0 ≤ δ < 1 is globally asymptotically

stabilizable.

Proof: We will prove the origin is globally asymptotically stabilizable by

using a control-Lyapunov function [97]. A suitable Lyapunov function is the

mean squared distance of the ensemble from the origin:

V (t, x, y) =

∫ 1+δ

1−δ

1

2ε

(
x2(t, ε) + y2(t, ε)

)
dε (4.4)

V̇ (t, x, y) =

∫ 1+δ

1−δ

1

ε
(x(t, ε)ẋ(t, ε) + y(t, ε)ẏ(t, ε)) dε

= u1(t)

∫ 1+δ

1−δ
(x(t, ε) cos(εt) + y(t, ε) sin(εt)) dε

= u1(t)F (t, x, y)

Here, F (t, x, y) is the integral term which is finite as long as x(t, ε) and

y(t, ε) are square integrable over ε. To ensure F (t, x, y) is square integrable

we will require that the initial configurations x(0, ε) and y(0, ε) be piecewise

continuous. We note here that V (t, x, y) is positive definite and radially

unbounded, and V (t, x, y) ≡ 0 only at (x(t, ε), y(t, ε)) = (0, 0).
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4.2.1 Designing a Control Policy

To make V̇ (t, x, y) negative semi-definite, we choose

u1(t) = −F (t, x, y)

= −
∫ 1+δ

1−δ
(x(t, ε) cos(εt) + y(t, ε) sin(εt)) dε. (4.5)

For such a u1(t),

V̇ (t, x, y) = − (F (t, x, y))2 .

Note here that V̇ (t, x, y) ≤ 0, but there exists a subspace of (x(t, ε), y(t, ε))

such that V̇ (t, x, y) = 0. Because V̇ (t, x, y) is negative semi-definite, we can

only claim stability, not asymptotic stability. To gain a proof of asymptotic

stability, we will use an approach similar to that of Beauchard et al. [14] to

extend LaSalle’s invariance principle [98] to this infinite-dimensional system.

We will proceed by showing the invariant set contains only the origin.

4.2.2 Finding the Invariant Set

Define the set S as all configurations where no u1(t) exists that can decrease

the Lyapunov function:

S =
{
x(t, ε), y(t, ε)

∣∣∣V̇ (t, x(t, ε), y(t, ε)) = 0
}

=
{
x(t, ε), y(t, ε)

∣∣− (F (t, x, y))2 = 0
}

= {x(t, ε), y(t, ε)|F (t, x, y) = 0} .

Define the time the ensemble enters S as t0, the orientation of each robot at

t0 as θ0(ε), and t′ = t − t0. We then define all configurations that remain

identically in S as the invariant set Sinv. Any configuration that enters this

set will never modify its position because u1(t) = −F (t, x, y) = 0 for any

configuration in Sinv. Therefore we can drop the time-dependence of x(t, ε)

and y(t, ε):

Sinv =

{
x(ε), y(ε)

∣∣∣∣∫ 1+δ

1−δ

(
x(ε) cos(εt′ + θ0(ε))
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+y(ε) sin(εt′ + θ0(ε))

)
dε ≡ 0, ∀t′ ≥ 0

}
.

Because there is no time dependence, this property applies for all t′:

Sinv =

{
x(ε), y(ε)

∣∣∣∣∫ 1+δ

1−δ

(
x(ε) cos(εt′ + θ0(ε))

+y(ε) sin(εt′ + θ0(ε))

)
dε ≡ 0, ∀t′

}
.

We can remove θ0(ε) with the following change of coordinates[
x∗(ε)

y∗(ε)

]
=

[
cos
(
θ0(ε)

)
sin
(
θ0(ε)

)
− sin

(
θ0(ε)

)
cos
(
θ0(ε)

)] [x(ε)

y(ε)

]
,

giving the invariant set

Sinv =

{
x(ε), y(ε)

∣∣∣∣∫ 1+δ

1−δ

(
x∗(ε) cos(εt′) + y∗(ε) sin(εt′)

)
dε ≡ 0, ∀t′

}
.

We must show that no configuration except (x(ε), y(ε)) ≡ (0, 0) is in Sinv.

We do this by applying the Fourier transform in t′.∫ 1+δ

1−δ
(x∗(ε) cos(εt′) + y∗(ε) sin(εt′)) dε ≡ 0, ∀t′

F
[∫ 1+δ

1−δ
(x∗(ε) cos(εt′) + y∗(ε) sin(εt′)) dε

]
{ω} ≡ F [0] {ω}, ∀ω

F
[∫ 1+δ

1−δ
(x∗(ε) cos(εt′) + y∗(ε) sin(εt′)) dε

]
{ω} ≡ 0, ∀ω (4.6)

By linearity of the Fourier transformation (4.6) is∫ 1+δ

1−δ

(
F [x∗(ε) cos(εt′)] {ω}+ F [y∗(ε) sin(εt′)] {ω}

)
dε ≡ 0, ∀ω

We then apply the Fourier transform of sin(·) and cos(·) as follows.∫ 1+δ

1−δ

√
π

2

(
x∗(ε) (δ(−ε+ ω) + δ(ε+ ω))

+iy∗(ε) (δ(−ε+ ω)− δ(ε+ ω))

)
dε ≡ 0, ∀ω, (4.7)
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where δ(·) is the Dirac-delta operator. The Dirac-delta operator is non-zero

only when ε = ±ω. Because ε ∈ [1− δ, 1 + δ] and 0 ≤ δ < 1, we can integrate

(4.7) for all ω ∈ [1− δ, 1 + δ] to show that in the invariant set

x∗(ω) + iy∗(ω) ≡ 0, ∀ω ∈ [1− δ, 1 + δ]. (4.8)

Because x∗ and y∗ are both real-valued, (4.8) reduces to

x(ε) ≡ 0, y(ε) ≡ 0, ∀ε ∈ [1− δ, 1 + δ].

We have shown that V is positive-definite and radially unbounded, V̇ is

negative semi-definite, and the only invariant point where V̇ = 0 is the

origin. Therefore, we conclude the origin of the system (4.3) is globally

asymptotically stable under the control policy

u1(t) = −
∫ 1+δ

1−δ
(x(ε) cos(εt) + y(ε) sin(εt)) dε

u2(t) = 1. (4.9)

4.3 Implementation

In this section, we explain extensions of our control policy to unidirectional

inputs and to discrete-time, finite ensembles, and describe a standard noise

model. These extensions are useful for implementing our policy.

4.3.1 Extension to Unidirectional Vehicles

Our proof of GAS stability uses a control policy with positive angular velocity

commands but positive and negative linear velocity commands. The nano-

and micro-robots we are using for inspiration [91, 92, 94–96] cannot produce

negative linear velocities. To extend the control law to robots that cannot

move backwards, we modify it as follows:

u1(t) = max

(
0,−

∫ 1+δ

1−δ

(
xt,ε cos(εt) + yt,ε sin(εt)

)
dε

)
.
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rmin rmin

Figure 4.3: Because our control policy requires only non-negative turns, it
can be extended to vehicles with a minimum turning radius (e.g.
scratch-drive robots and automobiles) by defining the robot center to be
the center of rotation.

u2(t) = 1. (4.10)

In this case, the invariant set is

Sinv = {x(ε), y(ε)|F (t, x, y) ≤ 0, ∀t′ ≥ 0} (4.11)

=

{
x(ε), y(ε)

∣∣∣∣∫ 1+δ

1−δ

(
x∗(ε) cos(εt′) + y∗(ε) sin(εt′)

)
dε ≥ 0, ∀t′ ≥ 0

}
.

We have already shown that the only solution identically equal to zero for

all t′ ≥ 0 is x(ε) = y(ε) = 0. However, Sinv now allows negative F (t, x, y)

values and our proof of Theorem 5 does not apply.

Empirically in both simulation and hardware experiments, the control pol-

icy 4.10 is still asymptotically stable. In our experiments the Lyapunov func-

tion error under the unidirectional control policy is a constant factor greater

than the error under the bidirectional control policy.

We note briefly that scratch-drive robots cannot turn in place, but instead

pivot around the tip of their steering arm. Because our control policy requires

only non-negative turns, it can be extended to vehicles with a minimum

turning radius by the following transformation. Given a minimum turning

radius rmin, define the new robot center to be the center of rotation. This is

a translation (−rmin, 0) in the robot reference frame, as shown in Fig. 4.3.
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4.3.2 Extension to a Finite Ensemble of Robots

Thus far we have worked in continuous time for an ensemble of robots.

Many real-life applications, including the micro- and nano-robots we dis-

cussed above, involve a finite number of robots which are controlled and

measured in discrete time. We call an ensemble with a finite number of

robots a finite ensemble.

To model a finite ensemble of n robots, we redefine the system kinematic

model from (4.3) as

ẋi = εiu1(t) cos(θi(t))

ẏi = εiu1(t) sin(θi(t))

θ̇i = εiu2(t), (4.12)

and in the control policy (4.9), we replace the integration over ε with a finite

sum from 1 to n:

u1(t) = − 1

n

n∑
i=1

(xi cos(θi(t)) + yi sin(θi(t)))

u2(t) = 1, (4.13)

where for the ith robot, εi is the variable parameter, (xi, yi) is the position

at time t, and εit is the orientation at time t.

Theorem 6. The finite ensemble 4.12 under control law 4.13 is globally

asymptotically stable.

Proof: A suitable Lyapunov function is the mean squared distance of

the finite ensemble from the origin:

V (t, x, y) =
1

n

n∑
i=1

1

2εi

(
x2
i + y2

i

)
(4.14)

V̇ (t, x, y) =
1

n

n∑
i=1

1

εi
(xiẋi + yẏi)

= u1(t)
1

n

n∑
i=1

(
xi cos

(
εit+ θi(0)

)
+ yi sin

(
εit+ θi(0)

))
= u1(t)F (t)

86



The invariant set is now

Sinv =

{
x,y

∣∣∣∣∣ 1n
n∑
i=1

(x∗i cos(εit
′) + y∗i sin(εit

′)) ≡ 0, ∀t′ ≥ 0

}
.

As in 4.2, we then apply the Fourier transform as follows.

1

n

n∑
i=1

√
π

2

(
x∗i (δ(−εi + ω) + δ(εi + ω))

+iy∗i (δ(−εi + ω)− δ(εi + ω))

)
≡ 0, ∀ω. (4.15)

Again x∗i and y∗i are real-valued. By setting ω = εi for i ∈ [1, n] we can show

that in the invariant set

(xi, yi) = (0, 0) ∀i ∈ [1, n],

and therefore the finite ensemble is globally asymptotically stabilizable with

control policy (4.13).

4.3.3 Extension to Discrete-Time

To simplify implementation of (4.13) on a robotic testbed with actuation and

sensing at discrete times, we split each ∆T time step into two stages with

piecewise constant inputs. During the first stage we command the robots to

turn in place, and during the second stage we apply a linear velocity.

F (k) =
1

n

n∑
i=1

(xi(k) cos(θi(k)) + yi(k) sin(θi(k)))

k =
t

∆T
−mod (t,∆T )[

u1(t), u2(t)

]
=

 2
∆T

[−F (k), 0] t− k∆T < ∆T
2

2
∆T

[0, φ] else
(4.16)

We can then write the kinematics as[
xi(k + 1)

yi(k + 1)

]
=

[
xi(k)

yi(k)

]
+

[
εi cos(θi(0) + εikφ)

εi sin(θi(0) + εikφ)

]
u1(k), (4.17)
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for i = 1, 2, . . . , n and k ∈ Z. Eq. (4.17) is a discrete-time linear time-varying

system. Obviously, as φ → 0, the discrete-time ensemble (4.17) approaches

the continuous-time model (4.12). To prove (4.16) stabilizes (4.17), we show

the system is uniformly k-step controllable, as in [99, chap 25.3].

We write (4.17) in standard notation as

qi(k + 1) = Ai(k)qi(k) +Bi(k)u1(k). (4.18)

Here Ai(k) is the identity matrix for all i, k. We can calculate Bi(k) as

Bi(0) =

[
cos(θi(0))

sin(θi(0))

]

Bi(1) =

[
cos(θi(0) + εiφ)

sin(θi(0) + εiφ)

]
...

Bi(k) =

[
cos (θi(0) + εikφ)

sin (θi(0) + εikφ)

]

B(k) =


B1(k)

B2(k)
...

Bn(k)


We define the controllability matrix Ck as

Ck = [B0,B1 . . .Bk−1] .

The finite ensemble with n robots has 2n degrees of freedom. To control each

robot’s x, y position requires C to be rank 2n. This matrix is almost always

full rank provided that k � 2n and a suitable choice of φ. In our simulations

and hardware experiments we use φ = π
2
. If Ck is full rank, then for any

starting state q0 and desired final state q1, the control sequence is derived

by solving in the least squares sense the overdetermined system of equations

Cku[0,...,k−1] = (q1 − q0). (4.19)
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We note that for k = 2n, C is almost always ill-conditioned, leading to very

large control commands and poor convergence. Better results are obtained

for k = 5n, as shown in Fig. 4.4, with control effort 15 orders of magnitude

less than that for k = 2n and exact convergence to the goal.

The control policy (4.16) is easy to implement, never increases the summed

distance of the ensemble from the goal, and is robust to standard models of

noise.

4.3.4 Applying a Standard Noise Model

To model noise in our simulations we apply the noise model in [22, Chap.

5.4.2] by Thrun et al. This model defines each discrete-time motion as a

rotation, a translation, and a second rotation, each perturbed by Gaussian

noise. It uses the four parameters α1, α2, α3, and α4 to weight the correlation

of noise between rotation and translation commands. If the desired rotation,

translation, and second rotation are given by [δrot1, δtrans, δrot2], then we can

sample a realistic motion by the sequence [δ̂rot1, δ̂trans, δ̂rot2] as follows

δ̂rot1 = δrot1 − sample(α1δ
2
rot1 + α2δ

2
trans)

δ̂trans = δtrans − sample(α3δ
2
trans + α4δ

2
rot1 + α4δ

2
rot2)

δ̂rot2 = δrot2 − sample(α1δ
2
rot2 + α2δ

2
trans), (4.20)

where sample(x) generates a random sample from the zero-centered normal

distribution with variance x. We use this noise model for all discrete-time

simulations with a finite number of robots.

4.4 Simulation Results

Here, we present our simulation methodology and results for both continuous-

and discrete-time simulations.

4.4.1 Continuous Time Simulation

We implemented the finite ensemble (4.12) with control policy (4.13) in Mat-

lab to simulate n = {1000, 2000} robots in continuous time for two different
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Figure 4.4: Error and control effort of a discrete-time finite ensemble of
n = 120 robots under control (4.19). At top are results for k = 2n. The
controllability matrix Ck is ill conditioned, leading to poor convergence and
large control efforts. The bottom plot shows k = 5n, leading to control
effort 15 orders of magnitude less and convergence to the goal. The initial
error for each simulation is 100, but with k = 2n the final error is 58, while
the final error for k = 5n is zero.
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test cases. For these tests δ = 1/2, and εi = 1 − δ + 2δ
n
i. We also com-

pared bidirectional policy with a unidirectional policy. In these simulations

u2(t) = cos(
√
t) because the finite ensemble poorly approximates the contin-

uum for large t when u2(t) = 1.

Point to Point: Robots are initialized to (xi, yi, θi) = (1, 1, 0) and steered

to the origin. Results are shown in Fig. 4.5.

Path to Point: Robots are initialized to

θi = 2πi/n,

[
xi

yi

]
=

[
cos(θi)

sin(θi)

]
,

a circle of radius 1, and steered to the origin. Results are shown in

Fig. 4.6.

In each simulation, under our control policy the error converges asymp-

totically to zero. Additionally, the system errors and trajectories for

n = 1000 and 2000 are identical, suggesting that this level of discretiza-

tion accurately represents the ensemble (n = ∞) kinematics. Results

are shown in Fig. 4.6.

Unidirectional vs. Bidirectional Control Inputs: robots are initialized

in the same manner as Point to Point, but simulated with the bidirec-

tional control policy (4.13) and the unidirectional control policy (4.10).

The error for unidirectional policy is on average twice that of the bidi-

rectional policy. Results are shown in Fig. 4.7.

4.4.2 Discrete Time Simulation

We simulated a discrete-time collection of 120 robots under various levels of

noise with both differing and identical values of ε. Sample trajectories are

shown in Fig. 4.8. We explored three different cases:

Different ε Values: Simulating with differing ε, we found that with no

noise, the position error of our robot collection converged to zero er-

ror. When the noise model (4.20) was applied, the error converged to

a non-zero value for small values of noise, and diverged for large values

of noise, as shown in Fig. 4.9.
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Figure 4.5: Continuous time simulation of n robots, with ε ∈ [0.5, 1.5], all
initialized to (1, 1) and steered to (0, 0) using control policy (4.13). The
simulation was run with n = {1000, 2000}. Each trial achieved the same
error, as shown in the top plot. State trajectories of the system are shown
in the bottom plot. Lines show the path followed for five particular values
of ε. Thick black lines show the entire ensemble at instants of time.
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Figure 4.6: Continuous time simulation of n robots, with ε ∈ [0.5, 1.5],
initially evenly distributed about the unit circle and steered to (0, 0) using
control policy (4.13). The simulation was run with n = {1000, 2000}. Each
trial achieved the same ending error, as shown in the top plot. State
trajectories of the system are shown in the bottom plot. Lines show the
path followed for five particular values of ε.
(Video online: http://www.youtube.com/watch?v=PAdmASfMqAk).
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Figure 4.7: Lyapunov function for a continuous time simulation of
n = 1000 robots, with ε ∈ [0.5, 1.5], all initialized to (1, 1) and steered to
(0, 0) using the bidirectional control policy (4.13) and the unidirectional
control policy (4.10). The error for unidirectional policy is on average twice
that of the bidirectional policy.
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Figure 4.8: Simulation results from applying the control policy from Eq.
(4.16) for 120 robots with unicycle kinematics. Wheel size (ε) was evenly
distributed from 0.5 to 1.5. The plot shows the starting ‘+’ and ending ‘◦’
positions along with 8 selected state trajectories.
(Video online: http://www.youtube.com/watch?v=btWFQrBhrLI)
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Figure 4.9: Error of a discrete-time, finite collection of 120 robots
simulated under a standard noise model (4.20) with ε ∈ [0.5, 1.5] under
different levels of noise parametrized by α; all α are equal.

Identical Robots: When all 120 robots are identical, the smallest position

error is achieved within a specific intermediate range of noise values.

Large α values caused the error to diverge, while small α values led to

very slow convergence. This result is shown in Fig. 4.10.

Effect of Rotational Noise: Again with identical robots, we held the trans-

lational and cross-term noise at 0.01, a value which converged quickly in

the previous simulation, and varied the rotational noise, α1. We found

that convergence rate increased with α1, up to a limit of approximately

α1 = 1. This result is shown in Fig. 4.11.

These results show that noise is necessary for a finite collection of identical

robots to be controllable. This is a subset of a larger class of problems for

which noise is beneficial, or even necessary, for stability and control.
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Figure 4.10: Error of a discrete-time, finite collection of 120 robots
simulated under a standard noise model (4.20) with all ε set to 1. α = 0.01
provides the best convergence.
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simulated under a standard noise model (4.20) with all ε set to 1. Focusing
the noise in the rotation (α1) improves the convergence for identical robots.
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Figure 4.12: Four differential-drive robots with wheel diameters in the set
{102, 108, 127, 152} mm. Each robot receives the same broadcast control
signal, but the different wheel sizes scale the commanded linear and angular
velocities. Robots courtesy of College of Engineering Control Systems
Laboratory [100].

4.5 Hardware Experiments

Here, we describe our hardware system and explain our experimental proce-

dures and results.

4.5.1 Differential-Drive Robots

Our differential robots have two large direct-drive wheels in the back, and

a free-wheeling ball caster in the front, as shown in Fig. 4.12. In the ex-

periments shown in this chapter, we use wheels with diameters in the set

{102, 108, 127, 152} mm. Trials with identical-size wheels all used 102 mm

wheels, as shown in Fig. 4.1.

4.5.2 System Overview

A block diagram of our system in Fig. 4.13 shows the relevant hardware. The

robots are commanded to either move linearly or turn in place in units of

encoder ticks. These commands are broadcast over 900 MHz radio using an

AeroComm 4490 card.
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Figure 4.13: Block diagram for steering a multi-robot system with a
broadcast uniform control input.

Figure 4.14: Hardware experiment setup showing six differential-drive
robots at their target locations.

Four or five tracking dots are fixed to the top of each robot. These dots

can be seen in Fig. 4.14. Position and orientation data for each vehicle are

uniquely measured by an 18-camera NaturalPoint OptiTrack system with

reported sub-millimeter accuracy. A Matlab program computes the control

policy (4.16) and sends the broadcast uniform control input.

4.5.3 Online Calibration

Calibration is not necessary for successful implementation of the controller,

but it improves performance. In our hardware experiments, for every trans-

lation command u(k), we record beginning and ending positions to calculate

di, the distance traveled, and update each εi value according to the following

rule:

εi(k + 1) = εi(k) +K
|u(k)|
M

(
di
|u(k)|

− εi(k)

)
.
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K is the weighting we give new measurements of ε, and M is the maximum

possible distance we may command the robot to move. For the experiments

shown here K = 0.1 and M = 0.7.

4.5.4 Results

We conducted a series of experiments to show that our control policy con-

verges in a real system. Fig. 4.15 shows frames from a video of two of these

experiments. We show results for unique wheel sizes with online calibration,

for unique wheel sizes without online calibration, and for identical wheels.

Unique Wheel Sizes with Online Calibration: Initially, each robot was

assumed to have ε = 1, and the actual values of ε were learned through

online calibration. The robots were successfully commanded from a

horizontal line, to a box formation, to a vertical line, and finally to a

tight box formation. The results in Fig. 4.16 show convergence both in

position and in ε values. Online calibration requires persistent excita-

tion, so convergence slows as the robots approach their targets.

Unique Wheel Sizes without Calibration: Surprisingly, it is not neces-

sary to know or to learn the ε values. For this entire experiment ε was

set to 1. Four robots were successfully commanded from a horizontal

line to a box formation, and then to a vertical line. For each formation

the summed error converged to less than half a meter, as shown in

Fig. 4.17.

Identical Wheel Sizes: Even with identical ε values, a collection of robots

is still controllable due to process noise. Fig. 4.18 shows successful

convergence results of four robots with identical wheel sizes commanded

to the same formations as the previous experiment.

4.5.5 Applications Enabled by Position Control

The ability to control position enables many tasks. In a video at http://www.

youtube.com/watch?v=z-t1rl0C4ic, we demonstrate robot rendezvous us-

ing six robots with identical-sized wheels. Robot rendezvous robustly collects

all the robots to one position; this primitive operation could be useful for
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Figure 4.15: Photographs of hardware experiments steering four
differential-drive robots with different wheel sizes (left column) and six
differential-drive robots with identical wheel sizes (right column). The
robots are initialized in a straight line and all receive the same control
input from a wireless signal. A motion capture system is used for feedback
to steer the four robots to the colored targets and the six robots to
rendezvous. In the third frame a disturbance is injected by moving a single
robot away from its target (left) and by splitting the ensemble (right).
(Video online: http://www.youtube.com/watch?v=50gb5WMqJbY)
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Figure 4.16: Hardware experiment with unique wheel sizes and online
calibration. The top plot shows the convergence of ε values estimated by
online calibration. The bottom plot shows the summed distance error as the
robots were successfully steered through the sequence of formations shown.
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alignment of micro- and nano-robots. To achieve robot rendezvous, the goal

position of each robot is set to the mean position of the ensemble.

Dispersion is the opposite of gathering. To achieve dispersion, the goal po-

sition of each robot is set to the mean of the ensemble, but the control policy

is set to u1(t) = F (t), which will repel robots from each other. Dispersion

may be useful for distributing micro- and nano-robots over a substrate.

Other tasks include forming subgroups, path- and trajectory-following,

and pursuit/avoidance. Each can be implemented by a suitable selection of

time-varying target locations in (4.13). A simulation of trajectory-following

is shown in Fig. 4.19.

In a similar manner we can incorporate collision and obstacle avoidance

by adding a potential field to the control policy (4.9) as in [101, Chap. 4].

A sample run of a simulation using potential fields to avoid two obstacles is

shown in Fig. 4.20.

Micro/nano-manipulation and assembly are the focus of considerable mi-

cro and nano-robotics research. Sitti, Yu, and Cecil provide surveys of nano-

manipulation and assembly [102–104]. Savia and Koivo focus on a survey of

contact strategies for micro manipulation [105]. Micro/nano-manipulation

refers to manipulating objects at the micro- and nano-scale, while assem-

bly describes building structures from smaller components. The ability to

control position and track trajectories enables an ensemble of micro- and

nano-robots to be used as a manipulator. One advantage of using an ensem-

ble control method over other methods, e.g. an atomic force microscope tip,

is that ensemble methods allows the simultaneous manipulation of multiple

objects. Fig. 4.21 shows frames from a simulation where six robots assemble

a structure from three smaller components. The simulated robots receive

exactly the same force and torque input commands, but each robot scales

these commands by a unique constant. These simulations were performed

using Box2D, version 2.0.1 (available: http://box2d.org/).

4.6 Conclusion

In this chapter we investigated ensembles of unicycles that share a uniform

control input. Through Lyapunov analysis, we derived a globally asymptotic

stabilizing controller for a continuous-time, infinite ensemble. We extended
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Figure 4.19: Simulation of trajectory-following. Six differential-drive
robots with wheel sizes ranging from 0.5 to 1.5 of nominal are steered with
a common control signal to follow trajectories that spell out ‘RMSLAB’.
The top left robot (blue) has the smallest wheels while the lower right
robot (black) has the largest wheels. The bottom plot shows that the
Lyapunov function stabilizes around 0.37.
(Video online: http://www.youtube.com/watch?v=z-t1rl0C4ic)
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Figure 4.20: Simulation using potential fields for obstacle avoidance. 120
robots with varying wheels sizes ε ∈ [0.5, 1.5] are steered from the start
position in green to the goal position spelling the word “ILLINOIS”. The
current robot position is drawn in red, and the path from start to goal for
each robot is drawn in black.
(Video online: http://www.youtube.com/watch?v=5W8Sc2FwhxM)
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Figure 4.21: Image frames from an assembly and manipulation simulation.
Six differential-drive robots are drawn with pink circles and they
simultaneously manipulate three diamond-shaped objects. The goal
trajectories are represented with yellow circles. In 5,000 steps the robots
approach the objects (frames 1–3), push them into position (4-5), and then
orient them to assemble the final object (6).
(Video online: http://www.youtube.com/watch?v=VeZF6aT-hog)
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this controller to finite collections of unicycles in continuous and discrete

time. In simulation, we showed that a discrete-time, finite ensemble of uni-

cycles converges asymptotically and rejects disturbances from a standard

noise model. In hardware experiments, we demonstrated online calibration

which learned the unknown parameter for each robot. These experiments led

to surprising results that (1) our controller still works when all wheel sizes

are wrong and (2) in the presence of noise, our controller works even when

all wheel sizes are the same.

This work shows that a collection of unicycles with uniform inputs to

all robots can be regulated to arbitrary positions, reject disturbances from a

standard noise model, and converge to goals with global asymptotic stability.

This work may be particularly relevant to systems of micro- and nano-robots,

which are often constrained to uniform inputs.
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Chapter 5

Future Work

Figure 5.1: In this dissertation we applied the framework of ensemble
control theory to control the three robotic systems shown above.

This dissertation applied the framework of ensemble control theory to de-

rive approximate steering algorithms for two classical robotic systems under

bounded model perturbation. We applied this same framework for feedback

control of a multi-robot system where every robot receives exactly the same

control input. We validated our approach on each system with the hardware

experiments shown in Fig. 5.1.

This research provides many promising avenues for future work. Outlined

below are opportunities related to control of many differential-drive robots,

control of many balls with a plate-ball manipulator, and feedback control of

canonical ensemble control systems.

Feedback Control of Many Differential-Drive Robots

We demonstrated position control and trajectory following with this multi-

robot system. The planar control law we provided could be extended to

three dimensions for swimming and flying robots with the addition of a sec-

ond input for rotation. Another useful approach may be to treat each robot
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as a finger for manipulating objects in a planar workspace. These fingers

could be used for object alignment, transport, form closure, and assembly.

Although we showed that the orientation of each robot in the ensemble is

not controllable, this limitation does not apply to the objects being manip-

ulated. Provided the object to be manipulated is larger than the individual

robots, the ensemble can apply arbitrary forces and torques to steer objects

along trajectories in SE(2). Possible applications include targeted therapy,

material removal, assembly, and telemetry for remote sensing.

Moreover, the final orientation of each robot is easy to compute. By as-

signing desired ending positions as a function of the final orientation, the

ensemble can be steered to control the final orientation of the robots relative

to a fixed object. This could enable the robots to surround a target and

deliver material or to construct a boundary.

We proved that a finite ensemble of differential-drive robots is globally

asymptotically stable. Our simulations indicate that it may be possible to

prove the stronger result that our feedback policy provides exponential con-

vergence of a finite ensemble.

Finally, the requirements for our control policy are modest. We showed

that the policy applies even to robots with non-negative linear and angu-

lar velocities and minimum turning radii. This work may be particularly

relevant to systems of micro- and nano-robots, which are often constrained

to uniform inputs. Applying this policy to a micro- or nano-robotic system

would demonstrate if this approach is practical. Additionally, our analysis

of behavior under uncertainty provided insight on which tolerances are help-

ful for control and which are detrimental. This may prove helpful for the

engineers who design these robots.

Feedback Control of Many Spheres with a Plate-Ball Manipulator

We designed piecewise-constant input trajectories to move a sphere between

start and goal configurations in R2×SO(3) despite an unknown sphere radius.

This is a case-study for robotic-manipulation.

On a different scale, the results in this dissertation may find application in

a manufacturing environment where an industrial robot manipulates many

parts in parallel. In particular, the control-Lyapunov approach in Chapter 4

for differential-drive robots could be applied to manipulating many spheres.
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Preliminary results with spheres painted with one hemisphere black and the

other hemisphere white indicate similar convergence properties as in Chapter

4.

Finally, the optimized paths for the plate-ball problem in Chapter 3 only

searched a limited space of n interleaved x- and y-axis rotations. This search

returned a local minimum. The optimal shortest-length paths for a single

ball are in general smooth curves. Future work could apply optimal control

tools (perhaps pseudospectral optimization [67]) to construct better paths

with guarantees of optimality.

Opportunities in Ensemble Control

For the purposes of this dissertation we restricted ourselves to three robotic

systems. There are many other classical systems that can be shown to be en-

semble controllable, e.g. a mass-spring-damper system with unknown param-

eters, planar bodies with thrusters with unknown thruster power/position,

and the general problem of rolling bodies in contact.

Lastly, the feedback control law presented in this dissertation has a simple

form that is easy to compute. It may be possible to apply similar feedback

control techniques to ensemble control problems outside of robotics.
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