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ABSTRACT

Many applications for autonomous agents require the agent to have accurate position

data. Signal-strength based localization attempts to determine an agent’s location in

Rn from a scalar sensor reading z. This is a nontrivial problem because the mapping

from Rn to z is noninvertible.

Indoor Localization attempts to solve this problem in an indoor environment. This

adds challenges. Among these are the effects of signal interference; signal dropout

due to walls, doors, and humans; and the expense of data collection.

This project implements a localization system on an autonomous system, the Seg-

Monster. The SegMonster is a human-sized robot that rides a commercial Segway

personal transporter. Local data from wheel-mounted encoders are combined with

signal-strength based localization that interprets wireless signal strength using Gaus-

sian processes to calculate a global position estimate.
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CHAPTER 1

INTRODUCTION

A brave knight returned to his castle after an absence of six months.

After being presented with great fanfare, the knight reported his feats,

“Oh King, I’ve spent the last six months pillaging, burning, and looting

the villages of your enemies in the east.” The king answered, “Wonder-

ful—but we don’t have any enemies in the east.” The knight hesitated for

a moment, then replied, “We do now.”

—Anon

Location matters. Many actions that are acceptable in one context are inappropriate

in others. Most robots require an accurate position value to accomplish their ob-

jectives. Industrial robots achieve accurate end-effector positioning through a rigid

structure with sensors (usually optical encoders) at every joint, and calculate their

position with respect to the fixed world coordinates [1]. Mobile robots are, by def-

inition, not connected to a fixed world coordinate and so must cope with position

uncertainty. Mobile robotics can be divided into behavior-based robotics and state-

based robotics [2]. Most behavior-based systems are reactive and work without a

parameterized version of their world. Examples include very basic cleaning robots:

[If floor is dirty: stay and vacuum, else: move] and light chasing photovores: [For-

ever : Move toward light]. Such robots respond directly to the inputs their sensors

provide. State-based mobile robots attempt to describe their position and their world
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through state variables. They try to use sensor inputs to refine their state variables.

Because they are untethered, state-based mobile robots must either keep track of

changes to their position, or extract measurements from the world to calculate their

position. This process is called localization.

This thesis presents the challenge of localization with respect to the SegMonster, a

human-sized autonomous robot depicted in Fig. 1.1.

Figure 1.1: The SegMonster, a Segway-riding mobile robot. The SegMonster was
made autonomous for this thesis.
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After an overview of localization, Chapter 2 presents several basic solutions to the

problem. Dead reckoning, when internal state measurements are integrated to keep

track of the state, is analyzed first and found to be lacking for tracking location, and

totally unsuited for state estimation from an unknown starting configuration. Process

noise causes any state information to drift, so the robot loses state information as it

acts in the environment and the environment acts on it.

Simple observers are often used for state estimation, and are analyzed next. Observers

can reject model inaccuracies and correct faulty state information, but only for a nar-

row class of systems. Most robots fall outside this class. Observers provide a first

step towards robust state estimation, but fail for a number of reasons. Many of the

problems with these first solutions stem from the fact that they only maintain a single

state estimate. It would be better to maintain a probability distribution. Chapter 3

begins to add this extra information to the model. The Kalman filter is a recursive

procedure to estimate state. Its chief difference from an observer is that the Kalman

filter maintains both a state estimate and the estimate error covariance matrix. For

linear systems with linear noise, the Kalman filter provides an optimal state estimate.

Kalman filters have several drawbacks. Though they maintain a state estimate and

covariance explicitly, they are restricted to linear or linearized systems. Particle fil-

ters, in contrast, represent the state estimate and covariance implicitly, by using a

large number of state estimates. The motion model can propagate this data set of

state estimates, which can be linear or nonlinear. The state mean and covariance can

be extracted from this data set.

Localization requires global sensors that can be processed to determine position in

the world. One source for this global information is wireless signal strength. Wireless
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networks are becoming ubiquitous in urban environments. Much research has been

and is being done on estimating location from wireless signal strength. This thesis

presents a solution that uses Gaussian processes (GPs) to model the expected signal

strength over a map. GPs are non-parametric models that estimate Gaussian distri-

butions over functions based on training data [3]. Chapter 4 discusses strengths of

GPs and presents a method to construct a map of the environment.

The SegMonster as a robotic platform is unique, and presents an interesting case

study for control techniques. Chapter 5 describes the SegMonster and its dynamics.

Some local controllers are presented.

Chapter 6 describes the experimental results from a localization solution implemented

on the SegMonster. Finally, the concluding chapter gives suggestions for further work.
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CHAPTER 2

LOCALIZATION

One of Igor’s former masters had made a tick-tock man, all levers and

gearwheels and cranks and clockwork. Instead of a brain, it had a long

tape punched with holes. Instead of a heart, it had a big spring. Provided

everything in the kitchen was very carefully positioned, the thing could

sweep the floor and make a passable cup of tea. If it wasn’t carefully

positioned, or if the ticking, clicking thing hit an unexpected bump, then

it’d strip the plaster off the walls and make a furious cup of cat.

—Thief of Time, Terry Pratchet

2.1 Classification

There are two main problems in localization. The first is maintaining a position es-

timate from a known starting point.

This task is called position tracking, and is useful when the robot starts from a

hardhome configuration or when an outside agent supplies the starting conditions.

x0 =

[
3 2 π

]
⇒ xt =

[
? ? ?

]
. (2.1)
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Localization from an unknown starting position is called global localization. Position

tracking is a subset of global localization and is less complex.

x0 =

[
? ? ?

]
⇒ xt =

[
? ? ?

]
. (2.2)

A third and more advanced localization problem is called the kidnapped robot problem.

In this problem, an outside agent is allowed to freeze the robot’s internal state and

move the robot to another location at any time without informing the robot. In order

to recover, the robot must realize that its current state estimate is incorrect, and start

a new global localization.

2.2 Representing a Belief about Location

Probability densities, which map a scalar probability to every point in the configura-

tion space of the robot, offer a way to represent the certainty of a position estimate.

p (xt = x)∀x ∈ C. (2.3)

If the current position is known to be x0, the probability distribution can be repre-

sented as

x =

 1 if x = x0

0 otherwise.

Figure 2.1 shows that as uncertainty grows, the probability distribution spreads out.

For mobile robotic applications, a useful system state is the robot’s x and y position

and heading. This information is called the robot’s pose (position and heading). The

control inputs to the SegMonster are a desired speed and desired angular velocity

6
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Figure 2.1: Using probability distributions to represent location certainty. A point
represents total certainty about position. As certainty decreases, the point spreads
into a probability distribution. If all position estimates are equally likely, the prob-
ability distribution is uniform. The progression from left to right shows decreasing
certainty.

xt =


x

y

θ

ut =

 v

ω

 . (2.4)

The robot pose will be represented by the following icon: , a circle centered at

(x, y), with a line extending from (x, y) in the direction θ, referenced with 0 radians

pointing to the right. Because the input contains an angular velocity, the state

update equations are nonlinear xt = f(xt−1,ut). The state update equations for the

SegMonster (and other unicycle-type robots) are

xt =


xt

yt

θt

 =


xt−1 + vt cos(θt−1)∆t

yt−1 + vt sin(θt−1)∆t

θt−1 + ωt∆t

 . (2.5)

Figure 2.2 depicts the state update in block diagram form.

On the SegMonster, the speed and angular velocity are computed by differentiating

the output of optical encoders mounted on each wheel. If the model were precise

7



System

H
x y

u ++

F

G

Z-1

Figure 2.2: Block diagram for a digital system. Time is discrete, and the block z−1

is a unit delay. Here, F is the linearization of f at the given state. The linearization
of a noiseless system can have arbitrarily small drift by choosing a small enough step
time.

(perfectly calibrated encoders; equal size, perfectly round tires; zero wheel slippage;

infinite resolution encoders), then tracking would be a simple procedure. The only

errors would stem from the linearization, and could be made arbitrarily small by

shrinking the step size.

2.3 Dead Reckoning

Integrating control inputs (such as the desired speed and angular velocity) to update

the pose estimate is called dead reckoning. Using local sensors such as onboard en-

coders, rate gyros, or accelerometers to estimate speed and angular velocity also falls

under this heading. Dead reckoning works well in simulation and in practice for short

distances, but it is an open loop system and suffers from drift. Often in practice, as

in Fig 2.3, heading and distance errors increase until the resulting position estimate

is useless.

This drift has a number of causes that can be lumped into either model errors or

sensor errors. Both can be minimized. The model can be improved by changing the

robot to be more precise (exchange balloon tires for precision milled steel wheels), or

by measuring the robot constants more accurately. Some of the orientation drift in

Fig. 2.3 is due to low tire pressure in the right wheel. The accuracy of the initial

8



Figure 2.3: Test results showing dead reckoning error. The SegMonster navigated a
closed loop path in the hallways of Everitt lab (70 × 50 m). By the end of the first
hallway (20 m) the dead reckoned orientation estimate had accumulated a 30◦ error.
The position error increased to 90 m over the course of the exercise.

position estimate is also important. While position errors may be negligible, the effect

of a small initial deviation from the true orientation integrates over time.

To minimize sensor error, the sensors can be replaced with more accurate counter-

parts. The SegMonster’s encoders, with 1250 ticks per revolution, are already near

the top end of the range for commercial optical encoders. They are accurate for speed

measurement, but perform poorly for measuring angular position change. Precision

MEMS rate-gyros perform much better, with measured drift in our lab that is less
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than 10 per min. Some commercial systems have drifts in the tenths of degrees per

hour in orientation and of less than 0.6 nautical miles per hour in position [4].

Process noise is a blanket term that encompasses all these drifts. The new model for

the system is

xt =


xt

yt

θt

 =


xt−1 + vt cos(θt−1)∆t

yt−1 + vt sin(θt−1)∆t

θt−1 + ωt∆t

+


processNoise· vt cos(θt−1)∆t

processNoise· vt sin(θt−1)∆t

processNoise·ωt∆t

 . (2.6)

The equation for the first step x∆t must also include the inaccuracy of the initial state

estimate. Inaccuracies in θ0 cause more problems than inaccuracy in the initial x or

y coordinates.

x∆t =


xt

yt

θt

 =


x0 + inaccuracyx + vt cos(θt−1)∆t

y0 + inaccuracyy + vt sin(θt−1)∆t

θ0 = inaccuracyθ + ωt∆t



+


processNoise· vt cos(θt−1)∆t

processNoise· vt sin(θt−1)∆t

processNoise·ωt∆t

 .

(2.7)

2.3.1 Model

The motion model for a differential drive robot is simple [5]. Such a robot has two

wheels aligned on a common axis that can turn independently. If the wheel radii are

both r and are separated by distance L as shown in Fig. 2.4, and u` and ur are the
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velocities in radians per second of the left and right wheels, then the state updates

are

ẋ = r
2
(u` + ur) cos θ

ẏ = r
2
(u` + ur) sin θ

θ̇ = r
L

(ur − u`) .

(2.8)

The angular velocities u` and ur can be approximated by a simple derivative of the

wheel encoder measurements θ` and θr, where the encoder measurements do not roll

over. On the SegMonster, a low pass filter is used to smooth these derivatives.

u` = θ
[`]
t − θ

[`]
t−∆t

ur = θ
[r]
t − θ

[r]
t−∆t.

(2.9)

r
 L  y

x

Figure 2.4: Parameters for a differential drive robot. Differential robots that cannot
balance themselves dynamically must include a caster wheel for support.

2.3.2 Results

In practice, dead reckoning exhibits a drift from the true estimate, with increasing

variance. On the SegMonster, the drift does not have a zero mean due mainly to
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the difference in tire pressure. In simulation, when the state update equations are

perturbed by noise, the dead reckoned estimate also diverges. Figure 2.5 shows the

effects of process noise on the state.

Figure 2.5: Simulation showing effects of dead reckoning. The simulated mobile robot
had control inputs [Speed, AngularV elocity] corrupted by random noise with variance
1e−2. The robot was commanded to travel in a unit circle, and the initial pose was
corrupted by 1e−2 random noise as well. The true position is shown in blue, while
the dead reckoned estimate is in yellow. The dead reckoned estimate does not, in
general, converge to the true position.

2.4 Observers

The inadequacies of dead reckoning require additional sensors. Global sensors return

measurements yt that correspond to the true state xt. The mapping is done though

a matrix H so that yt = Hxt. If H is invertible (has full rank), then the state xt

can be found directly from the current measurement. Often yt is a list of distances
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to landmarks, and H is not full rank. In this case, H cannot be inverted. Figure

2.6 shows range to landmark measurement readings for a mobile robot. In order

to use the range estimates, the robot must have a map listing the true locations of

each landmark. Notice that the measurements do not overlap, as they should with

no measurement noise. The range measurements are corrupted by noise (here with

variance 1e−2) and the true position cannot be calculated by simple triangulation.

Figure 2.6: Simulation showing range to landmark readings. Here the simulation is
run with the same random seed value as before. This time the robot uses a sensor
to measure range to each landmark. The landmarks are denoted as black points, and
their range measurement is drawn in cyan. In order to use the range estimates, the
robot must have a map listing the true locations of each landmark. Note: the range
measurements are corrupted by noise (here with variance 1e−2) and the true position
cannot be calculated by simple triangulation.

In control system design, having fewer sensors than states, or having sensors that

do not return our states directly, is a common problem. The standard technique for

13



dealing with this is to design an observer, a mathematical model that maintains a

state estimate x̂ of its own. This state estimate is mapped to an output estimate ŷ,

through H, and compared to the actual output yt. The resulting error signal,

et = yt − yt+∆t , (2.10)

is used to correct the next state estimate xt + ∆t. One way to do this is to construct

the pseudo-inverse of H:

H̃−1 = HT (HHT )−1. (2.11)

The pseudo-inverse is used to calculate a correction factor to update the state esti-

mate. Figure 2.7 shows this in a block diagram. In practice, a matrix L is used to scale

the correction factor H̃−1. L is designed to cause the estimated state to decay gradu-

ally to the true state. For linear systems, L is chosen so that the matrix F-LH has rea-

sonably fast eigenvalues. The Matlab command L = place(F’,H’,desired poles)’

calculates the appropriate L for any desired poles of the observer. In practice, we

rarely have a perfect model of the plant (F,G,H). Even if the plant is not completely

accurate, L can still be chosen to keep the error acceptably small, under certain

conditions.

Observer

       Correction Factor

True System

H
x y

u ++

F

G

H++

F

G
x̂

–
+ HT(HHT)-1

++

ŷ

Z-1

Z-1

e

Figure 2.7: Simple observer block diagram. The error e between the expected mea-
surement and the actual measurement is used to correct the state estimate.
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2.4.1 Requirements for observers

For an observer to converge to the true state, the system must be stable, observable,

and linear [6]. A stable system has all poles in the left-hand plane (the eigenvalues

of the system matrix are all negative). Being observable is a structural property of

the system that indicates whether the complete state can be reconstructed from only

the outputs y. A simple mathematical test of observability for linear systems is to

construct a matrix called the observability matrix and evaluate it to determine if it

has independent columns. The observability matrix } is calculated using the state

update equation F and the output mapping matrix H:

} =



H

HF

HF2

...

HFn−1


. (2.12)

A linear system is a system that can be described as a linear sum of independent

components. Linear systems can be written matrix in form ẋ = Ax + Bu, where A

and B are scalar matrices. Under these constraints the observer can be designed to

converge to the correct state at any rate.

2.4.2 Case study: Reaction wheel pendulum

In ECE 486, a control systems class for upper-level undergraduates and first semester

graduate students, the final project involves controlling a reaction wheel pendulum

(RWP, see Fig. 2.8). The RWP is a simple pendulum with a motor-powered rotating

wheel as the pendulum bob. The pendulum arm is unactuated, making this a nonlin-
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ear, under actuated system with two degrees of freedom. The two links have optical

encoders to measure position. The system state is composed of the orientation and

angular velocity of the two links:

x =

[
θp θ̇p θr θ̇r

]
.

Figure 2.8: The RWP balancing at an unstable equilibrium position. The only motor
in the system is equipped with a heavy wheel and then attached to the end of a
pendulum. By exerting positive torque on the wheel, an equal and opposite reaction
torque is applied to the pendulum. This torque can be used to control and stabilize
the system.

Figure 2.9 shows how the orientations are measured. Two optical encoders measure

the orientation of the pendulum and motor rotor, but the velocities are unmeasured.

The system has two more states than sensors. An observer can be used to recover

these hidden states. First, the system must be linearized about an operating point

(θp ∈ [0, π]). The controller must run a mathematical model alongside the model.
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This model is called an observer, and the observer state estimate x̂ tracks the true

state variables x, if properly designed. The observer predicts the sensor measure-

ments by multiplying the state estimate by H. This prediction, ŷ is compared to the

true measurement and fed back to the observer to continually pull the state estimate

to the true value. Figure 2.10 shows a block diagram of the RWP and its observer.

pθ

rθ

PENDULUM

REACTION 
WHEEL

Figure 2.9: RWP diagram. Both θp and θr are referenced from vertical.

Figure 2.10: Block diagram of the RWP controller. The bottom state space block
observes the control input u and the sensor output y to create a state estimate, x̂.
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The system is robust to faulty initial conditions. Because the observer is linear, it

can recover from arbitrarily large initial condition errors. Figure 2.11 shows two

unmeasured states being found and tracked by an observer.

Figure 2.11: Observers can track system states of linearized nonlinear systems. Here
the pendulum arm velocity and rotor velocity estimate (blue) converge to the un-
measured true state values (green, calculated by taking the discrete derivative of the
orientations).

2.4.3 Observers and robot localization

Observers can be designed to estimate unmeasured system states, and have the re-

markable property that their tracking error goes to zero as time goes to infinity.

Observers can even estimate the state of a nonlinear system like the RWP. We wish

to estimate the state of a mobile robot using sensor measurements that do not di-

rectly reveal the state. As a first approach to robot localization, it is very natural to

try an observer. Figure 2.12 shows the results of an observer during a mobile robot

simulation. The robot was equipped with range to landmark sensors.

In simulation the estimated state usually blows up. As mentioned previously, ob-

servers are only guaranteed to converge to the correct state for systems that are

stable, observable, and linear. Unfortunately, the motion model for the SegMonster
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Figure 2.12: A simple observer on a mobile robot usually goes unstable.

violates each constraint. The linearized state update F has three poles at the origin,

and so each mode is only marginally stable. Also, for many configurations, the state

matrix H is not observable. Finally, the trigonometric functions in F ensure that the

system is not linear. In general, the observer can only correct estimate errors visible

in the error equation et = yt−yt+∆t . In simulation the estimated state poorly tracks

the true state and often grows unbounded. This is because the psuedo-inverse H̃−1

becomes singular. This is easily seen in a simple example. A robot that translates

without rotating has a state described by x = [x, y]. If it is equipped with an IR

sensor pointing directly forward and measures a wall 5 m in front of the robot, the x

estimate can be corrected, but the y estimate cannot be improved. The error on the

x estimate will decay to zero, but the true location cannot be determined.
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2.5 Localization, beyond Local Sensors

Clearly, the dead reckoning approach is inadequate for position tracking for any length

of time. According to King, current state-of-the-art navigation systems have an inac-

curacy “normally fewer than 0.6 nautical miles per hour in position and on the order

of tenths of a degree per hour in orientation” [4]. Certainly our estimate could be

improved by augmenting the SegMonster’s local sensors. The mobile robots used in

the Mechatronics class at UIUC use the same DSP as the SegMonster, and are each

equipped with a rate gyro, a small microelectromechanical system (MEMS) sensor

that measures angular acceleration. By integrating this data, the robot can mea-

sure orientation with error rates in the degrees per minute—much better than our

dead reckoning estimate, though not state-of-the-art. These mobile robots are four

wheeled, and remain nearly parallel to the floor even during fast turns. Using rate

gyro measurements on the SegMonster would be complicated by the pitching motion

inherent to an inverted pendulum system, but could be done.

All local sensors, such as integrating motion commands, integrating wheel encoder

measurements, or integrating rate gyros and accelerometers, suffer from parameter

drift. Some (such as the rate gyro and accelerometers) can drift even when the robot

is standing still. This causes the position estimate to steadily decay over time. Even

when the robot is initialized with its true position, the estimate uncertainty grows

with time and distance traveled, as in Fig. 2.1. We can mitigate this by investing in

better quality sensors, but we are only slowing down the rate of information loss. To

increase position certainty, the robot must incorporate information from the world

around it. Two basic approaches to this problem are to add global sensors that

directly measure system states, or to use a map to filter out improbable position

states and select probable ones.
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• Global Approaches—Triangulation

Some global sensors return direct state information, or receive external state

estimates from other agents. Several labs at UIUC use ceiling mounted cameras

that have dedicated processors to segment out the robot’s location and return

this pose information to the robot. The Global Positioning System (GPS) devel-

oped by the US Department of Defense, uses at least 24 orbiting satellites that

transmit precise microwave signals [7]. A robot equipped with a GPS receiver

can use these signals for accurate localization. The signal contains the satellite

identification number and precise time. By comparing several of these signals

to an almanac giving the satellite’s expected position, the robot can triangulate

its position. Unfortunately, buildings effectively shield GPS microwave signals,

limiting their suitability for indoor robotic localization.

Other signals can be used in much the same way. Infrared (IR) signals are one

such type of signal. The first work on IR-based location systems was the Ac-

tive Badge Localization System, which was composed of a network of building

mounted sensors, and small badges worn by employees [8]. These badges emit-

ted a unique code every 15 s, which was detected by the network of sensors. A

central processor calculated the position of each badge seen and stored this in

a database accessible to the users. The system, though accurate at identifying

user’s room location, had several problems. The system required a dedicated in-

frastructure that had to be installed and maintained. The IR signals performed

poorly in rooms with direct sunlight. It also scaled poorly. While GPS requires

24 satellites in order to function globally, the Active Badge system used 200

sensors to cover four buildings.
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Many other signal combinations have been tried. The cricket system uses con-

current ultrasound and RF beacons for localization [9]. In this system, ceiling

mounted beacons are placed at known locations throughout a building. Period-

ically, these beacons simultaneously transmit an RF signal containing location

information of the beacon and an ultrasonic pulse. Any listening devices within

range can use the difference in signal propagation times to triangulate location

information. This system, like GPS, avoids having a central processor that

locates each device. Like the Active Badge system, using crickets requires a

significant investment for installing and maintaining the beacons. Once more,

scaling is an issue. The number of beacons required increases proportionally

with the area to be covered.

The prison guard Duress alarm location system uses only RF signals to locate

prison guards [10]. The system consists of RF badges, worn by the guards, and

sensor/relay modules with RF receivers and antennas. When a badge is acti-

vated, each sensor/relay module measures the signal strength from the badge

and the data are processed to estimate the guard’s position. The system is

constructed so that at least three sensors are within range of each area to be

protected. Unlike IR and, to a lesser degree, the RF/ultrasound combination

on the crickets, using only RF data is plagued by signal noise and multipath

effects, which stem from the same signal being reflected so that several copies

arrive at the same destination. The Duress system, like all dedicated localiza-

tion systems, requires a large investment for setup and maintenance.

Many sensors have seen publication and some, production. Some of the devices

used for minimally invasive surgery are robots in their own right, and tracking
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their position inside a human body is of paramount importance. Pulsed DC

magnetic fields can be used to accurately localize surgical tools [11].

A less exotic magnetic sensor is the common compass. A compass provides a

sensor measurement of θ with respect to the world’s reference frame. If working

correctly with no disturbance, this measurement allows the robot to determine

its orientation exactly, except near the magnetic poles of the earth. A perfect

compass would reduce the mobile robot’s state space estimate by one, an ideal

circumstance. In practice indoors, the compass is plagued with large, localized

disturbances. These disturbances have many causes, including metal structural

beams and magnetic fields from DC motors. The mobile robots used in the

Mechatronics class at UIUC use the same DSP as the SegMonster, and each is

equipped with a compass. This compass data is rarely used, due to the large

disturbances indoors, but using the compass could prove helpful to the SegMon-

ster when it transfers to an outdoor environment.

• Global Approaches—Map-Based Methods

A map is a (partial) model of the world. The robot can compare sensor data

to the model given by the map to determine possible locations. The dividing

line between map-based approaches and global sensors is not well defined. Most

of the references cited above had some form of map, but were able to directly

triangulate the robot’s position. Purely map-based approaches cannot find the

current position by triangulation.

These maps can take many forms. Minerva, a museum tour guide robot, used

mosaic images of the ceiling, along with measurements from a laser range finder
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to determine location [12]. Both maps—an occupancy map for the laser range

finder, and the compiled image of the ceiling—were used by the robot for global

localization and position tracking

Light intensities in a building can be measured and stored in a map, keyed with

location information. It was demonstrated in [13] that a light sensor mounted

on a hat could be used for room-level localization with 90% accuracy. Accuracy

can be improved by setting room lights to nonoverlapping illumination levels.

Contrary to popular belief, accurate indoor localization has been demonstrated

using the Global System for Mobile communication (GSM). In [14], signal in-

formation from up to 35 GSM channels was used for localization. By using

wide-area GSM fingerprints, the authors reported an average localization er-

ror of about 4 m. This was done by fingerprinting, where a map of signal

strength was compiled by moving around the map and collecting signal strength

data. During the localization stage, this map was searched to find the K sig-

nal strength sets that best matched the current reading, and took a weighted

average of this data to estimate the true position. This algorithm is called the

k-nearest neighbor(s) in signal space (K-NNSS).

In Chapter 4, wireless signal strength information is recorded at different [x, y]

positions and used to construct a model of probable sensor measurements through-

out the configuration space of the robot.
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CHAPTER 3

PROBABILISTIC OBSERVERS

Probability is expectation founded upon partial knowledge. A perfect ac-

quaintance with all the circumstances affecting the occurrence of an event

would change expectation into certainty, and leave nether room nor de-

mand for a theory of probabilities.

—George Boole

Estimating position by only calculating and correcting the mean is problematic. It

allows no uncertainty in representation - at each time step the observer returns one

possible pose value. As shown earlier, a probability distribution does represent cer-

tainty. A probability distribution assigns a probability to every possible pose. We

need an observer that will maintain a probability distribution at each time step.

Correctly updating this probability is known as the Bayesian filter.

3.1 Bayesian Filter

To propagate probability functions, we need a few tools. The theorem of total proba-

bility states that

p(x) =


∫

Y

p(x|y)p(y)dy p(y) 6= 0, p(x|y) 6= 0

0 otherwise.

(3.1)
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To relate a conditional of the form p(x|y) to its inverse p(y|x), we can use Bayes’

rule:

p(x|y) = p(y|x)p(x)
p(y)

= p(y|x)p(x)R
X p(y|x′)p(x′)dx′

. (3.2)

Note that the denominator does not depend on the x in the numerator and can

be generated from any x in the posterior p(x|y). For this reason, the denominator,

p(y)−1, is often denoted by η and is known as the normalizer.

Any probability can be conditioned on an arbitrary random variable, Z. As long as

p(y|z) 6= 0, Bayes’ rule can be expanded as

p(x|y, z) = p(y|x,z)p(x|z)
p(y|z)

= ηp(y|x, z)p(x|z). (3.3)

The probability that the robot pose xt at time t is any pose xa ∈ X is called the

belief, and it is represented by bel(xt). It is given by the conditional probability

bel(xt) = p (xt|u0:t−1, y1:t, x0)

bel(xt) = p (xt|u0:t−1, y1:t) .

(3.4)

This term is called the posterior probability, the probability distribution over the state

xt at time t, given all the sensor readings and movements. The first equation is for

the position tracking problem and the second is for global localization. The robot’s

movements from the beginning to the present are u0:t−1, and y1:t are the sensor read-

ings from the first time step to the current time.
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In the following section it will also be necessary to represent the belief before inte-

grating the last sensor measurement yt. This posterior will be represented as bel(xt).

bel(xt) = p (xt|u0:t−1, y1:t−1) . (3.5)

The equation is called the prediction because it takes the previous posterior prob-

ability bel(xt−1) and integrates the last movement ut. It predicts the effect of the

movement on the belief.

To derive the update equations for bel(xt), we start with Bayes’ rule.

bel(xt) = p (xt|u0:t−1, y1:t) = p(yt|xt,u0:t−1,y1:t−1)p(xt|u0:t−1,y1:t−1)

p(y1:t|u0:t−1,y1:t−1)

= ηp (yt|xt, u0:t−1, y1:t−1) p (xt|u0:t−1, y1:t−1) .

(3.6)

Note that p (xt|u0:t−1, y1:t−1) is the belief bel(xt), and therefore

bel(xt) = ηp (y1:t|xt, u0:t−1) bel(xt).

This equation can be simplified by making three key assumptions:

1. Independence of sensor readings from previous movement, given current pose

We can usually assume that the sensor reading does not depend on the previous

position given the current position and therefore

p (y1:t|xt, u0:t−1, y1:t−1) = p (y1:t|xt) .

2. Recursive nature of the motion model
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We can expand bel(xt) using Eq. (3.1) as

bel(xt) = p (xt|u0:t−1, y1:t−1)

=

∫
X

p(xt|xt−1, y1:t−1, u0:t−1)p(xt−1|y1:t−1, u0:t−1) dxt−1.

Notice that p(xt−1|y1:t−1, u0:t−1) is simply the previous posterior. The previous

posterior is called the prior and is bel(xt−1). This reduces the integral to

bel(xt) =

∫
X

p(xt|xt−1, y1:t−1, u0:t−1)bel(xt−1) dxt−1.

3. If we know xt−1, the movements u0:t−2 and the sensor measurements y1:t−1 add

no additional information:

bel(xt) =

∫
X

p(xt|xt−1, ut−1)bel(xt−1) dxt−1. (3.7)

This step is called the motion model, and it describes how the prior is updated

by the movement.

The Bayesian filter provides the current posterior, given the prior bel(xt−1), the last

movement ut, and the current measurement yt. The filter is recursive in that it only

depends on the previous state and the current inputs and output. An algorithm in

psuedo code is given as Algorithm 1.

The integral on line 3 rarely has a closed form. Because of the difficulty involved in

evaluating these integrals, as Fig. 3.1 hints at, different approximations have been

attempted. One notable exception is the Kalman filter, which can be solved directly

for linear systems with Gaussian normal noise. For systems with non-Gaussian noise,

or nonlinear systems, the integral can be approximated by a sum over a discritized
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Algorithm 1 Bayesian filtering(bel(xt−1), ut, yt)

1: τ = 0
2: for all xt ∈ X do
3: bel(xt) =

∫
p(xt|ut, xt−1)bel(xt−1) dxt−1

4: γ = p(yt|xt)bel(xt−1)
5: τ = τ + γ
6: unNormalized bel(xt) = γ
7: end for
8: η = 1/τ
9: for all xt ∈ X do

10: bel(xt) = η · unNormalized bel(xt)
11: end for
12: return bel(xt)

state space. This approximation converges to the Bayesian filter in the limit as the

grid spacing goes to zero.

Figure 3.1: Bayesian probability update. A uniform continuous bel(x0) distribution
for [x, y]T in a rectangular hallway is relatively easy to construct, but updating bel(tk)
becomes increasingly difficult.

3.2 Multidimensional Normal Distributions

Updating most probability distributions requires integration over each degree of free-

dom, which would often be intractable, except at coarse levels of discritization. The
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multidimensional normal distribution is an exception to that rule. Multidimensional

normal distributions are used for two main reasons:

• Simplicity of representation

A normal distribution can be represented by two parameters: a mean (matrix

of size n) and a covariance matrix (of size n2), where n is the dimension of the

state vector x.

• Representational scope

Many distributions in life can be represented by a multidimensional normal

distribution. The central limit theorem states that if x̄n is the mean of n samples

from any distribution having finite variance σ2 (and thus a finite mean µ ),

then
√

n(x̄n − µ)/σ) will converge in distribution to a random variable having

a standard normal distribution [15].

Table 3.1 shows a few representative normal distributions.

Table 3.1: Normal Distributions
Dim Parameters Example Representation

1 (µ, σ2) (2, 1)

-4 -2 2 4 6

0.1

0.2

0.3

0.4

2 (µ1, Σ1)

([
2

1

]
,

[
2 1

1 1

])
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3.3 Representing Beliefs

Sensor measurements, like state updates, are rarely perfect. Often their readings can

be represented by a normal distribution with a mean at the true value. In this case,

the measurement we get, yt, is a random variable from a normal distribution centered

at µ, with a covariance matrix inherent to the sensor. A useful theorem is that the

product of two normal distributions (µ1, Σ1) and (µ2, Σ2) is proportional to a normal

distribution with mean µ3 = µ1 +Q (µ2 − µ1) and covariance matrix Σ3 = Σ1−QΣ1,

where Q = Σ1 (Σ1 + Σ2)
−1.

3.4 Observing with Probability

We know that as the robot moves it loses information. If we assume that our noise is

normally distributed, we can reflect that loss of certainty by propagating a covariance

matrix along with the state estimate. Figure 3.2 shows how the observer can be

augmented to propagate a covariance matrix P.

Update

Error Term

State Estimate

True System

H
x y

F

G

H++

F

G
x̂

–
+ e ++

ŷ

v

+++

Z-1

R

×

+ +

V

H(input)HT(H(input)HT)-1F(input)FTP(k|k) R

×
Z-1 P(k+1|k)

+–

Z-1

u

Figure 3.2: Block diagram for an observer that maintains a covariance matrix. It has
many similarities with Fig. 2.7. The only difference is the upper right loop. This
loop maintains the covariance matrix and uses it to scale the error term.
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The problem with this approach, much like the problem with the observer, is that the

matrix inversion step HPH−1 becomes singular. Generically, a matrix A is invertible

(nonsingular) if a matrix A exists such that AB = BA = In. If the H matrix ever

causes a column of HPH to go to zero, the matrix becomes singular and is not

invertible.

3.5 Kalman Filter

The Kalman filter has much in common with the simple observer. This is particularly

obvious in the block diagram, Fig 3.3. The chief difference is that the Kalman filter

also maintains a covariance matrix P along with the state estimate x̂ . Since a mean

and covariance matrix together describe a normal distribution, the Kalman filter is

actually propagating a normal distribution. The filter also assumes that process noise

can be described by a normal distribution V(t). The difference between the Kalman

filter and the observer with a covariance matrix is that the Kalman filter adds sensor

noise to the equation. This sensor noise is described by a normal distribution W(t).

The Kalman filter has two stages. In the first, the input and process model are used

to predict the next x̂. P is updated by the process model and process noise. Equation

(3.8) shows that the prediction step only adds noise to the prediction P̂. The second

stage uses the sensor readings to correct the state and variance prediction.

1. Predict the state and variance

x̂t+1|t = Fx̂t|t + Gu(t)

P̂t+1|t = FPt|tF
T + V(t).

(3.8)
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Figure 3.3: Block diagram for the Kalman filter. It has many similarities with Fig.
3.2. The only difference is that now sensor noise W is added before the matrix is
inverted in the upper right.

2. Correct the state and variance based on sensors

xt+1|t+1 = Fx̂t+1|t + Re

Pt+1|t+1 = P̂t+1|t −RHP̂t+1|t.

(3.9)

Here the intermediate variable e is still the error between the predicted and actual

measurements, and R is a scaling matrix that determines how to correct the covari-

ance P̂ and the state estimate x̂. A large R (in comparison with the identity matrix)

weighs sensor measurements more than the prediction, while a small R means that

sensor measurements are less reliable than state predictions. The necessary equations

are

e = y(t + 1)−Hx̂t+1|t

S = HP̂t+1|tH
T + W(t + 1)

R = P̂t+1|tH
T (S)−1.

(3.10)

In block diagram form, these equations are similar to those of the observer in Chapter

2. The system state estimate x̂ is evolved in parallel with the true state, and the same
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error e is constructed at each step. This e is now scaled proportionally to P̂H
T

and

inversely to the summation of (HP̂HT + W), where W is the assumed sensor noise.

Figure 3.4 shows a simulation run of a mobile robot using a Kalman filter for local-

ization. Unlike the dead reckoning and observer localization methods, the Kalman

filter converges on the true position.

Figure 3.4: Simulation of Kalman filter. This simulation uses the same data as the
previous simulations, Figs. 2.5, 2.6, 2.12. The magenta pose is the Kalman estimate,
and the 95% confidence ellipse encloses all points with within 2 std. of the mean.
Notice that the Kalman estimate tracks the true position (blue) while drift makes the
dead reckoning mean (yellow) increasingly poor.

3.5.1 Time and memory constraints

One of the reasons the Kalman filter has remained popular for 40 years is its efficient

handling of memory. Since it is a recursive formula that relies only on the past

state, current control input, and current sensor readings, the memory constraints are

modest. For an n degree of freedom system, n entries are required to record the

system state, (necessary for any observer), n2 entries to record the covariance matrix,
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and memory space for the H, R, and S matrices. For most systems the processing

is dominated by the inversion of the S matrix. The running time of Gauss-Jordan

matrix inversion is O(n3) with storage requirements O(n2) [16]. The current best

matrix inversion algorithm runs in O(n2.376) [17], but has large constants hidden by

the O notation.

3.5.2 Limitations to Kalman filter

Though the Kalman filter is the optimal linear estimator [18], there are many sys-

tems where a nonlinear estimator could outperform it. For the SegMonster, the state

update matrix F is nonlinear. The H used in the simulation is also nonlinear. This

is not a showstopper—it is a simple matter to linearize the F and H matrices at an

operating point and use the original Kalman equations. The best operating point

would be the true pose, xt. If our filter is performing well, we can assume that x̂

is near xt and linearize at x̂. Now we still have the best linear estimator, but it

is probable that there is a better nonlinear estimator. Linearizing at the assumed

operating point is called the extended Kalman filter [19].

The Kalman filter is also limited in that it can only maintain one mean. If the sensor

data equally supports two means, the only representation possible with a normal

distribution is either to pick one over the other, or place the mean between the

two possibilities and have a large covariance. Neither option reflects the data well.

Techniques exist for propagating multiple Kalman filters, and for better supporting

nonlinear systems (the unscented Kalman filter [19]).
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3.5.3 Extensions to the Kalman filter

The Kalman filter cannot be implemented directly on the robot because the state

update equation F and the sensor model H are nonlinear. We will propagate the

state by the nonlinear model given as Eq. (2.5), but must linearize F and H. These

two equations can be linearized each time step by taking the Jacobian of the system

and sensor matrices at x̂. The resulting equations are

Ft =
∂f

∂x
|x=x̂(t|t)=



∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn

...
...

. . .
...

∂fn

∂x1

∂fn

∂x2
· · · ∂fn

∂xn


x=x̂(t|t)

(3.11)

Ht+1 =
∂h

∂x
|x=x̂(t|t)=



∂h1

∂x1

∂h1

∂x2
· · · ∂h1

∂xn

∂h2

∂x1

∂h2

∂x2
· · · ∂h2

∂xn

...
...

. . .
...

∂hn

∂x1

∂hn

∂x2
· · · ∂hn

∂xn


x=x̂(t|t).

(3.12)

In the case of our simulation, a differential drive robot with range to landmark read-

ings for sensor measurements, the linearized equations are

F =


1 0 −vt · sin θt

0 1 vt · cos θt

0 0 1

 (3.13)

and

Hi(t + 1, j) =

[
x̂t+1|t−x`j√

(x̂t+1|t−x`j)2+(ŷt+1|t−y`j)2

ŷt+1|t−y`j√
(x̂t+1|t−x`j)2+(ŷt+1|t−y`j)2

]
. (3.14)

Hi(t + 1, j) is the sensor map from state x to sensor reading yj for the jth landmark
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detected. Here the sensor reading is the distance from the robot to landmark i, where

the location of landmark i is [x`i, y`,i]. In the simulation, we detect all j landmarks

each step, but this is not necessary for the filter to work.

Linearizing the state and sensor matrices to fit the Kalman filter to a nonlinear model

is called the extended Kalman filter (EKF).

3.5.4 Unscented Kalman filter

Other methods for dealing with nonlinearities include propagating the mean along

with several carefully selected points, to better represent the nonlinear transforma-

tion. This technique is known as the unscented Kalman filter (UKF).

3.6 Discrete Approximations

When the system equations are nonlinear, the Kalman filter can be a poor represen-

tation of the belief. Though the Bayesian filter equations may be intractable, it is

often easy to discritize the state space by gridding it into nonoverlapping cells, and

do a discrete approximation of the Bayesian probability. State transition probabili-

ties must be defined for each state, and the probability of each cell is determined by

evaluating a pose at the center of the cell. This allows us to replace the integrals in

the Bayesian filter with summations, in exchange for a lower level of accuracy. We

have three states for our model and so would need a three-dimensional grid. The

system is simpler if we only consider position, as in Fig. 3.5.

Two problems plague grid based methods.

1. Curse of dimensionality

Memory and time increase exponentially with the dimension of the state space.
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Figure 3.5: Grid-based method to approximate a continuous PDF. Shown here are
four time steps reconstructing a walk around Everitt Lab, using sensor data from
Wi-Fi APs. The peaks represent higher probability.

A robot that can only translate in a straight line may be adequately approx-

imated with 100 positions. To represent the same level of precision in two

dimensions requires 10 000 grid cells (1002). At 10 dimensions (10010 grid cells)

the problem is currently intractable for DSP based robots like the SegMonster.

Each grid cell requires memory to store and takes time to propagate from one

step to the next.

2. Near zero probabilities

Most grid cells at any time have probabilities near zero. Propagating these

probabilities with limited resolution datatypes (such as floats or doubles) often

runs into problems where the probability is rounded to zero. Also, every grid

cell needs to be propagated each time step, even if its probability is negligible.

A more efficient method would only keep track of probable grid cells, and not

compute the rest of the grid. The particle filter, discussed next, does represent

only the probable positions.
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3. Limited resolution

The size of the grid cell places a fundamental limit on the resolution of the

localization. The system must assume the pose is in the center of the grid cell,

since we have no way of representing being in the “upper-right corner” of any

given cell.

The particle filter, discussed next, does represent only the probable positions. This

efficiently deals with the curse of dimensionality, and allows datatype level resolution.

3.7 Approximating a Probability Distribution Function with

Samples

Sampling from a distribution uniformly can approximate any probability distribution.

Figure 3.6 shows a contour plot and a corresponding scatter plot of samples drawn

from the same probability distribution. Increasing the number of samples decreases

the expected error at a rate proportional to 1/
√

n [20].

3.8 Particle Filter

In a particle filter, samples represent the probability distribution. Each sample is

called a particle and holds one state estimate. For this localization example, each

particle holds one pose as shown in Eq. (3.15). The array pt holds all the particles

for time t, and represents a probability distribution.

p[i]t =


xi,t

yi,t

θi,t

 . (3.15)
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Figure 3.6: Approximating a pdf by sampling. Both images come from the same
two-dimensional probability distribution (in this case, a bivariate normal distribution
with mean [2, 1]′ and variance [[2, 1]′, [1, 1]′]). The left image is a contour plot and
the right was made by sampling 2000 points from the distribution. As the number of
samples increases, the approximation becomes more exact.

3.8.1 Design of the particle filter

Like the Kalman filter, the particle filter has two stages. In the first, the process model

plus additive process noise are used to predict the next pt. Unlike the Kalman filter,

the particle covariance data is propagated implicitly within the particles. Algorithm

2 shows how to calculate the means and covariance statistic from a set of particles.

Calculating the means for x and y is trivial, but the mapping for θ is discontinuous at

0 and π. To deal with this issue, we use the function atan2(y,x), the two-argument

arctangent function that correctly returns θ. The function atan2(y,x)is defined for

all (x, y) 6= (0, 0) such that

cos θ = x√
x2+y2

sin θ = y√
x2+y2

. (3.16)

The function sample from motion model takes a particle from the previous time step

and propagates it according to the control variable with random noise. This function
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Algorithm 2 Calculate particle mean and covariance(p[i]t)

1: x = y = Ssin = Scos = 0
2: i = 0
3: repeat
4: x = x + p[i]t[x]
5: y = y + p[i]t[y]
6: Ssin = Ssin + sin(p[i]t[θ])
7: Scos = Scos + cos(p[i]t[θ])
8: until i > m
9: x̄ = x/m

10: ȳ = y/m
11: θ̄ =atan2(Ssin, Scos)
12: SXX = SY Y = SXY = 0
13: i = 0
14: repeat
15: SXX = SXX + (p[i]t[x]− x̄)2

16: SXY = SXY + (p[i]t[x]− x̄)(p[i]t[y]− ȳ)
17: SY Y = SY Y + (p[i]t[y]− ȳ)2

18: until i > m
19: CovXX = SXX/m
20: CovXY = SXY /m
21: CovY Y = SY Y /m
22: return 〈[x̄, ȳ, θ̄], [CovXX , CovXY , CovY Y ]〉

creates a new set of particles, p̂[ ]t, from the old set p[ ]t−1.

The second stage uses the sensor readings to assign weights, w[ ]t, to each particle

in p̂[ ]t, with more probable particles receiving larger weights than improbable ones.

Next, a new set of particles is constructed, p[ ]t. Each particle in p[ ]t is drawn randomly

from p̂[ ]t, where the particle selected from p̂[ ]t is drawn with probability proportional

to the weight vector w[ ]t.

1. Predict the state and variance

For i = 1 to m

p̄[i]t = sample from motion model
(
ut,p[i]t−1, map

)
.

(3.17)
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2. Correct the state and variance based on sensors

For i = 1 to m

w[i]t = measurement model
(
y[i]t, p̄[i]t, map

)
.

For i = 1 to m

draw k with probability ∝ w[k]t

p[i]t = p̄[k]t.

(3.18)

This process is illustrated in block diagram form in Fig. 3.7.

Weigh(for each particle)

Predict(for each particle)
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∝
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Figure 3.7: Particle filter block diagram. The particle filter has the same structure
as the observer, but propagates an array of state estimates.

3.8.2 Simulation results

In simulation the particle filter easily tracks the robot pose using range to landmark

data. Figure 3.8 shows that the state estimate converges quickly (within the first 5

steps) to the true location. Just as with the Kalman Filter, the path of the particle
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mean is not smooth—if you desired to measure the distance traveled, you would need

to run the points through a low pass filter.

Figure 3.8: Particle filter simulation. The particle filter tracks the true state of the
robot with 1000 particles. The particles are shown in green.

3.9 Benefits of the Particle Filter

Unlike the Kalman filter, particles can represent any probability distribution. Figure

3.9 shows a multimodal distribution the SegMonster calculated while it was perform-

ing global localization. This distribution cannot be modeled by a Kalman filter.

Particle filters can use nonlinear data, so integrating a map is easy. As a first step,

our current pose must be in the free space. We can consult the map and reject

any particles that are in obstacles. Figure 3.10 shows a simple map applied to the
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Figure 3.9: Representing a multimodal distribution with particles. Samples can rep-
resent a multimodal probability distribution—something the Kalman filter cannot do.
In this run of the SegMonster, the robot has almost equal probability of being at the
end of the west or south hallway. The mean and covariance of this data would give a
wide normal distribution centered in the middle of the roof.

same probability distributions as Fig. 2.1. The map can be used as a binary filter

on the data set. Maps can also be used to reject particles based on the path they

would have traveled from the previous time step to this time step. If this path at

any time intersects an obstacle, it should be rejected. We are currently applying this

scheme to a much smaller configuration space in the Robotics Lab. In the lab, the

robot is confined to a maze with 0.75-in plywood walls. Modeling these as lines that

particles cannot cross is a natural representation and can be computed quickly using

line intersection algorithms.

During development on the SegMonster, several other map integration methods were

attempted.

1. Sticky walls

The sticky walls assumption truncates any particle path that intersects a wall

at the wall boundary. This results in a higher probability mass near walls.

Unfortunately, the particle filter on the SegMonster has a slow time constant,

and this assumption resulted in the particles being strung out along the hallway

44



-100

-50

0

50

100

x

-100

-50

0

50

100

y

0.0

0.5

1.0

JointXY frequency plot

-100

-50

0

50

100

x

-100

-50

0

50

100

y

0.0

0.5

1.0

Figure 3.10: Using a map to condition position belief. Top: Position beliefs before
conditioning. Center: Map with free space in a long narrow hallway. Bottom: Proba-
bility distributions conditioned on the map. A map can be used to limit a probability
distribution to the free space. Used in this way, a map is most helpful when the
position certainty is low.

behind the true position of the robot as particles hit the walls and stopped.

Figure 3.11 shows the disappointing results of this method.

2. Try, try, try. . . before giving up

This method iterates on sample particle from motion model until the propa-

gated particle does not collide with the wall or a threshold number of attempts

is reached.

This method worked poorly as well. When the robot reaches the end of a

corridor, a high percentage of particles collide with the wall. Resampling on

most of these is an exercise in futility and bogs down the particle filter. It also

has the disadvantage of placing a higher probability on particles near walls.
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Figure 3.11: Testing the sticky wall assumption. The sticky wall assumption behaved
poorly in practice. Left: Tracking error compared to zeroing weight if particle collides
with wall. Right: Montage showing trails behind the true position of the robot. These
grow as particles adhere to the walls.

3. Binary evaluation

This sets the probabilities of particles not in the free space to 0, but takes a

subset of these and places them with uniform probability in the free space of

the map. This technique adds extra randomness to the map and is helpful if the

particle filter has converged to an incorrect location. In practice the SegMonster

adds at most 10 of these random particles each time step. If the particle mass

is already at the true position, these extra particles usually are removed in the

resampling process because they receive a low weight.

3.9.1 Initializing the particle filter

Both the Kalman filter and the particle filter must be initialized. The particle filter

can represent any probability distribution, so its initialization step is more interest-

ing. Two scenarios were tested with the SegMonster. In the first, the probability

distribution was initialized to the true pose. This is the position tracking problem.

In the second, the robot was given no localization estimate and the initial probability
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was uniformly distributed over the map. Figure 3.12 shows the initial uniform dis-

tribution. Figure 3.13 shows one time step from an experimental run in the hallway.

The two stages of prediction and correction are clearly visible. The robot converged

to the true position within the first 30 s, but took longer to establish the correct

orientation.

Figure 3.12: Starting the particle filter with a uniform distribution. A uniformly
random distribution in the free space represents starting with total uncertainty about
position. In the first step the distribution was initialized (blue). A global sensor
was used to weigh the particles. Particles in red were selected at least once in the
resampling stage.

Figure 3.13: Particle filtering: 1 step. Here a distribution is propagated (blue). Global
sensors are used to weigh the particles, along with the map, and then the distribution
is resampled (red).
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3.9.2 Time and memory constraints

The Kalman filter must propagate only the mean and covariance matrix. The particle

filter must propagate, weigh, and sample from m particles, taking at least O(m)

time. The memory requirements are at least 2m because both p[ ]t and p̄[ ]t must be

maintained. The time and memory costs for weighting each sample are application

specific. For the SegMonster the weighting step dominates the procedure, and will

be discussed in Chapter 4.

3.10 Case Study: Localization on the SegMonster

For this experiment, the SegMonster was given a starting position and asked to track

it. The results are shown in Fig. 3.14. This data run is the same one plotted in

Figure 2.3. The particle filter kept the average error at 1 m, while the dead reckoning

error quickly pushed the dead reckoned estimate off the map.

Figure 3.14: Tracking error vs. distance and tracking error vs. time. A plot of
position (x, y) error for both dead reckoning and the particle filter estimate, both
calculated in real time aboard the SegMonster. 300 particles were used to track the
robot.
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3.10.1 Motion model

The motion model for our robot is corrupted by noise we assume to be normally

distributed. Because our motion model is nonlinear, we cannot simply add this dis-

turbance directly. Algorithm 3 incorporates this uncertainty for each particle. The

pose at time t is represented by poset = (xt, yt, θt). The control is a differentiable set

of two pose estimates based on the robot’s dead reckoning, ut = (poset−1, poset)
T ,

with poset−1 = (x̄t−1, ȳt−1, θ̄t−1)
T and poset = (x̄t, ȳt, θ̄t)

T [21].

Algorithm 3 sample motion model odometry(ut, poset−1)

1: δrot1 =atan2(ȳt − ȳt−1, x̄t − x̄t−1)− θ̄t−1

2: δtrans =
√

(ȳt − ȳt−1)2 + (x̄t − x̄t−1)2

3: δrot2 = θ̄t − θ̄t−1 − δrot1

4: δ̂rot1 = δrot1 − sample(α1|δrot1|+ α2δtrans)
5: δ̂trans = δtrans − sample(α3δrot1 + α4(|δrot1|+ |δrot2|)
6: δ̂rot2 = δrot2 − sample(α1|δrot2|+ α2δtrans)

7: xt = xt−1 + δ̂trans cos(θt−1 + δ̂rot1)
8: yt = yt−1 + δ̂trans sin(θt−1 + δ̂rot1)
9: θt = θt−1 + δ̂rot1 + δ̂rot2

10: return poset = (xt, yt, θt)
T

There are four gains on the propagation function sample from motion model().

Each gain is proportional to either the measured rotation or translation, and af-

fects either the rotation or translation of the predicted sample. Tuning these gains is

very important, as the effect on the probability distributions is significant. The effect

of these gains is shown in Fig. 3.15 for the two gains [0.005, 0.001, 0.46, 0.02] and

[0.01, 0.005, 0.0016, 0.02]. The first gives a large variance to the translation, while

the second gives a noisy rotation estimate. The SegMonster used the propagation

gains [0.01, 0.005, 0.16, 0.02]. These were tuned on successive runs. The effect of

each gain is listed in Table 3.2.
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Figure 3.15: Effect of propagation parameters on particle update. Function
sample from motion model() has four tunable gains, which greatly affect the parti-
cle distribution.

Table 3.2: Tunable Gains for Propagation Parameters

Gain Proportional to Effects

α1 rotation rotation
α2 translation rotation
α3 translation translation
α4 rotation translation

3.10.2 Resampling the particles

After assigning each particle a weight, a new set of particles must be constructed.

There are many methods of resampling [20], [21], but all have a similar objective:

particles with high weights should have a high probability of being copied into the

new array, while particles with low weights should have a low probability of being

copied. The SegMonster achieves this by sampling from the cumulative distribution

function (CDF). The first step is to normalize the weights of the particles in p̄, so

that they sum to 1. This turns p̄ into a valid discrete probability space, since all the

probabilities are ≥ 0 and the total probability is 1. A plot of the particles with the
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probability weight of the particle mapped to the y-axis is a probability mass function

(PMF). Figure 3.16 shows the PMF and CDF of eight particles.
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Figure 3.16: A PMF and CDF for eight particles. The probability mass function is
on the left and the corresponding cumulative distribution function on the right.

One way to gather the required set of m particles for p is to generate a random

number τ from a uniform distribution on [0,1], and find the last particle whose CDF

is less than or equal to τ . By repeating this process a total of m times, p can be

filled. Another way, shown in Fig. 3.17, only requires generating one random number.
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Figure 3.17: Sampling from the CDF. A random number τ is generated from a uniform
distribution on [0,1]. Here τ is 0.3. The first particle ≤ τ is selected, and τ is
incremented by 1/m, where m is the total number of particles.

First τ is generated from a uniform distribution on [0,1]. This gives the first particle

as before, but now instead of generating a new random number, τ is incremented

by 1/m so that (τ = τ + 1/m). The second particle selected is the last particle
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whose CDF is ≤ τ . If τ is ever > 1.0, 1 is subtracted from τ and the process

continues until m particles have been selected. In Fig. 3.18, the particles selected are

[1, 3, 4, 4, 4, 5, 8, 12]. Particles 2 and 6 were filtered out by the resampling set, while

the most likely particle, 4, was copied three times. The SegMonster uses the second

method because it ensures that any particle with probability mass ≥ 1/m will not be

lost in the resampling stage. Incrementing τ by any number other than 1/m removes

this property.
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Figure 3.18: Sampling from the CDF (wrapping around at 1.0). To complete the set
of new particles p, continue incrementing τ by 1/m until the full set of m particles
has been collected.
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CHAPTER 4

MODELING GAUSSIAN PROCESSES

“We are coming now rather into the region of guesswork,” said Dr. Mor-

timer.

“Say, rather, into the region where we balance probabilities and choose

the most likely. It is the scientific use of the imagination, but we have

always some material basis on which to start out speculations.” [Sherlock

Holmes]

—A. Conan Doyle, The Hound of the Baskervilles

4.1 Motivation

The robot localization simulation shown in Figs. 3.4 and 3.8 used noisy range data

from uniquely identifiable landmarks. This can and has been implemented. The

landmarks used take many forms. Some localization algorithms use artificial beacons

as landmarks. One group uses ultrasonic transmitters and receivers that they call

crickets to calculate distance from a robot to the transceivers [22]. Other research

has focused on using vision algorithms to extract landmark information [23]. The

SegMonster uses the strength of wireless access points to determine its position. An

access point (AP) is a bridge between the wired and wireless networks. These signals

cannot be modeled well as a range to landmark sensor, obvious at once from Fig. 4.1.
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Figure 4.1: Wireless signal strength in Everitt Laboratory. The contour plot shows
the highest received wireless signal strength values from a commercial scan in January
2008.

As Fig. 4.2 shows, a lot of noise corrupts signal strength data. Signal dropout is also

an issue. During a 15-min scan along the east hallway of Everitt Lab, 40 unique APs

were detected, though never more than 18 at one time and once only four. This data

is plotted in Fig. 4.3. A definite increasing trend is visible as the Wi-Fi detector

moved from south to north along the 40 m hallway, but at first glance nothing else is

apparent.

Determining an agent’s location in Rn from a scalar sensor reading y is called signal-

strength based localization. This is a nontrivial problem because the mapping from

Rn to y is noninvertible. Indoor localization is even more difficult due to an array

of challenges. Among these are the effects of signal interference; signal dropout due

to walls, doors, and humans; and the expense of data collection. Signal interference

is nontrivial. According to [24], a single human body can attenuate an AP signal

strength by an average of 3.5 dBm. A linear model poorly reflects these intricacies.
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Figure 4.2: Signal strength variation over distance. Forty unique access points were
detected during a 15-min scan along the east hallway of Everitt Lab. The signal
strength of the signals detected most often does not conform well to a linear model.

Figure 4.3: Variation in number of APs along a hallway. Forty unique APs were
detected. Though a general trend may be interpreted from the data, there is a great
deal of noise, even in the number of APs detected. The data was collected over a
15-min period.

Gaussian processes (GPs) are used because they explicitly model both the expected

signal strength and the expected signal variance for every point in Rn. GPs model
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this relationship through a covariance matrix for all the training values.

4.2 Wi-Fi Signal Strength Data Collection

First, signal strength data must be gathered for different locations on the map. Gath-

ering 4 596 data points, in the form Raw Data = [x, y, APname, SignalStrength], took

2 h.

The Wi-Fi detector on the SegMonster, Fig. 4.4, is mounted above the right handle

bar. In order to enforce a uniform bias on the signals, during data gathering the

Wi-Fi detector was placed at the same height on a rolling desk chair. The chair was

oriented to the north for the entire process.

Figure 4.4: The Wi-Fi sensor used by the SegMonster.

Figure 4.5 shows the setup used for gathering wireless data. A Visual Basic (VB)

program was designed to communicate with the Linux processor that ran the wire-

less sensor. A screenshot is shown in Fig. 4.6. The application runs a map of the

building. Clicking on any point of the map prompts the program to request AP data

from the Wi-Fi device, and saves [time, xcoord, ycoord, APMACaddress, SignalStrength,

SignalNoise] for each AP returned.
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Figure 4.5: Wi-Fi strength data gathering in Everitt Lab. The right image shows the
location of the Wi-Fi Detector on the robot. A similar position was arranged for data
gathering.

Of the many APs detected during mapping runs, some are easier to find than others.

There are three visible APs mounted in the west hallway of Everitt Lab, three in the

south hallway, and three more within classrooms on the east wing. Figure 4.7 shows

two APs, one mounted in the hallway and another mounted in a conference room.

The scan data was processed to remove APs that appeared less than a threshold of

50 times. This left 32 APs in the data set. The data for each remaining AP was

processed to estimate the position of the wireless transmitter, then down-sampled so

each AP had 50 evenly spread out samples. These AP locations were stored in an

array as xAP . Figure 4.8 shows the data points used for two of the 32 access points.

Finally, GPs assume that the data has a zero mean. Forcing the GP to fit a zero

mean approximation to the data would skew our results because Wi-Fi signal strength

characteristically decreases with distance from the transmitter. To model this, we fit

a linear model to the signal strength, and used this model to predict the sensor
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Figure 4.6: VB application used for wireless signal strength mapping. This basic
application can be loaded with an arbitrary floor plan image and used to map signal
strength.

Figure 4.7: Two access points in Everitt Lab. APs in the hallways are generally
protected by metal covers, while those in locked conference rooms are not.
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Figure 4.8: Datapoints used to construct GP maps for two APs. Positions where
signal strength was recorded for an AP are marked in green, the estimated AP location
denoted with a star, and the down-sampled data points in magenta.

measurement sslinear prediction at each location.

sslinear prediction = m‖x− xAP‖+ b. (4.1)

This prediction was subtracted from each signal strength measurement. The resulting

signal strength, ȳi = yi − sslinear prediction,i, now has a zero mean.

The Matlab command polyfit can be used to find a linear model of any data set. It

fits the data by minimizing the least squares error and returns a vector of coefficients,

[m, b], which we stored for each AP. The following code illustrates the method:

Distances = sqrt(sum((X-repmat(Model.Xap,size(X,1),1)).^2,2));

coeffs = polyfit(Distances,Model.y,1);

M = coeffs(1);

B = coeffs(2);

Model.LinearFit = [M, B];
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4.3 Building a Gaussian Process Model

To derive the GP, we followed the function-space view in [3] and [25]. A unique model

was constructed for each AP. The first step was to split the down-sampled training

data into 32 sets Dj, j ∈ [1, 32]. Each Dj = [(x1, ȳ1), (x2, ȳ2), . . . , (xn, ȳn)], where

xi is the datapoint’s map coordinate and ȳn is the recorded signal strength less the

linear model. We assume that the data set is derived from a noisy process

ȳi = f(xi) + ε. (4.2)

The value ε is additive noise drawn from N (0, σ2
n), a zero mean Gaussian with known

noise σn. We stored the yi’s in a matrix Y and the xi’s in a matrix X.

The key assumption used by GPs is that function values are correlated. This corre-

lation varies from region to region, but can be described as a function of the input.

The GP records this level of correlation in a covariance matrix. When we wish to

estimate the function value at a new x, we can use this covariance function to form

our prediction. Our covariance equation is the squared exponential

k(xp,xq) = σ2
f exp

(
− 1

2`2
|xp − xq|2

)
. (4.3)

The parameter ` is the characteristic length scale and describes the range of influence

one point has over other points. The covariance is proportional to σ2
f , the signal

variance. Since this is a noisy process, we also include the covariance between identical

points k(xp,xp) which is σ2
n, the signal noise. This makes the covariance of functions

cov (ȳp, ȳq) = k(xp,xq) + σ2
nδpq (4.4)

where δpq is the Kronecker delta and is 1 if p = q and 0 otherwise. The covariance
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for the entire data set can be expressed as the array

cov (ȳ) = K + σ2
nI. (4.5)

We can use Eq. (4.5) to generate a posterior distribution over functions, given the

training data X and y. This posterior over function values is Gaussian and has mean

µx∗ and variance σ2
x∗ .

The probability of any given function value f(x∗) at a location x∗, given the training

data, is the probability

p(f(x∗)|x∗,X,y) = N
(
f(x∗); µx∗ , σ

2
x∗

)
. (4.6)

The mean and covariance are functions of the training data

µx∗ = kT
∗ (K + σ2

nI)
−1

y

σ2
x∗ = σ2

n − kT
∗ (K + σ2

nI)
−1

k∗.
(4.7)

Here k∗ = k(x∗,X). In practice, the matrix inversion (K + σ2
nI)

−1
is time-consuming.

This value is needed twice each iteration of the filter for each particle. Because it is a

function only of the training data, it is wise to precompute it once and store the result.

(K + σ2
nI)

−1
is a symmetric positive-definite matrix and can be decomposed into LLT ,

where L is a lower triangular matrix. This is known as the Cholesky factorization and

can be computed in Matlab with the command L = chol(M), where M is the matrix

to be factored. If we let L be the Cholesky factorization and set α = LT\(L\ȳ), the

new algorithm to predict the mean and variance is simplified, as shown in Algorithm

4.

The next step was to estimate the hyperparameters (`, σ2
n, σ

2
f ) by optimizing over the
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Algorithm 4 GP predict(x∗,X,L−1, α)

1: k∗ = k(x∗,X)
2: µx∗ = kT

∗ α
3: v = L−1k∗
4: σx∗ = σ2

n − vTv
5: return [µx∗ , σx∗ ]

log likelihood of the training data, using regression code available at http://www.

gaussianprocess.org/#code. Finally, a covariance matrix and other intermediate

constants were computed and preloaded in the SegMonster.

4.3.1 Using the GP to evaluate particles

The GP provides an expected mean and standard deviation for every point on the

map. Figure 4.9 shows the GP maps for one access point. Evaluating the probability

of a given measurement y is found by first subtracting the predicted signal strength

to create ȳ. Next, the normal distribution given by the expected mean and standard

deviation is evaluated at the point ȳ. The math for evaluating a normal probability

distribution is shown in Eq. (4.8). This returns the probability of the measurement,

a scalar value between 0 and 1.

p (ȳ|x∗) = norm pdf(ȳ, µ∗, σ∗) =
1

σ∗
√

2π
exp {− ȳ − µ∗

2σ2
∗
}. (4.8)

This probability is computed for the k APs detected. By assuming independence,

the joint probability of detecting these k signals is the product of each individual

probability.

p
(
ȳ[1:k]|x∗

)
=

k∏
i=1

(norm pdf(ȳi, µi∗, σi∗)) . (4.9)

This is the weight w for the particle at location x∗.
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Figure 4.9: GP mean and variance maps for one AP. The GP maps are sensitive to the
hyperparameter selection. The figures on the left show the maps used for localization.
The figures on the right used a different set of hyperparameters with a shorter length
scale `.

4.3.2 Time and memory constraints

While the accuracy of GPs increases with the number of data points, the processing

and memory storage loads increase as well. For a particle filter with m particles,

if k APs are detected the GP model must be evaluated mk times. If each AP is

represented by a data set of n data points, each evaluation takes O(n2) time. This

is due to the n2/2 time for multiplying the triangular system in step 2. The total

update time for each step of the particle filter is O(n2mk). The memory requirements

are also nontrivial. For each AP on our map, the system must store the constants

listed in Table 4.1, which is dominated by the n2 matrix L−1. We chose to limit the

size of the arrays to 50. We detect an average of 9 APs each scan. Just multiplying

the L−1 matrix requires 502 · 200 · 9 = 4 500 000 floating point multiplications, which
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is a computational load on our small processor.

Table 4.1: Memory Requirements per AP for Gaussian Process Evaluation

Variable Name Description Size/type

APMAC
1 MAC address 13 char

numPoints Sample set size = n 1 int
X sample (x, y) locations n× 2 float
y sample signal strength n floats
Xap AP (x, y) location 2 floats
m slope of linear fit 1 float
b intercept of linear fit 1 float√

` length scale hyperparameter 1 float
σ2

f signal variance hyperparameter 1 float
σ2

n observation noise hyperparameter 1 float
L−1 precomputed Cholesky factorization (K + σ2

nI)2 n× n float
α precomputed matrix LT\(L\ŷ) n floats

Though there are 812 possible MAC addresses, in practice there is considerable overlap. Our
model treats APs with the same MAC address as identical.

4.4 Procedure

After collecting the signal strength data, the process to build the GP maps is largely

automated. Figure 4.10 lists the procedure and the program code for each step.

The Matlab code GP makeKLMfiles.m generates a C file with all the GP constants

needed for each AP.
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Gaussian Process

RAW .txt
(time, MAC address, 
Signal strength, x, y)

Parse AP data
Evmat.mat

Load a floorplan map onto VB

Downsampling
For each AP, find k 

representative points
Random / grid / k_means

Data interpretation
Estimate each AP location
(Top 5 weighted average)

(Matlab)

Modeling
Fit parametric linear model

Modelling
Find optimum GP 

parameters

Modeling
Calculate Covariance 

matrices (L-1,α)

GP model
(.mat file, Matlab)

Text GP model
(APModels.c)

Get Wireless Scan

Particle filter

Initialize 
Particles, get 
covariance 
matrices

For each particle,
For each signal,

 find predicted µ,δ, 
find probability of 

meas z,
p(z|µ,δ)

Weigh each particle

Resample from the 
particles

Propagate particles 
by motion model

Display and 
calculate error 

for each 
method

GP_makeKLMfiles.m
(Matlab)

ReadRawData.m
(Matlab)

K_sizeRandomGrid.m
(Matlab)

WifiLoc.c
 (Gumstix)

This code also
 implemented in 

ReadRawGumstixRunCov.m

GumStixCom.vb
(laptop, Gumstix)

Gather Wireless Data with 
laptop and Gumstix 

sensor

Get Dead 
Reckoning scan 

from DSP

Figure 4.10: Flow chart for Gaussian process localization. Left: Building the map.
Right: Using Gaussian processes to weight samples in a particle filter. All the pro-
grams referenced are included in the Appendix.
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CHAPTER 5

THE SEGMONSTER

Q. Can your robot go down stairs?

A. Only once.

—Anon

5.1 Why a Segway?

Our buildings, sidewalks, hallways, and classrooms are built for humans. A humanoid

robot, meant to interact and navigate in this environment, must meet certain spec-

ifications [26]. Specifically, a humanoid robot must have a small footprint in order

to navigate cluttered environments built for humans. In order to manipulate and

sense in these environments, the robot needs the ability to place its center of mass

high above the ground. These two requirements conflict for statically stable wheeled

robots. A humanoid robot must be dynamically stable. Both bipedal legs and dy-

namically balancing wheel robots meet these criteria. Currently, bipedal walkers are

expensive, inefficient, or nonrobust. Dynamically balancing wheeled robots are an

attractive alternative. Segway has recognized this market and sells a Segway Robotic

Mobility Platform (RMP). The RMP is a balancing scooter engineered to serve as a

mobile robot. Unfortunately, its purchase price has prevented widespread adoption

of the RMP. The SegMonster (Fig. 5.1) was designed and built as a cost-effective
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alternative by David Johnson and Jan Vervoorst [27]. Figure 5.2 illustrates the ma-

neuverability of the Segway platform.

Figure 5.1: Two views of the SegMonster. At 1.7 m (5-ft, 6-in), the SegMonster is
a human-sized robot capable of turning in place and moving at 16 km per hour (10
mph).

Figure 5.2: Top-down view of Segway. The Segway platform can turn on its own
footprint and accelerate in the forward and reverse directions.
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5.2 Controlling the SegMonster: Dynamics

Any robot becomes easier to control by crafting a more accurate model of the sys-

tem. Segways, built as a human transportation solution, are two-wheeled, feedback-

stabilized scooters capable of carrying a 96 kg (210 lb) rider at speeds of up to 16

km/h (10 mph). Segways are notable for their small footprint, only 0.6 m wide by 0.5

m deep (24 × 18 in). Their floor contact area is even smaller due to using only two

wheels. Despite this small base, they have remarkable stability, achieved by feedback

control [28].

The addition of a rider to the Segway completes an inverted pendulum system. The

rider is the pendulum, and the Segway applies control to keep the rider in an upright

position. We orient the x-axis to be forward for the Segway, the z-axis to be per-

pendicular to level ground, the y-axis to extend through the midpoint of each wheel

to the left of the Segway, and θ to be the angular difference from vertical to the

pendulum center of mass com.

The Segway runs a control loop that senses the platform tilt 100 times a second (a

∆t of 10 ms) and powers the wheels to keep the platform beneath the rider at all

times. According to their manual, “The Segway HT works like the human body. If

you lean forward, you take a step forward to keep your balance. If you lean back,

you step back. Substitute wheels for feet, and you have an empowered pedestrian on

a Segway HT” [28].

A human rider can control the Segway’s velocity in the x-axis by changing the com

position in the x-axis. Gravity pulls in the negative z-direction, which produces a

torque on the Segway. If the Segway counteracts this torque with an acceleration, it
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can remain upright. The Segway has a maximum velocity of 16 km/h, so it cannot

maintain any nonzero acceleration indefinitely. To counteract this, when the Segway

nears its velocity limits it over-accelerates. The front of the base lifts up and the

handlebars “push” the rider back. The manufacturers call this effect the speed limiter.

This riding-up provides an intuitive warning to the user and forces them to slow down.

The Segway is also designed to provide audio, visual, and tactile cues when the rider

is near falling. The large backlit LED switches from green to red, the system beeps,

and the Segway shakes its handle while making growling noises.

5.2.1 Controlling angular velocity

The Segway turns by giving different speed commands to each tire motor. In this way,

it can turn over its own footprint, or make gradual turns. The Segway turning speed

is controlled by twisting the left handle grip, as shown in Fig. 5.3. The SegMonster

has a servo motor cabled to this twist grip.

The original SegMonster controller regulated turning by treating the Segway handle

as a black box, and applied a PI control on the error from a desired turning reference.

This led to a characteristically oscillatory control. As Fig. 5.3 shows, there is a

linear relationship between twist angle and angular velocity in both the forward and

reverse directions, but there is a substantial dead zone. A dead zone is a nonlinearity

that can be removed in code, producing a linear relationship between turn command

and angular velocity. Compensating for this improved the SegMonster’s response to

velocity commands, as seen in Fig. 5.4.
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Figure 5.3: Turning the Segway. The Segway turning speed is controlled by twisting
the left handle grip. As the plot on the right shows, there is a linear relationship
between the twist angle and angular velocity for positive and negative rotation.

Figure 5.4: Dead zone compensation for turn command. The plot shows angular
acceleration response to a pulsed input. Compensating directly for the dead zone is
more effective than a proportional gain.

5.2.2 Controlling speed

By modeling the relationship between the wrist motor and angular speed in the con-

troller, the SegMonster’s turning control was greatly improved. If a similar step could
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be designed for the velocity control, the SegMonster would move more fluidly. Figure

5.5 shows how the SegMonster controls velocity by leaning forwards or backwards.

Figure 5.5: Speed control of the SegMonster. The SegMonster controls the Segway’s
speed in the same way a human rider would, by shifting its center of gravity over the
platform. When the Segmonster leans back, the platform accelerates in the negative
direction, and it accelerates in the positive direction when the SegMonster leans
forward.

Figure 5.6 shows data gathered of speed versus body position. It is obvious that a

linear relationship between body position and speed does not exist. To improve our

control the SegMonster’s speed we will need a better model.

5.3 System Model

A simple model for the SegMonster is a cart-mounted inverted pendulum. Figure 5.7

shows this model, and the relevant variables are listed in Table 5.1.
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Figure 5.6: Body position vs. velocity. Sadly, there is not a linear relationship be-
tween body position and speed. Any positive position can cause any positive velocity,
and vice versa.

MC

Mp, I

θ

x

ℓ

Figure 5.7: The cart-mounted inverted pendulum. Left: The pendulum at equilib-
rium, θ = 0. Right: The pendulum perturbed from equilibrium.

5.3.1 Calculating com and inertia

The inertia of the SegMonster is found by integrating

Izz =

∫ zhigh

zlow

∫ b/2

−b/2

∫ a/2

−a/2

(
x2 + y2

)
ρ dx dy dz
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Table 5.1: Cart-Mounted Inverted Pendulum Variables
Parameter Description value/range

θ angle from vertical to pendulum com [−15◦, 26◦]
` length from pivot to pendulum com 0.67 m (26.29 in)

Mc mass of cart 68 kg (150 lb)
Mp mass of pendulum 5.1 kg (11.32 lb)
I inertia of pendulum 1.219× 103 kg·m2

(4.1659 lb·in2)
x linear displacement of cart in m

for each component in the body. This integration is considerably simplified because

all the components are rectangular. Here a and b are the thickness and width of the

component, zlow and zhigh are the min and max distances from the pivot point, and

ρ is the density of the material. Steel has a density of 7.87 g/cc (0.284 lb/in3) and

aluminum has a density of 2.6989 g/cc (0.097504 lb/in3). Using the parameters listed

in Fig. 5.8, the Izz is 1.219× 103 kg·m2 (4.1659 lb·in2). The simplified body is shown

in Figs. 5.9 and 5.10.

19.25"

14.00"

17.25"

20.50"

0.50"

Part Material Dim (x,y,z),in Mass (lb) Icon

Body Top Steel 25.25, 2.0, 0.5 7.17

Body Bottom Aluminum 21.0, 2.0, 0.5 2.05

Motor Mount Aluminum 3.75, 0.5, 2.75 0.50

Arm Stop Aluminum 4.50, 0.5, 0.75 0.16

Motor Assorted -- 1.43

Figure 5.8: Arm components for inertia calculation. The body is made of a heavy
steel plate attached to a lower structure made of aluminum.
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  ℓ = 26.29"  
mp = 11.32 lb

Pivot

Figure 5.9: Simplified version of the body for controller.

A B C

Figure 5.10: Progressive simplification of the SegMonster body. By calculating the
mass and inertia of the entire SegMonster body, we can simplify the control calcula-
tions.

5.3.2 System dynamics

Using the Newtonian method, we can find the equations of motion by summing the

forces on each component, starting with the cart. The system’s free body diagram is

shown in Fig. 5.11. The cart cannot move in the vertical direction, so we will just

sum forces on the cart in the horizontal direction:

Mcẍ + bẋ + N = F. (5.1)

We can solve for N by summing the forces on the pendulum in the horizontal direction.
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.
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Figure 5.11: Free body diagram of the cart, with forces upon it.

These forces are shown in the free body diagram for the pendulum (Fig. 5.12).

N = Mpẍ−Mp`θ̈ cos θ + Mc`θ̇
2 sin θ. (5.2)

Mp, I

θ

ℓ

P

N

mg

x
..

Iθ

.
Iθ2

Figure 5.12: Free body diagram of the inverted pendulum and forces upon it.

By substituting Eq. (5.2) for N in Eq. (5.1), we get our first equation of motion:

(Mc + Mp) ẍ + bẋ−Mp`θ̈ cos θ + Mc`θ̇
2 sin θ = F. (5.3)

To solve for the second equation of motion the remaining forces can be summed
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perpendicular to the pendulum:

−P sin θ + N cos θ + Mpg sin θ = −Mp`θ̈ + Mpẍ cos θ. (5.4)

To remove the normal forces, the moments can be summed about the com of the

pendulum, P` sin θ −N` cos θ = Iθ̈. This gives

−I/`θ̈ + Mpg sin θ = −Mp`θ̈ + Mpẍ cos θ. (5.5)

The angular accelerations can be grouped, (−I/` + Mp`) θ̈ + Mpg sin θ = Mpẍcosθ,

and the equation simplified by dividing through by the mass of the pendulum.

(
−I

Mp`
+ `

)
θ̈ + g sin θ = ẍ cos θ.

We can now isolate the horizontal acceleration,

�
−I

Mp`
+`

�
θ̈+g sin θ

cosθ
= ẍ. By exploiting

trigonometric identities, the second equation of motion is

(
−I
Mp`

+ `
)

θ̈

cos θ
+ g tan θ = ẍ. (5.6)

When θ̈ is small and cos θ large (near the equilibrium) the instantaneous acceleration

needed to maintain the pendulum position is

g tan θ ≈ ẍ. (5.7)

The approximation is exact when θ̈ = 0. The Segway’s control loop provides this

acceleration to prevent the system from falling over, if the acceleration is within the

Segway’s capabilities.
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5.3.3 Improving the system model

1. Adjusting for pivot point offset

A few additions to the model are required because the SegMonster’s body does

not pivot at the center of the wheels, as shown in Fig. 5.13. The SegMonster

body is attached slightly back from the center line between the wheels, presum-

ably to counterbalance the handlebars.

Mp, I

θ

ℓ

P

N

mg

x
..

Iθ

.
Iθ2

Offsetx

Offsety

τhandle

ℓ2

θ

ℓ

mg

x
..

Offsetx

Offsety

τhandle

ℓ2

θ2

Figure 5.13: Adjusting for pivot point offset. Left: The pivot point for the SegMonster
is slightly back from the center line of the robot. Right: a small transformation
converts the model position [θ2, `2] into body position [θ, `].

The pivot is offset by offsetx = 5.71 cm (-2.25 in) and offsety = 21 cm (8.25in).

If we define the location of the com with regard to the offset as (x2, y2), the

angle from the center of the wheel to the com as θ2, and the distance from the

com to the center of the wheel as `2, the new coordinates are:
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x2 = ` sin θ − 2.25

y2 = ` cos θ + 8.25

`2 =
√

x2
2 + y2

2 =
√

73.12 + `2 + 16.5` cos θ − 4.6` sin θ in

tan θ2 = ` sin θ−2.25
` cos θ+8.25

ẍ ≈ g ` sin θ−2.25
` cos θ+8.25

.

(5.8)

Fig. 5.14 shows the instantaneous acceleration required of the Segway to main-

tain the pendulum position. Obviously, this is a nonlinear equation because

it requires infinite accelerations as the pendulum reaches a horizontal position.

The plot of instantaneous acceleration versus position is shown in Fig. 5.14,

along with the linear approximation. Fortunately the SegMonster’s body is

physically constrained to a small variation in θ. The linear approximation re-

lating the position of the SegMonster’s body to the instantaneous acceleration,

taking into account the torque from the handlebars and the pivot point offset,

is

7.68 · θ(rad) + 1.06 m/s2

(25.20 · θ(rad) + 3.48 ft/s2).
(5.9)

2. Converting from motor angle to body position

The relationship between motor angle αB and body angle θB can be solved

by applying the law of cosines. The relationship is nonlinear, but can be well

approximated by the line θB = −0.324αB + 55.47◦, with less than 4◦ error, and

that at the endpoints. The relationship and linear approximation are shown in

Fig. 5.15.
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Figure 5.14: Model of acceleration vs. body position. Though the accel = −g tan(θ)
function grows to ±∞, the range of our robot position fits neatly on a section that
can be modeled linearly.

θ

a1 a2

b
s

L

α

Figure 5.15: Converting from motor angle to body position. The body motor angle
α controls the body position θ through a nonlinear relationship. Fortunately for ease
of control, this relationship can be well approximated by a first order fit.

5.3.4 Speed control revisited

The RWP connects directly into the Segway’s CAN bus and controls the wheels di-

rectly [29]. This results in a non-minimum-phase system. When the robot wants
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to move forward from a balancing position, it must first accelerate in the reverse

direction to tip the com forward before accelerating in the desired direction. This

response can be clearly seen in Fig. 5.16, where the RMP responds to a 6-s pulse

between 0 and 1 m/s.

Figure 5.16: RWP response to a step velocity input. The RMP is a non-minimum-
phase system, and so must accelerate backwards before going forward. This is much
like backing up a truck with an attached trailer. The initial control input must be
opposite of the desired direction.

The SegMonster is able to tip its body in the desired direction under power, and

the Segway moves to prevent the system from falling. Unfortunately the acceleration

θ̈ exerts a torque that the SegMonster must compensate for, also leading to a non

minimum-phase system. Figure 5.17 shows the SegMonster’s response to a 6-s pulse

between 0 and 1 m/s. The step responses are analyzed in Fig. 5.18.
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Figure 5.17: SegMonster response to a step velocity input. Using only a PID controller
on the SegMonster results in a non minimum-phase system as well. A nonlinear
controller is needed to further improve this response.

Figure 5.18: Positive and negative step responses for SegMonster velocity. The Seg-
Monster cannot generate as much acceleration in the negative direction as the positive.
A longer arm would improve control.

5.3.5 Low level control

We desire to control the SegMonster’s location, and can do so by choosing the orien-

tation and speed. Controlling the orientation and speed followed the lead of [27] and

was achieved with outer loop controllers that set the desired hand and arm positions,

with inner loop controllers to control the motor positions. These controllers are dis-

crete and are calculated 1 000 times a second (∆t = 1 ms).
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• Hand Outer Loop Control

To control the orientation we can twist the grip handle with motorH . The Hand

Outer Loop Control, shown in Fig. 5.19, creates an orientation error signal from

the reference orientation less the true orientation and applies a PI control to

it. The error signal summed by the integral incorporates a forgetting factor

by multiplying the summation by 0.997 each time step. The control effort is

pushed through a dead zone compensator as described in Fig. 5.4 and passed

into the Hand Inner Loop Control.

Hand Position Orientation

Segway

Kp

Kp_turn

Ki

Ki_turn

                 
  Integral with  

forgetting factor

Integrator

          
   Hand   

Inner Loop

Hand Inner LoopDead Zone
Compensation

1
Reference
Orientation

Orientation error

Orientation

Figure 5.19: Orientation outer control loop block diagram.

• Hand Inner Loop Control

The DC motors on the SegMonster are strong, and are capable of rapid move-

ment. This rapid movement is damaging to the cables connecting the mo-

tor to the twist grip. We want a smooth touch at the controls. The Hand

Inner Loop Control, shown in Fig. 5.20, uses a PID controller, but slow-

ing the response using the derivative is not possible because of the noise in-

herent in discrete derivatives. Instead, an input shaping function was added

that updates a state variable mH desired prev. The current motor position is

mH pos. If the desired motor position is greater than mH desired prev and

mH pos, mH desired prev is updated to max(mH pos, mH desired prev) +

∆step. If the desired motor position is less than mH desired prev and mH pos,
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mH desired prev is updated to min(mH pos, mH desired prev)−∆step. Oth-

erwise, mH desired prev = desired position. This results in a smooth wrist

controller. The next important update was an input saturation to limit control

effort to no more than 50% of maximum torque. This amount of torque is suf-

ficient to completely control the wrist. Extra effort merely heats up the motor

and, possibly, damages the robot.

1
Hand

PositionSaturation

...

Low Pass
Filter

Kp

Kp_mH

Ki

Ki_mH

Kd

Kd_mH

                 
  Integral with  

forgetting factor

Integrator

.

..
'

Input Shaping

Control Effort Hand Position

Hand Motor

du/dt

Derivative

1
Desired

Hand Position

Hand Position

Velocity Feeback

Figure 5.20: Orientation inner control loop block diagram.

• Arm Outer Loop Control

Speed is also controlled with an inner and outer loop. The outer loop, shown in

Fig. 5.21, specifies a desired arm position, and the inner loop controls the motor

to achieve that position. A simple proportional control with a small position

offset is sufficient to control the SegMonster on level ground. Unfortunately,

tuning this control to overcome even a 4◦, 3-cm elevation change caused the

SegMonster to oscillate wildly. Integral control fixes this by ramping up con-

trol effort in the presence of disturbances. Unfortunately, integral windup is an

issue. To avoid this, a forgetting factor was used that allows the SegMonster

to grow integral compensation rapidly in the face of disturbances, and quickly

diminish that control when the disturbance has passed.
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...
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Velocity error

Right Wheel Velocity
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Figure 5.21: Speed outer control loop block diagram.

• Arm Inner Loop Control

The Arm Inner Loop Control, shown in Fig. 5.22, also uses a PID controller,

and employs a similar input shaping function. The saturation block is very

important on the arm motor. One motor burned out during testing before this

addition was made. The control circuit also takes advantage of the new limit

switches, and will not input positive torque if the forward switch is high, or

negative torque if the arm extended switch is high.

1
Arm

PositionSaturation

...

Low Pass
Filter

Kp

Kp_ma

Ki

Ki_ma

Kd

Kd_mA

                 
  Integral with  

forgetting factor

Integrator

.

..
'

Input Shaping

du/dt

Derivative

Control Effort Arm Position

Arm Motor

1
Desired

Arm Position

Arm Position

Velocity Feeback

Figure 5.22: Speed inner control loop block diagram.

5.4 Controlling the SegMonster: Local Control

The SegMonster was originally designed with three modes of control. A DIP switch

on the DSP board was used to choose the mode.
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1. Remote control

This was a basic velocity controller. A Palm M100 connected to a serial radio

was used to update speed and angular velocity commands.

2. Red LED following

The SegMonster used a color camera to detect a red LED light bar. When

the light bar was fixed to another Segway, the robot would follow the rider by

segmenting the camera image and tracking the centroid of the largest red object

in the frame.

3. Sidewalk following

By segmenting images from the color camera, the SegMonster could follow the

line between green grass and the sidewalk while maintaining a constant speed.

For this thesis project, the robot needed to be able to autonomously navigate the

hallways of Everitt Lab. Wall following gave the robot a level of autonomy, and was

a good base for testing localization procedures.

5.4.1 Wall following

The wall following algorithm, shown in Fig. 5.23, takes advantage of two additional

IR sensors mounted on the SegMonster. These sensors have a latency of 70 ms, so the

control effort is updated about 14 times a second. The SegMonster is able to cleanly

navigate the hallways, as long as the doors leading to the stairwells are closed. The

SegMonster also has difficulty navigating around tables, whose legs show up poorly

on the IR scans.

The IR sensors return a nonlinear range reading that must be individually calibrated

for each sensor. Figure 5.24 shows the calibration results for each sensor. The range

measurement can be approximated by a fourth-order polynomial.
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Right Wall 
Following

If IRF < Front_Threshold

Read right and forward IR 
sensors (IRR, IRF)

errorFront = Front_Threshold – IRF 
Turn Left Proportional to errorFront

errorRight = Right_Desired – IRR 
Turn Proportional to errorRight

Figure 5.23: Wall following flow chart and IR sensor mounting positions. The black
rectangles represent the three IR sensors.

Figure 5.24: Calibrating IR sensors. Each IR must be calibrated individually. The
right plot shows that a fourth-order fit adequately models the data.

5.5 Modifications and Improvements to the Robot

The SegMonster is made of a 1.2 m (4-ft) body, a two-link revolute arm pivoted at

the shoulder of the body and the handles of the Segway, a wrist motor attached to

the twist-grip turning control of the Segway, a base mounted between the two wheels

that holds the DSP, and a mechanical foot pad to activate the Segway. It has two

actuators, which correspond to the two control inputs of the robot model, speeddesired

and angular velocitydesired (ut = [vdesired, ωdesired]).
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The actuators are permanent magnet DC motors with integrated optical encoders

for angular position feedback. One motor controls the body position θB. The motor

position varies from 228◦ to 86◦, which translates to a body position from −15◦ to

26◦. This moves the com approximately 0.46 m (1.5 ft). Since the Segway must exert

a constant acceleration to counteract a constant com position, a mapping between

body position and velocity does not exist.

The robot has four optical encoders, one each for the wrist and body motors and one

friction-mounted to each wheel. These encoders are relative encoders, meaning they

are initialized to a constant (usually zero) at power-up, and count from that initial

value. The encoders are quadrature encoders, meaning they can identify movement in

the forward and reverse directions. The wrist and wheel encoders have 1250 ticks per

revolution. The arm position encoder had originally 1250 ticks per revolution as well,

but the encoder mounting was custom machined and lacked the required tolerance.

The small division marks required for 1250 ticks/revolution resulted in the encoder

missing as much as 3% of the body position range at each full oscillation. This in-

accuracy made body position difficult to control reliably. The motor has an internal

gear ration of 75.11:1, so 1250 ticks/revolution was more resolution than needed for

body positioning. A 50 count encoder was installed, which performs well without

missing counts.

Relative encoders are fine for wheel position sensors, since setting odometry data

to zero at startup is a reasonable assumption. The turning input to the Segway

has internal springs that return the grip to its default setting of zero, so the wrist

encoder can be safely assumed to start at zero as well. For the body position, a

starting position cannot be assumed. For this reason limit switches were added to
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the SegMonster. One switch is only activated when the body is in the full forward

position, the other only when the body is in the full backward position (see Fig. 5.25).

The control architecture was designed to not initialize the encoder until the body is

in the full forward configuration, as shown in the SegMonster state machine, Fig 5.26.

Figure 5.25: Body motion limit switches. The SegMonster uses relative encoders for
feedback. To calibrate these, limit switches were attached at the body’s range of
movement limits.

The original wrist of the SegMonster turned the motor by twisting cables attached

to a wheel on the motor. The attachment points (see Fig. 5.27) allowed only ±20◦ of

movement. The Segway’s twist grip responds proportionally to input in the range of

±90◦. A revision of the wrist allows the SegMonster to use this full range of motion.

Occasionally in the past, when the SegMonster rolled down a hill it was unable to

apply enough turn command to stay on the sidewalk. Now the SegMonster has as

much control as a human rider.

Calculating the particle filter is computationally intensive, as Chapter 4 discussed.

Adding this load to the DSP would make vision processing difficult. Also, the DSP

board on the SegMonster is incapable of hosting USB devices. For these two reasons,

the SegMonster was given a second processor. The new processor is a Gumstix
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Turn On SegMonster

If body is in full 
forward position

If dipswitches ask for 
zeroed state

Initialize Sensors
Initialize Wheel Encoders

Read dip switches
Read limit switches

Yes

Initialize Motor Encoders

Control state

Set body and hand to 
default stop position

Control SegMonster
Via remote

Wall Follow 
using IRs

Go to XY 
position

Set hand and body 
to given position

Control state

No

stop

remote
Wall follow

Go XY

Set hand/body

Has body position 
been initialized? No

Read Sensors
Read Encoders

Update Dead Reckoning Position

Loop

Loop

Figure 5.26: Outer loop state machine for the SegMonster.

computer, a small (the size of a stick of chewing gum) 600-MHz processor running

a Linux operating system. The Gumstix processor is mounted on the SegMonster’s

handlebar, giving the Wi-Fi detector clear access to RF signals. Figure 5.28 shows the

location of the processor and a closeup of the Gumstix. The Gumstix is a dedicated

localization computer, and communicates with the DSP via a serial interface. The

control flow for Gumstix is shown in Fig. 5.29.
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Figure 5.27: Improvement of SegMonster’s wrist allows full control of ωturn. The old
arrangement is shown on the left and the new grip is shown on the right.

Figure 5.28: Gumstix processor and USB Wi-Fi detector. The Gumstix, a 600-MHz
Linux processor is so named because it is the size of a stick of chewing gum. The
Gumstix allowed USB peripherals, such as the Wi-Fi sensor, to be integrated, and it
provided additional processing power.
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Gumstix Wi-Fi Sensor

Initialize Particle Filter
Init com port 2 (DSP connection)

Initialize Wi-Fi sensor
Open file to save run 

Ask DSP for SegMonster state

State received?

Timeout

No

Request wireless scan

Process wireless scan

Step Particle Filter

Save to file
[state, time, Wi-Fi scan]

Send updated state info onto DSP 
[state, time, scan]

State Value

Open new file

END

Reset particle filter 
belief

C, state

R, state, certainty

Loop

Loop

Figure 5.29: Flowchart for Gumstix processor. The Gumstix processor was turned
into a dedicated localization device that polled for Wi-Fi data, integrated control
inputs from the SegMonster, and calculated the particle fitler, returning accurate
location estimates to the DSP.
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CHAPTER 6

EXPERIMENTAL RESULTS

6.1 Dead Reckoning

Dead reckoning is our base case for comparing localization results, and was discussed

thoroughly in Chapter 2. The error grew quickly, with a mean estimate nearly 58 m

from the true position. The results are shown again for convenience in Fig. 6.1.

Figure 6.1: Test results showing dead reckoning error. The SegMonster navigated
a closed loop path in the hallways of Everitt Lab (70 × 50 m). By the end of the
first hallway (20 m) the dead reckoned estimate had accumulated a 30◦ error. The
position error increased to 90 m over the course of the exercise.
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6.2 Wi-Fi with No Local Sensors

Localization using Wi-Fi sensors does not require optical encoder data. Many papers

have presented results using wireless signals for human tracking and localization.

Using GP with no motion input data, our best results could only consistently localize

with a 3.5 m average error. Others published better results by making more detailed

maps [30] or by using a complex topology for the particle filter and processing larger

GPs maps on a laptop computer [3]. When running without motion data, the most

basic motion model is to assume that the robot moves with a random acceleration

in the x and y axis. This is also easily modeled when the probability is discritized

to a grid. Each time step, the previous probability is passed through a moving

average filter which flattens probability peaks, then each grid cell is multiplied by the

probability of the current measurement being received at that cell. The probability

at any time can be represented with a contour map, as in Fig. 6.2.

6.3 Wi-Fi Localization Using Gaussian Processes

6.3.1 Position tracking

Our results on the SegMonster were shown previously in Fig. 6.1. They are compared

to published results in Table 6.1.

Table 6.1: Literature Results: Position Tracking Using Wi-Fi Signal Strength

Average Error Method

1.09 m SegMonster
2.12 m [3] Gaussian Processes, Particle Filter
3.88 m [31] AP Location and Blueprints (no data gathering stage)
2.65 m [24] Nearest Neighbor in Signal Space

93



Figure 6.2: Wi-Fi localization with no local sensors. The true position in each case
is shown in green, and the sensed APs are represented with boxes. The contour lines
denote paths of equal probability.

6.3.2 Global localization

Global localization is more difficult than position tracking. The SegMonster is capable

of both. The heading variable is the most sensitive because the GP only provides

position data, so heading must be inferred from the route the robot follows. Five

global localization runs are compared against a position tracking run in Fig. 6.3.

Note that though the particles generally converge to the true position, the heading

may not be initially correct, leading to errors further in the process.
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Figure 6.3: Position tracking vs. global localization. Five runs of global localization
are compared against the control performing position tracking. Each run used 300
particles and the same sensor readings.

6.3.3 Tuning parameters

One of the biggest parameters to tune is the number of particles to propagate in the

model. More particles increases confidence in the localization algorithm. The chance

of losing all the correct particles during resampling drops as the number of particles

increases. Unfortunately, processing time increases linearly with the number of parti-

cles maintained. Memory constraints also increase linearly. The number of particles

necessary also increases with the dimensionality of the state space for the robot. The

effect of additional particles is shown in Fig. 6.4.

Each run used the same data set of motion commands and sensor readings, but

different results stem from the number of particles used. A logarithmic set of particle

sizes are compared in the plot. Each set performed global localization. Their position

error in meters is displayed, along with the error of a 300 particle set performing

position tracking. Each run converged to the true position rapidly, within the first 4

s. The GP was able to filter out particles not near the true position. Unfortunately,

often the particles selected by GP had incorrect orientations. This is particularly
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Figure 6.4: Effect of additional particles. Adding additional particles generally im-
proves localization.

obvious for the smaller sample sizes. Using only 10 particles results in a fragile

localization. At the 150 m mark, both the 10 and 100 particle runs lost the robot,

but the 100 particle sample recovered more quickly. It is noteworthy that the 10 000

sample set took the longest to converge, but was the most accurate from that point

on.
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CHAPTER 7

CONCLUSIONS

This thesis presented and contrasted methods for localizing a mobile robot. A solution

was implemented on the SegMonster for recursive state estimation using a particle

filter. Simulation and experimental results were shown, along with a method for sig-

nal strength-based localization using Gaussian processes. This thesis also discussed,

improved, and implemented controllers for a robot riding a Segway.

7.1 Future Work

Future work will extend this process to a larger, outdoor environment. Outdoors,

wall following will no longer be an option, but the SegMonster is capable of sidewalk

following using an onboard color camera. Outside, there is much less interference

from walls and floors. There is a wealth of wireless signals around campus the robot

can use for localization, as Fig. 7.1 shows. Also, GPS and compass data can be

integrated into the particle filter for more accurate localization. There is still room

for improvement for the robot’s velocity control. Though the results are near those

of the RMP, the SegMonster should be able to surpass the RMP.
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Figure 7.1: 500 unique Wi-Fi access points around campus. During a survey run on
the campus buslines, we recorded 1819 unique wireless networks on campus. There
are enough signals for GP localization in an outdoor environment.
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APPENDIX A

COMPANION CD

The programs used in this thesis project along with videos of the SegMonster in action

are included on the CD. Figure A.1 lists the contents of the CD.

Figure A.1: Files included on the CD. These files include code for Matlab, the
Gumstix processor, the SegMonster’s DSP, and Visual Basic interfaces. Also included
are videos of the SegMonster and videos of the particle filter localizing the robot

99



REFERENCES

[1] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control.
Hoboken, NJ: John Wiley & Sons, Inc., 2006.

[2] R. Arkin, Behavior-Based Robotics. Cambridge, MA: MIT Press, 2006.

[3] B. Ferris, D. Hahnel, and D. Fox, “Gaussian processes for signal strength-based
location estimation,” Robotics Proceedings, vol. rs02, pp. 39–47, 2006.

[4] A. King, “Inertial navigation - forty years of evolution,” GEC REVIEW, vol. 13,
no. 2, pp. 140–149, 1998.

[5] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge University
Press, 2006.

[6] G. Franklin, J. Powell, and A. Emami-Naeini, Feedback Control of Dynamic
Systems. Upper Saddle River, NJ: Pearson Prentice Hall, 2006.

[7] P. Enge and P. Misra, “Special issue on GPS: The global positioning system,”
Proceedings of the IEEE, vol. 87, no. 1, pp. 3–15, August 1999.

[8] R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The active badge location
system,” ACM Transactions on Information Systems, vol. 10, no. 1, pp. 91–102,
January 1992.

[9] N. Prijantha, A. Chakraborty, and H. Balakrishan, “The cricket location-support
system,” in MobiCom ’00: Proceedings of the 6th Annual International Confer-
ence on Mobile Computing and Networking, August 2000, pp. 32–43.

[10] T. W. Christ, P. Godwin, and R. Lavigne, “A prison guard duress alarm location
system,” in Institute of Electrical and Electronics Engineers 1993 International
Carnahan Conference, Oct 1993, pp. 106–116.

[11] M. Schneider and C. Stevens, “Development and testing of a new magnetic-
tracking device for image guidance,” Ascension Technology Corporation, Milton
VT, Tech. Rep., January 2007.

100



[12] S. Thrun, M. Bennewitz, W. Burgard, A. Cremers, F. Dellaert, D. Fox, D. Hah-
nel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz, “Minerva: A second-
generation museum tour-guide robot,” in IEEE International Conference on
Robotics and Automation, vol. 3, 1999, pp. 1999–2005.

[13] N. Ravi and L. Iftode, “Fiatlux: Fingerprinting rooms using light inten-
sity,” 2007, presented at 5th International Conference on Pervasive Computing,
Toronto, Canada.

[14] V. Otsason, A. Varshavsky, A. LaMarca, and E. de Lara, “Accurate GSM indoor
localization,” in LNCS 3660, 2005, pp. 141–158.

[15] R. Hogg, J. McKean, and A. Craig, Introduction to Mathematical Statistics.
Upper Saddle River, NJ: Pearson Prentice Hall, 2005.

[16] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in
C. New York, NY: Cambridge University Press, 1992.

[17] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic pro-
gressions,” Journal of Symbolic Computation, vol. 9, no. 3, pp. 251–280, March
1990.

[18] R. E. Kalman, “A new approach to linear filtering and prediction problems,”
Journal of Basic Engineering, vol. 82D, pp. 35–45, 1960.

[19] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, and
S. Thrun, Principles of Robot Motion. Boston, MA: MIT-Press, 2005.

[20] A. Doucet, N. Freitas, and N. Gordon, Eds., Sequential Monte Carlo Methods in
Practice. New York, New York: Springer-Verlag, 2001.

[21] S. Thrun, W. Burgard, D. Fox, and L. Lamport, Probabilistic Robotics. Cam-
bridge, MA: MIT-Press, 2005.

[22] J.Ansari, J. Riihijrvi, and P. Mhnen, “Combining particle filtering with cricket
system for indoor localization and tracking services,” in 18th Annual IEEE In-
ternational Symposium on Personal, Indoor and Mobile Radio Communication,
September 2007, pp. 1–5.

[23] G. Adorni, S. Cagnoni, and M. Mordonini, “Landmark-based robot self-
localization: a case study for the robocup goal-keeper,” in Information Intel-
ligence and Systems, 1999, pp. 164–171.

[24] P. Bahl, V. Padmanabhan, and A. Balachandran, “A software system for locating
mobile users: Design, evaluation, and lessons,” 2000, revised version of Microsoft
Research Paper.

[25] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning.
Boston, MA: the MIT Press, 2006.

101



[26] R. Brooks, L. Aryananda, A. Edsinger, P. Fitzpatrick, C. Kemp, U. O’Reilly,
E. Torres-Jara, P. Varshavskaya, and J. Weber, “Sensing and manipulating built-
for-human environments,” International Journal of Humanoid Robotics, vol. 1,
no. 1, pp. 1–28, January 2004.

[27] D. Johnson, “Mechanical design, construction, and control of an autonomous
segway operator,” M.S. thesis, University of Illinois at Urbana-Champaign, 2005.

[28] Segway HT Technical Staff, Segway HT reference manual,i Series, p Series, Seg-
way XT, Segway GT, Segway HT, 2005.

[29] H. Nguyen, H. Morrell, K. Mullens, A. Burmeister, S. Miles, N. Farrington,
K. Thomas, and D. Gage, “Segway robotic mobility platform,” SPIE Proc. 5609,
vol. Mobile Robots XVII, pp. 308–22, October 2004.

[30] A. Ladd, K. Bekris, A. Rudys, D. Wallach, and L. Kavraki, “On the feasibility of
using wireless ethernet for indoor localization,” IEEE Transactions on Robotics
and Automaton, vol. 20, no. 3, pp. 555–559, June 2004.

[31] M. Robinson and I. N. Psaromiligkos, “Received signal strength based location
estimation of a wireless LAN client,” in Wireless Communications and Network-
ing Conference, New Orleans, LA, March 2005.

102


